
CSE 573: Artificial Intelligence

Autumn 2010

Lecture 5: Expectimax Search
10/14/2008

Most slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

1

Luke Zettlemoyer

Announcements

 PS1 due tomorrow, 5pm
 DropBox instructions are on assignment page
 No late assignments

 Email Luke for extension (requires good reason)
 PS2 will go out soon
 MDP/RL Readings

 will assign chapters from RL Book by Sutton &
Barto, freely available online:
 http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Outline

 Review adversarial search
 Trace alpha/beta

 Review probabilities / expectations
 Expectimax search (one and two

player)
 Rational preferences

Adversarial Games
 Deterministic, zero-sum games:

 Tic-tac-toe, chess, checkers
 One player maximizes result
 The other minimizes result

 Minimax search:
 A state-space search tree
 Players alternate turns
 Each node has a minimax

value: best achievable utility
against a rational adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Recap: Resource Limits

 Cannot search to leaves

 Depth-limited search
 Instead, search a limited depth

of tree
 Replace terminal utilities with

an eval function for non-
terminal positions

 Guarantee of optimal play is
gone

? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

 Replanning agents:
 Search to choose next action
 Replan each new turn in

response to new state

Evaluation Functions
 Function which scores non-terminals

 Ideal function: returns the utility of the position
 Typically weighted linear sum of features:

 number of pawns, rooks, etc.

Pruning for Minimax

Alpha-Beta Pseudocode

function MAX-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s,α,β))
if v ≥ β then return v
α ← MAX(α,v)

return v

inputs: state, current game state
 α, value of best alternative for MAX on path to state
 β, value of best alternative for MIN on path to state

returns: a utility value

function MIN-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s,α,β))
if v ≤ α then return v
β ← MIN(β,v)

return v

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=2

α=3
β=+∞

α=3
β=14

α=3
β=5

α=3
β=1

Alpha-Beta Pruning Properties

 This pruning has no effect on final result at the root

 Values of intermediate nodes might be wrong!
 but, they are bounds

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth!
 Full search of, e.g. chess, is still hopeless…

Expectimax Search Trees
 What if we don’t know what the

result of an action will be? E.g.,
 In solitaire, next card is unknown
 In minesweeper, mine locations
 In pacman, the ghosts act randomly

10 4 5 7

max

chance

 Later, we’ll learn how to formalize
the underlying problem as a
Markov Decision Process

 Can do expectimax search
 Chance nodes, like min nodes,

except the outcome is uncertain
 Calculate expected utilities
 Max nodes as in minimax

search
 Chance nodes take average

(expectation) of value of children

Maximum Expected Utility

 Why should we average utilities? Why not minimax?

Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Maximum Expected Utility

 Why should we average utilities? Why not minimax?

 Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge
 General principle for decision making
 Often taken as the definition of rationality
 We’ll see this idea over and over in this course!

 Let’s decompress this definition…

Reminder: Probabilities
 A random variable represents an event whose outcome is unknown
 A probability distribution is an assignment of weights to outcomes

 Example: traffic on freeway?
 Random variable: T = whether there’s traffic
 Outcomes: T in {none, light, heavy}
 Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

 Some laws of probability (more later):
 Probabilities are always non-negative
 Probabilities over all possible outcomes sum to one

 As we get more evidence, probabilities may change:
 P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
 We’ll talk about methods for reasoning and updating probabilities later

What are Probabilities?

 Averages over repeated experiments
 E.g. empirically estimating P(rain) from historical observation
 E.g. pacman’s estimate of what the ghost will do, given what it

has done in the past
 Assertion about how future experiments will go (in the limit)
 Makes one think of inherently random events, like rolling dice

 Objectivist / frequentist answer:

 Degrees of belief about unobserved variables
 E.g. an agent’s belief that it’s raining, given the temperature
 E.g. pacman’s belief that the ghost will turn left, given the state
 Often learn probabilities from past experiences (more later)
 New evidence updates beliefs (more later)

 Subjectivist / Bayesian answer:

Uncertainty Everywhere
 Not just for games of chance!

 I’m sick: will I sneeze this minute?
 Email contains “FREE!”: is it spam?
 Tooth hurts: have cavity?
 60 min enough to get to the airport?
 Robot rotated wheel three times, how far did it advance?
 Safe to cross street? (Look both ways!)

 Sources of uncertainty in random variables:
 Inherently random process (dice, etc)
 Insufficient or weak evidence
 Ignorance of underlying processes
 Unmodeled variables
 The world’s just noisy – it doesn’t behave according to plan!

Reminder: Expectations
 We can define function f(X) of a random variable X

 The expected value of a function is its average value,
weighted by the probability distribution over inputs

 Example: How long to get to the airport?
 Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60
 What is my expected driving time?

 Notation: EP(T)[L(T)]
 Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

 E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
 E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Utilities

 Utilities are functions from outcomes (states of the world)
to real numbers that describe an agent’s preferences

 Where do utilities come from?
 In a game, may be simple (+1/-1)
 Utilities summarize the agent’s goals
 Theorem: any set of preferences between outcomes can be

summarized as a utility function (provided the preferences meet
certain conditions)

 In general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

 More on utilities soon…

Expectimax Search
 In expectimax search, we have a

probabilistic model of how the
opponent (or environment) will
behave in any state
 Model could be a simple uniform

distribution (roll a die)
 Model could be sophisticated and

require a great deal of computation
 We have a node for every outcome

out of our control: opponent or
environment

 The model might say that adversarial
actions are likely!

 For now, assume for any state we
magically have a distribution to
assign probabilities to opponent
actions / environment outcomes

Expectimax Pseudocode
def value(s)
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s)
 values = [value(s’) for s’ in successors(s)]
 return max(values)

def expValue(s)
 values = [value(s’) for s’ in successors(s)]
 weights = [probability(s, s’) for s’ in successors(s)]
 return expectation(values, weights)

8 4 5 6

Expectimax for Pacman
 Notice that we’ve gotten away from thinking that the

ghosts are trying to minimize pacman’s score
 Instead, they are now a part of the environment
 Pacman has a belief (distribution) over how they will

act
 Quiz: Can we see minimax as a special case of

expectimax?
 Quiz: what would pacman’s computation look like if

we assumed that the ghosts were doing 1-ply
minimax and taking the result 80% of the time,
otherwise moving randomly?

Expectimax for Pacman

Minimizing
Ghost

Random
Ghost

Minimax
Pacman

Expectimax
Pacman

Results from playing 5 games

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

SCORE: 0

Won 5/5
Avg. Score:

493

Won 5/5
Avg. Score:

483

Won 5/5
Avg. Score:

503

Won 1/5
Avg. Score:

-303

Expectimax Pruning?

 Not easy
 exact: need bounds on possible values
 approximate: sample high-probability branches

Expectimax Evaluation

 Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

 For minimax, evaluation function scale doesn’t matter
 We just want better states to have higher evaluations

(get the ordering right)
 We call this insensitivity to monotonic transformations

 For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Mixed Layer Types
 E.g. Backgammon
 Expectiminimax

 Environment is an
extra player that moves
after each agent

 Chance nodes take
expectations, otherwise
like minimax

Stochastic Two-Player

 Dice rolls increase b: 21 possible rolls
with 2 dice
 Backgammon ≈ 20 legal moves
 Depth 4 = 20 x (21 x 20)3 1.2 x 109

 As depth increases, probability of
reaching a given node shrinks
 So value of lookahead is diminished
 So limiting depth is less damaging
 But pruning is less possible…

 TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Non-Zero-Sum Games

 Similar to
minimax:
 Utilities are now

tuples
 Each player

maximizes their
own entry at
each node

 Propagate (or
back up) nodes
from children

 Can give rise to
cooperation and
competition
dynamically…

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

Preferences

 An agent chooses among:
 Prizes: A, B, etc.
 Lotteries: situations with

uncertain prizes

 Notation:

Rational Preferences

 We want some constraints on
preferences before we call
them rational

 For example: an agent with
intransitive preferences can
be induced to give away all its
money
 If B > C, then an agent with C

would pay (say) 1 cent to get B
 If A > B, then an agent with B

would pay (say) 1 cent to get A
 If C > A, then an agent with A

would pay (say) 1 cent to get C

Rational Preferences
 Preferences of a rational agent must obey constraints.

 The axioms of rationality:

 Theorem: Rational preferences imply behavior
describable as maximization of expected utility

MEU Principle

 Theorem:
 [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 Given any preferences satisfying these constraints, there exists

a real-valued function U such that:

 Maximum expected likelihood (MEU) principle:
 Choose the action that maximizes expected utility
 Note: an agent can be entirely rational (consistent with MEU)

without ever representing or manipulating utilities and
probabilities

 E.g., a lookup table for perfect tictactoe, reflex vacuum
cleaner

Utility Scales
 Normalized utilities: u+ = 1.0, u- = 0.0

 Micromorts: one-millionth chance of death, useful for paying to
reduce product risks, etc.

 QALYs: quality-adjusted life years, useful for medical decisions
involving substantial risk

 Note: behavior is invariant under positive linear transformation

Money
 Money does not behave as a utility

function

 Given a lottery L:
 Define expected monetary value EMV(L)
 Usually U(L) < U(EMV(L))
 I.e., people are risk-averse

 Utility curve: for what probability p
 am I indifferent between:

 A prize x
 A lottery [p,$M; (1-p),$0] for large M?

 Typical empirical data, extrapolated
 with risk-prone behavior:

Example: Human Rationality?

 Famous example of Allais (1953)

 A: [0.8,$4k; 0.2,$0]
 B: [1.0,$3k; 0.0,$0]

 C: [0.2,$4k; 0.8,$0]
 D: [0.25,$3k; 0.75,$0]

 Most people prefer B > A, C > D
 But if U($0) = 0, then

 B > A ⇒ U($3k) > 0.8 U($4k)
 C > D ⇒ 0.8 U($4k) > U($3k)

