
CSE 573: Artificial Intelligence

Autumn 2010

Lecture 5: Expectimax Search
10/14/2008

Most slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

1

Luke Zettlemoyer

Announcements

 PS1 due tomorrow, 5pm
 DropBox instructions are on assignment page
 No late assignments

 Email Luke for extension (requires good reason)
 PS2 will go out soon
 MDP/RL Readings

 will assign chapters from RL Book by Sutton &
Barto, freely available online:
 http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Outline

 Review adversarial search
 Trace alpha/beta

 Review probabilities / expectations
 Expectimax search (one and two

player)
 Rational preferences

Adversarial Games
 Deterministic, zero-sum games:

 Tic-tac-toe, chess, checkers
 One player maximizes result
 The other minimizes result

 Minimax search:
 A state-space search tree
 Players alternate turns
 Each node has a minimax

value: best achievable utility
against a rational adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Recap: Resource Limits

 Cannot search to leaves

 Depth-limited search
 Instead, search a limited depth

of tree
 Replace terminal utilities with

an eval function for non-
terminal positions

 Guarantee of optimal play is
gone

? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

 Replanning agents:
 Search to choose next action
 Replan each new turn in

response to new state

Evaluation Functions
 Function which scores non-terminals

 Ideal function: returns the utility of the position
 Typically weighted linear sum of features:

 number of pawns, rooks, etc.

Pruning for Minimax

Alpha-Beta Pseudocode

function MAX-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s,α,β))
if v ≥ β then return v
α ← MAX(α,v)

return v

inputs: state, current game state
 α, value of best alternative for MAX on path to state
 β, value of best alternative for MIN on path to state

returns: a utility value

function MIN-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s,α,β))
if v ≤ α then return v
β ← MIN(β,v)

return v

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=2

α=3
β=+∞

α=3
β=14

α=3
β=5

α=3
β=1

Alpha-Beta Pruning Properties

 This pruning has no effect on final result at the root

 Values of intermediate nodes might be wrong!
 but, they are bounds

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth!
 Full search of, e.g. chess, is still hopeless…

Expectimax Search Trees
 What if we don’t know what the

result of an action will be? E.g.,
 In solitaire, next card is unknown
 In minesweeper, mine locations
 In pacman, the ghosts act randomly

10 4 5 7

max

chance

 Later, we’ll learn how to formalize
the underlying problem as a
Markov Decision Process

 Can do expectimax search
 Chance nodes, like min nodes,

except the outcome is uncertain
 Calculate expected utilities
 Max nodes as in minimax

search
 Chance nodes take average

(expectation) of value of children

Maximum Expected Utility

 Why should we average utilities? Why not minimax?

Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Maximum Expected Utility

 Why should we average utilities? Why not minimax?

 Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge
 General principle for decision making
 Often taken as the definition of rationality
 We’ll see this idea over and over in this course!

 Let’s decompress this definition…

Reminder: Probabilities
 A random variable represents an event whose outcome is unknown
 A probability distribution is an assignment of weights to outcomes

 Example: traffic on freeway?
 Random variable: T = whether there’s traffic
 Outcomes: T in {none, light, heavy}
 Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

 Some laws of probability (more later):
 Probabilities are always non-negative
 Probabilities over all possible outcomes sum to one

 As we get more evidence, probabilities may change:
 P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
 We’ll talk about methods for reasoning and updating probabilities later

What are Probabilities?

 Averages over repeated experiments
 E.g. empirically estimating P(rain) from historical observation
 E.g. pacman’s estimate of what the ghost will do, given what it

has done in the past
 Assertion about how future experiments will go (in the limit)
 Makes one think of inherently random events, like rolling dice

 Objectivist / frequentist answer:

 Degrees of belief about unobserved variables
 E.g. an agent’s belief that it’s raining, given the temperature
 E.g. pacman’s belief that the ghost will turn left, given the state
 Often learn probabilities from past experiences (more later)
 New evidence updates beliefs (more later)

 Subjectivist / Bayesian answer:

Uncertainty Everywhere
 Not just for games of chance!

 I’m sick: will I sneeze this minute?
 Email contains “FREE!”: is it spam?
 Tooth hurts: have cavity?
 60 min enough to get to the airport?
 Robot rotated wheel three times, how far did it advance?
 Safe to cross street? (Look both ways!)

 Sources of uncertainty in random variables:
 Inherently random process (dice, etc)
 Insufficient or weak evidence
 Ignorance of underlying processes
 Unmodeled variables
 The world’s just noisy – it doesn’t behave according to plan!

Reminder: Expectations
 We can define function f(X) of a random variable X

 The expected value of a function is its average value,
weighted by the probability distribution over inputs

 Example: How long to get to the airport?
 Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60
 What is my expected driving time?

 Notation: EP(T)[L(T)]
 Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

 E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
 E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Utilities

 Utilities are functions from outcomes (states of the world)
to real numbers that describe an agent’s preferences

 Where do utilities come from?
 In a game, may be simple (+1/-1)
 Utilities summarize the agent’s goals
 Theorem: any set of preferences between outcomes can be

summarized as a utility function (provided the preferences meet
certain conditions)

 In general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

 More on utilities soon…

Expectimax Search
 In expectimax search, we have a

probabilistic model of how the
opponent (or environment) will
behave in any state
 Model could be a simple uniform

distribution (roll a die)
 Model could be sophisticated and

require a great deal of computation
 We have a node for every outcome

out of our control: opponent or
environment

 The model might say that adversarial
actions are likely!

 For now, assume for any state we
magically have a distribution to
assign probabilities to opponent
actions / environment outcomes

Expectimax Pseudocode
def value(s)
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s)
 values = [value(s’) for s’ in successors(s)]
 return max(values)

def expValue(s)
 values = [value(s’) for s’ in successors(s)]
 weights = [probability(s, s’) for s’ in successors(s)]
 return expectation(values, weights)

8 4 5 6

Expectimax for Pacman
 Notice that we’ve gotten away from thinking that the

ghosts are trying to minimize pacman’s score
 Instead, they are now a part of the environment
 Pacman has a belief (distribution) over how they will

act
 Quiz: Can we see minimax as a special case of

expectimax?
 Quiz: what would pacman’s computation look like if

we assumed that the ghosts were doing 1-ply
minimax and taking the result 80% of the time,
otherwise moving randomly?

Expectimax for Pacman

Minimizing
Ghost

Random
Ghost

Minimax
Pacman

Expectimax
Pacman

Results from playing 5 games

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

SCORE: 0

Won 5/5
Avg. Score:

493

Won 5/5
Avg. Score:

483

Won 5/5
Avg. Score:

503

Won 1/5
Avg. Score:

-303

Expectimax Pruning?

 Not easy
 exact: need bounds on possible values
 approximate: sample high-probability branches

Expectimax Evaluation

 Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

 For minimax, evaluation function scale doesn’t matter
 We just want better states to have higher evaluations

(get the ordering right)
 We call this insensitivity to monotonic transformations

 For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Mixed Layer Types
 E.g. Backgammon
 Expectiminimax

 Environment is an
extra player that moves
after each agent

 Chance nodes take
expectations, otherwise
like minimax

Stochastic Two-Player

 Dice rolls increase b: 21 possible rolls
with 2 dice
 Backgammon ≈ 20 legal moves
 Depth 4 = 20 x (21 x 20)3 1.2 x 109

 As depth increases, probability of
reaching a given node shrinks
 So value of lookahead is diminished
 So limiting depth is less damaging
 But pruning is less possible…

 TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Non-Zero-Sum Games

 Similar to
minimax:
 Utilities are now

tuples
 Each player

maximizes their
own entry at
each node

 Propagate (or
back up) nodes
from children

 Can give rise to
cooperation and
competition
dynamically…

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

Preferences

 An agent chooses among:
 Prizes: A, B, etc.
 Lotteries: situations with

uncertain prizes

 Notation:

Rational Preferences

 We want some constraints on
preferences before we call
them rational

 For example: an agent with
intransitive preferences can
be induced to give away all its
money
 If B > C, then an agent with C

would pay (say) 1 cent to get B
 If A > B, then an agent with B

would pay (say) 1 cent to get A
 If C > A, then an agent with A

would pay (say) 1 cent to get C

Rational Preferences
 Preferences of a rational agent must obey constraints.

 The axioms of rationality:

 Theorem: Rational preferences imply behavior
describable as maximization of expected utility

MEU Principle

 Theorem:
 [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 Given any preferences satisfying these constraints, there exists

a real-valued function U such that:

 Maximum expected likelihood (MEU) principle:
 Choose the action that maximizes expected utility
 Note: an agent can be entirely rational (consistent with MEU)

without ever representing or manipulating utilities and
probabilities

 E.g., a lookup table for perfect tictactoe, reflex vacuum
cleaner

Utility Scales
 Normalized utilities: u+ = 1.0, u- = 0.0

 Micromorts: one-millionth chance of death, useful for paying to
reduce product risks, etc.

 QALYs: quality-adjusted life years, useful for medical decisions
involving substantial risk

 Note: behavior is invariant under positive linear transformation

Money
 Money does not behave as a utility

function

 Given a lottery L:
 Define expected monetary value EMV(L)
 Usually U(L) < U(EMV(L))
 I.e., people are risk-averse

 Utility curve: for what probability p
 am I indifferent between:

 A prize x
 A lottery [p,$M; (1-p),$0] for large M?

 Typical empirical data, extrapolated
 with risk-prone behavior:

Example: Human Rationality?

 Famous example of Allais (1953)

 A: [0.8,$4k; 0.2,$0]
 B: [1.0,$3k; 0.0,$0]

 C: [0.2,$4k; 0.8,$0]
 D: [0.25,$3k; 0.75,$0]

 Most people prefer B > A, C > D
 But if U($0) = 0, then

 B > A ⇒ U($3k) > 0.8 U($4k)
 C > D ⇒ 0.8 U($4k) > U($3k)

