CSE 573: Artificial Intelligence

Autumn 2010

Lecture 5: Expectimax Search
10/14/2008

Luke Zettlemoyer

Most slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

Announcements

= PS1 due tomorrow, S5pm
= DropBox instructions are on assignment page
= No late assignments
= Email Luke for extension (requires good reason)
= PS2 will go out soon

= MDP/RL Readings

= will assign chapters from RL Book by Sutton &
Barto, freely available online:
= http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Outline

* Review adversarial search
" Trace alpha/beta
= Review probabilities / expectations
= Expectimax search (one and two
player)
= Rational preferences

Adversarial Games

Minimax values:
_ computed recursively
= Tic-tac-toe, chess, checkers s ~

» Deterministic, zero-sum games:

. max
= One player maximizes result
* The other minimizes result
min
\— _J
= Minimax search: / \ / \
= A state-space search tree F— i v
= Players alternate turns [8 2 5 6 J

= Each node has a minimax
value: best achievable utility
against a rational adversary

Terminal values:
part of the game

Recap: Resource Limits

Cannot search to leaves

Depth-limited search

» |nstead, search a limited depth
of tree

= Replace terminal utilities with
an eval function for non-
terminal positions

Guarantee of optimal play is
gone

Replanning agents:
= Search to choose next action

= Replan each new turnin
response to new state

Evaluation Functions

= Function which scores non-terminals

17 Welt 1
N 2 E:12:2

17t e e
[W:H:
H B B

s:lsH B B
W Hz=E B

HzEH:z:E N
L <l _F]

s @ B 2:28 %
2 2enzl

Blacktomove White to move

White slightly better Black winning

Eval(s) = w1 f1(s) + wafa(s) + ... + wnfn(s)

= |deal function: returns the utility of the position
= Typically weighted linear sum of features:
= number of pawns, rooks, etc.

Pruning for Minimax

Alpha-Beta Pseudocode

Inputs: state, current game state
a, value of best alternative for MAX on path to szate
/3, value of best alternative for MIN on path to state
returns: a utility value

function MAX-VALUE(state, 0,) function MIN-VALUE(state, o,)

if TERMINAL-TEST(state) then if TERMINAL-TEST(state) then
return UTILITY (state) return UTILITY (state)

Y «— —00 V «— +00

for a, s in SUCCESSORS(state) do for a, s in SUCCESSORS(state) do
v «— MAX(v, MIN-VALUE(s,,/)) v «— MIN(v, MAX-VALUE(s,,/())
if v> [then return v if v < a then return v
o «— MAX(a,v) [«— MIN(S,v)

return v return v

Alpha-Beta Pruning Example

a is MAX’s best alternative here or above
B is MIN’s best alternative here or above

Alpha-Beta Pruning Properties

= This pruning has no effect on final result at the root

» Values of intermediate nodes might be wrong!
* but, they are bounds

= Good child ordering improves effectiveness of pruning

= With “perfect ordering”:
= Time complexity drops to O(b™?2)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

Expectimax Search Trees

= \What if we don’t know what the

result of an action will be? E.g.,
= |n solitaire, next card is unknown
* In minesweeper, mine locations max
* |n pacman, the ghosts act randomly

= (Can do expectimax search

= Chance nodes, like min nodes, chance
except the outcome is uncertain

» Calculate expected utilities

= Max nodes as in minimax
search

= Chance nodes take average 10 4 5 7
(expectation) of value of children

= [ater, we'll learn how to formalize
the underlying problem as a
Markov Decision Process

Maximum Expected Utility

= Why should we average utilities? Why not minimax?

Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Maximum Expected Utility

Why should we average utilities? Why not minimax?

Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge

= General principle for decision making
= Often taken as the definition of rationality

= \We’ll see this idea over and over in this course!

Let's decompress this definition...

Reminder: Probabilities

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
» Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

Some laws of probability (more later):
» Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
» P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
= We'll talk about methods for reasoning and updating probabilities later

What are Probabilities?

= Objectivist / frequentist answer:
» Averages over repeated experiments
» E.g. empirically estimating P(rain) from historical observation

» E.g. pacman’s estimate of what the ghost will do, given what it
has done in the past

Assertion about how future experiments will go (in the limit)
Makes one think of inherently random events, like rolling dice

= Subjectivist / Bayesian answer:

= Degrees of belief about unobserved variables

= E.g. an agent’s belief that it's raining, given the temperature

= E.g. pacman’s belief that the ghost will turn left, given the state
= Often learn probabilities from past experiences (more later)

= New evidence updates beliefs (more later)

Uncertainty Everywhere

= Not just for games of chance!
» |I'm sick: will | sneeze this minute?
= Email contains “FREE!": is it spam?
» Tooth hurts: have cavity?
= 60 min enough to get to the airport?
» Robot rotated wheel three times, how far did it advance?
» Safe to cross street? (Look both ways!)

= Sources of uncertainty in random variables:
* |nherently random process (dice, etc)
» |nsufficient or weak evidence
» [gnorance of underlying processes
= Unmodeled variables
= The world’s just noisy — it doesn’t behave according to plan!

Reminder: Expectations

= \We can define function f(X) of a random variable X

* The expected value of a function is its average value,
weighted by the probability distribution over inputs

= Example: How long to get to the airport?
» Length of driving time as a function of traffic:
L(none) = 20, L(light) = 30, L(heavy) = 60
= What is my expected driving time?
= Notation: Epm)[L(T)]
= Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

= E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
= E[L(T)]= (20 *0.25) + (30 * 0.5) + (60 * 0.25) = 35

Utilities

Utilities are functions from outcomes (states of the world)
to real numbers that describe an agent’s preferences

Where do utilities come from?
* |n a game, may be simple (+1/-1)
= Utilities summarize the agent’s goals

» Theorem: any set of preferences between outcomes can be
summarized as a utility function (provided the preferences meet
certain conditions)

In general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

More on utilities soon...

Expectimax Search

In expectimax search, we have a
probabilistic model of how the
opponent (or environment) will
behave in any state

» Model could be a simple uniform
distribution (roll a die)

= Model could be sophisticated and
require a great deal of computation Q

= \We have a node for every outcome
out of our control: opponent or
environment

= The model might say that adversarial
actions are likely!

For now, assume for any state we
magically have a distribution to
assign probabilities to opponent
actions / environment outcomes

Expectimax Pseudocode

def value(s)
if s is a max node return maxValue(s) B}
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)

00

def maxValue(s)
values = [value(s’) for s’ in successors(s)]
return max(values) 8 4 5 6

def expValue(s)
values = [value(s’) for s’ in successors(s)]
weights = [probability(s, s’) for s’ in successors(s)]
return expectation(values, weights)

Expectimax for Pacman

Notice that we've gotten away from thinking that the
ghosts are trying to minimize pacman’s score

Instead, they are now a part of the environment

Pacman has a belief (distribution) over how they will
act

Quiz: Can we see minimax as a special case of
expectimax?

Quiz: what would pacman’s computation look like if
we assumed that the ghosts were doing 1-ply
minimax and taking the result 80% of the time,
otherwise moving randomly?

Expectimax for Pacman

Results from playing 5 games

Random
Ghost

Won 5/5 Won 5/5

Minimax P .
S vg. Score: vg. Score:
493 483
. , Won 1/5 Won 5/5
)I;pectlmax Avg. Score: Avg. Score:
acman

-303 503 SCORE: 0

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Expectimax Pruning?

= Not easy
= exact: need bounds on possible values
= approximate: sample high-probability branches

Expectimax Evaluation

= Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

= For minimax, evaluation function scale doesn’t matter

= We just want better states to have higher evaluations
(get the ordering right)

= We call this insensitivity to monotonic transformations
» For expectimax, we need magnitudes to be meaningful

0 || 40 20| 30| ix: |o0][1600 |400| |900

Mixed Layer Types

= E.g. Backgammon
= Expectiminimax

= Environment is an
extra player that moves
after each agent

= Chance nodes take MIN
expectations, otherwise
like minimax

MAX

CHANCE

if state is a MAX node then

return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

Dice rolls increase b: 21 possible rolls
with 2 dice

= Backgammon = 20 legal moves

= Depth4 =20 x (21 x20)° 1.2 x 10°
As depth increases, probability of
reaching a given node shrinks

= So value of lookahead is diminished

» So limiting depth is less damaging

= But pruning is less possible...
TDGammon uses depth-2 search +
very good eval function +

reinforcement learning: world-
champion level play

|||1||||i|\|
[| AR R R
[| |

25 242322212019

1817 16 1514 13

Non-Zero-Sum Games

= Similar to
minimax:
= Utilities are now
tuples

= Each player
maximizes their
own entry at
each node

= Propagate (or
back up) nodes

from children

1,2,6 || 4,3,2 6,1,2 || 7,41 5,1,1 1,5,2 7,71 || 5,4,5

= Can giverise to
cooperation and
competition
dynamically...

Preferences

= An agent chooses among:
* Prizes: A, B, etc.

= | otteries: situations with
uncertain prizes L

L = [p,A; (1—p),B]

P

= Notation:
A= B A preferred over B
A~ B indifference between A and B

A>B B not preferred over A

b

Rational Preferences

= \We want some constraints on
preferences before we call
them rational _—

= For example: an agent with le lc

intransitive preferences can
be induced to give away all its
money

= |[f B> C, then an agent with C B

would pay (say) 1 cent to get B \\/
= |f A> B, then an agent with B 7

would pay (say) 1 cent to get A c

= |f C > A, then an agent with A
would pay (say) 1 centto get C

N~

Rational Preferences

» Preferences of a rational agent must obey constraints.
= The axioms of rationality:

Orderability
(A-B)v(B> A)V (A~ B)
Transitivity
(A>=B)A(B>C)=(A>C)
Continuity

A-B>~C=3p|[p,A, 1-p,C]~B
Substitutability
A~B=[p A 1—pC]~|[p,B;1—-p,C]
Monotonicity
A> B =
(p>qge[p, A, 1—p,B]l > [q,A; 1—gq,B])

= Theorem: Rational preferences imply behavior
describable as maximization of expected utility

MEU Principle

» Theorem:
» [Ramsey, 1931; von Neumann & Morgenstern, 1944]

» Given any preferences satisfying these constraints, there exists
a real-valued function U such that:

U(A)>U(B) & A> B

l/'r<[]_)1_, ASY]_; R ,])“, S)I]) —— Zl])[L"Y(S[)
= Maximum expected likelihood (MEU) principle:

» Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and

probabilities

= E.g., alookup table for perfect tictactoe, reflex vacuum
cleaner

Utility Scales

Normalized utilities: u, = 1.0, u_.=0.0

Micromorts: one-millionth chance of death, useful for paying to
reduce product risks, etc.

QALYs: quality-adjusted life years, useful for medical decisions
involving substantial risk

Note: behavior is invariant under positive linear transformation

U'(zx) = kiU(z) + ko where k1 >0

Money

Money does not behave as a utility
function

Given a lottery L.
» Define expected monetary value EMV(L)
= Usually U(L) < U(EMV(L)) +U
» |.e., people are risk-averse

1 T -
=150,000 800,000

Utility curve: for what probability p
am | indifferent between:
= Aprize x
= Alottery [p,$M; (1-p),$0] for large M? P

Typical empirical data, extrapolated
with risk-prone behavior:

Example: Human Rationality?

= Famous example of Allais (1953)

= A:[0.8,$4k; 0.2,$0]
= B:[1.0,$3k; 0.0,$0]

= C:[0.2,$4k; 0.8,%0!
= D: [0.25,$3k; 0.75,$0]

= Most people preferB>A, C>D
= Butif U($0) = 0, then

» B>A= U($3k) > 0.8 U($4k)

= C>D = 0.8 U($4k) > U($3k)

