CSE 573: Artificial Intelligence

Autumn 2010

Lecture 5: Expectimax Search 10/14/2008

Luke Zettlemoyer

Most slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Announcements

- PS1 due tomorrow, 5pm
- DropBox instructions are on assignment page
- No late assignments
- Email Luke for extension (requires good reason)
- PS2 will go out soon
- MDP/RL Readings
- will assign chapters from RL Book by Sutton \& Barto, freely available online:
- http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Outline

- Review adversarial search - Trace alpha/beta
- Review probabilities / expectations
- Expectimax search (one and two player)
- Rational preferences

Adversarial Games

- Deterministic, zero-sum games:
- Tic-tac-toe, chess, checkers
- One player maximizes result
- The other minimizes result
- Minimax search:
- A state-space search tree
- Players alternate turns
- Each node has a minimax value: best achievable utility against a rational adversary

Minimax values: computed recursively

Terminal values: part of the game

Recap: Resource Limits

- Cannot search to leaves
- Depth-limited search
- Instead, search a limited depth of tree
- Replace terminal utilities with an eval function for nonterminal positions
- Guarantee of optimal play is gone
- Replanning agents:
- Search to choose next action
- Replan each new turn in response to new state

Evaluation Functions

- Function which scores non-terminals

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

- Ideal function: returns the utility of the position
- Typically weighted linear sum of features:
- number of pawns, rooks, etc.

Pruning for Minimax

Alpha-Beta Pseudocode

inputs: state, current game state
α, value of best alternative for MAX on path to state
β, value of best alternative for MIN on path to state
returns: a utility value
function MAX-VALUE(state, α, β)
if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow-\infty$
for a, s in SUCCESSORS(state) do $v \leftarrow \operatorname{MAX}(v, \operatorname{Min}-\operatorname{ValUE}(s, \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, \nu)$
return v
function MiN-VALUE(state, α, β) if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow+\infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{MiN}(v, \operatorname{MAX}-\operatorname{VALUE}(s, \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{MiN}(\beta, v)$
return v

Alpha-Beta Pruning Example

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
- but, they are bounds
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
- Time complexity drops to $\mathrm{O}\left(\mathrm{b}^{\mathrm{m} / 2}\right)$
- Doubles solvable depth!
- Full search of, e.g. chess, is still hopeless...

Expectimax Search Trees

- What if we don't know what the result of an action will be? E.g.,
- In solitaire, next card is unknown
- In minesweeper, mine locations
- In pacman, the ghosts act randomly
- Can do expectimax search
- Chance nodes, like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Max nodes as in minimax search
- Chance nodes take average (expectation) of value of children

- Later, we'll learn how to formalize the underlying problem as a Markov Decision Process

Maximum Expected Utility

- Why should we average utilities? Why not minimax?

Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility: an agent should chose the action which maximizes its expected utility, given its knowledge
- General principle for decision making
- Often taken as the definition of rationality
- We'll see this idea over and over in this course!
- Let's decompress this definition...

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: traffic on freeway?
- Random variable: T = whether there's traffic
- Outcomes: T in \{none, light, heavy\}
- Distribution: $\mathrm{P}(\mathrm{T}=$ none $)=0.25, \mathrm{P}(\mathrm{T}=$ light $)=0.55, \mathrm{P}(\mathrm{T}=$ heavy $)=0.20$
- Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
- $\mathrm{P}(\mathrm{T}=$ heavy $)=0.20, \mathrm{P}(\mathrm{T}=$ heavy \mid Hour=8am $)=0.60$
- We'll talk about methods for reasoning and updating probabilities later

What are Probabilities?

- Objectivist / frequentist answer:
- Averages over repeated experiments
- E.g. empirically estimating P (rain) from historical observation
- E.g. pacman's estimate of what the ghost will do, given what it has done in the past
- Assertion about how future experiments will go (in the limit)
- Makes one think of inherently random events, like rolling dice
- Subjectivist / Bayesian answer:
- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. pacman's belief that the ghost will turn left, given the state
- Often learn probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Uncertainty Everywhere

- Not just for games of chance!
- I'm sick: will I sneeze this minute?
- Email contains "FREE!": is it spam?
- Tooth hurts: have cavity?
- 60 min enough to get to the airport?
- Robot rotated wheel three times, how far did it advance?
- Safe to cross street? (Look both ways!)
- Sources of uncertainty in random variables:
- Inherently random process (dice, etc)
- Insufficient or weak evidence
- Ignorance of underlying processes
- Unmodeled variables
- The world's just noisy - it doesn't behave according to plan!

Reminder: Expectations

- We can define function $f(X)$ of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- Example: How long to get to the airport?
- Length of driving time as a function of traffic:

$$
L(\text { none })=20, L(\text { light })=30, L(\text { heavy })=60
$$

- What is my expected driving time?
- Notation: EP(T)[L(T)]
- Remember, $P(T)=\{n o n e: ~ 0.25$, light: 0.5 , heavy: 0.25$\}$
- $E[L(T)]=L($ none $) ~ * P($ none $)+L$ (light) * P (light) $+L$ (heavy) * P(heavy)
- $\mathrm{E}[\mathrm{L}(\mathrm{T})]=(20$ * 0.25$)+(30$ * 0.5$)+(60$ * 0.25$)=35$

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)
- In general, we hard-wire utilities and let actions emerge (why don't we let agents decide their own utilities?)
- More on utilities soon...

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
- Model could be a simple uniform distribution (roll a die)
- Model could be sophisticated and require a great deal of computation
- We have a node for every outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!
- For now, assume for any state we
 magically have a distribution to assign probabilities to opponent actions / environment outcomes

Expectimax Pseudocode

def value(s)
if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)
def maxValue(s)
values = [value(s') for s' in successors(s)] return max(values)

def expValue(s)
values = [value(s') for s' in successors(s)]
weights = [probability(s, s') for s' in successors(s)]
return expectation(values, weights)

Expectimax for Pacman

- Notice that we've gotten away from thinking that the ghosts are trying to minimize pacman's score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman's computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?

Expectimax for Pacman

Results from playing 5 games

	Minimizing Ghost	Random Ghost
Minimax Pacman	Won $5 / 5$ Avg. Score: 493	Won $5 / 5$ Avg. Score: 483
Expectimax Pacman	Won $1 / 5$ Avg. Score: -303	Won $5 / 5$ Avg. Score: 503

SCORE: 0

Pacman does depth 4 search with an eval function that avoids trouble Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Expectimax Pruning?

- Not easy
- exact: need bounds on possible values
- approximate: sample high-probability branches

Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
- Environment is an extra player that moves after each agent
- Chance nodes take expectations, otherwise like minimax

if state is a Max node then
return the highest ExpectiMinimax-Value of Successors(state) if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-VALuE of Successors(state)

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
- Backgammon ≈ 20 legal moves
- Depth $4=20 \times(21 \times 20)^{3} 1.2 \times 10^{9}$
- As depth increases, probability of reaching a given node shrinks
- So value of lookahead is diminished
- So limiting depth is less damaging
- But pruning is less possible...
- TDGammon uses depth-2 search +
 very good eval function + reinforcement learning: worldchampion level play

Non-Zero-Sum Games

- Similar to

minimax:

- Utilities are now tuples
- Each player maximizes their own entry at each node
- Propagate (or back up) nodes from children
- Can give rise to
 cooperation and competition dynamically...

Dreferences

- An agent chooses among:
- Prizes: A, B, etc.
- Lotteries: situations with uncertain prizes

$$
L=[p, A ;(1-p), B]
$$

- Notation:

$$
\begin{array}{ll}
A \succ B & A \text { preferred over } B \\
A \sim B & \text { indifference between } A \text { and } B \\
A \succeq B & B \text { not preferred over } A
\end{array}
$$

Rational Preferences

- We want some constraints on preferences before we call them rational
- For example: an agent with intransitive preferences can be induced to give away all its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If A > B, then an agent with B would pay (say) 1 cent to get A

- If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
- The axioms of rationality:

Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity

$$
(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

Continuity

$$
A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B
$$

Substitutability

$$
A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]
$$

Monotonicity

$$
\begin{aligned}
& A \succ B \Rightarrow \\
& \quad(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])
\end{aligned}
$$

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
- [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- Maximum expected likelihood (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

Utility Scales

- Normalized utilities: $u_{+}=1.0, u_{-}=0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

Money

- Money does not behave as a utility function
- Given a lottery L:
- Define expected monetary value EMV(L)
- Usually $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$
- I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:
- A prize x
- A lottery [p,\$M; (1-p),\$0] for large M?

- Typical empirical data, extrapolated with risk-prone behavior:

Example: Human Rationality?

- Famous example of Allais (1953)
- A: [0.8,\$4k; 0.2,\$0]
- B: [1.0,\$3k; 0.0,\$0]
- C: [0.2,\$4k; 0.8,\$0]
- D: [0.25,\$3k; 0.75,\$0]
- Most people prefer $B>A, C>D$
- But if $U(\$ 0)=0$, then
- $\mathrm{B}>\mathrm{A} \Rightarrow \mathrm{U}(\$ 3 \mathrm{k})>0.8 \mathrm{U}(\$ 4 \mathrm{k})$
- $\mathrm{C}>\mathrm{D} \Rightarrow 0.8 \mathrm{U}(\$ 4 \mathrm{k})>\mathrm{U}(\$ 3 \mathrm{k})$

