CSE 573: Artificial Intelligence

Autumn 2010

Lecture 5: Expectimax Search 10/14/2008

Luke Zettlemoyer

Most slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Announcements

PS1 due tomorrow, 5pm

- DropBox instructions are on assignment page
- No late assignments
 - Email Luke for extension (requires good reason)
- PS2 will go out soon
- MDP/RL Readings
 - will assign chapters from RL Book by Sutton & Barto, freely available online:
 - <u>http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html</u>

Outline

- Review adversarial search
 - Trace alpha/beta
- Review probabilities / expectations
- Expectimax search (one and two player)
- Rational preferences

Adversarial Games

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Each node has a minimax value: best achievable utility against a rational adversary

Minimax values: computed recursively

Terminal values: part of the game

Recap: Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for nonterminal positions
- Guarantee of optimal play is gone
- Replanning agents:
 - Search to choose next action
 - Replan each new turn in response to new state

Evaluation Functions

Function which scores non-terminals

 $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

- Ideal function: returns the utility of the position
- Typically weighted linear sum of features:
 - number of pawns, rooks, etc.

Pruning for Minimax

Alpha-Beta Pseudocode

inputs: *state*, current game state α , value of best alternative for MAX on path to *state* β , value of best alternative for MIN on path to *state* returns: *a utility value*

function MAX-VALUE(*state*, α, β) if TERMINAL-TEST(*state*) then return UTILITY(*state*)

 $v \leftarrow -\infty$

for *a*, *s* in SUCCESSORS(*state*) do $v \leftarrow MAX(v, MIN-VALUE(s, \alpha, \beta))$ if $v \ge \beta$ then return *v* $\alpha \leftarrow MAX(\alpha, v)$

return v

function MIN-VALUE(*state*, α , β) if TERMINAL-TEST(*state*) then return UTILITY(*state*) $v \leftarrow +\infty$ for *a*, *s* in SUCCESSORS(*state*) do $v \leftarrow MIN(v, MAX-VALUE(s, \alpha, \beta)$) if $v \le \alpha$ then return v $\beta \leftarrow MIN(\beta, v)$

return v

Alpha-Beta Pruning Example

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
 - but, they are bounds
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...

Expectimax Search Trees

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly

Can do expectimax search

- Chance nodes, like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Max nodes as in minimax search
- Chance nodes take average (expectation) of value of children
- Later, we'll learn how to formalize the underlying problem as a Markov Decision Process

Maximum Expected Utility

Why should we average utilities? Why not minimax?

Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility: an agent should chose the action which maximizes its expected utility, given its knowledge
 - General principle for decision making
 - Often taken as the definition of rationality
 - We'll see this idea over and over in this course!
- Let's decompress this definition...

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: traffic on freeway?
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later

What are Probabilities?

Objectivist / frequentist answer:

- Averages over repeated experiments
- E.g. empirically estimating P(rain) from historical observation
- E.g. pacman's estimate of what the ghost will do, given what it has done in the past
- Assertion about how future experiments will go (in the limit)
- Makes one think of *inherently random* events, like rolling dice

Subjectivist / Bayesian answer:

- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. pacman's belief that the ghost will turn left, given the state
- Often *learn* probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Uncertainty Everywhere

Not just for games of chance!

- I'm sick: will I sneeze this minute?
- Email contains "FREE!": is it spam?
- Tooth hurts: have cavity?
- 60 min enough to get to the airport?
- Robot rotated wheel three times, how far did it advance?
- Safe to cross street? (Look both ways!)
- Sources of uncertainty in random variables:
 - Inherently random process (dice, etc)
 - Insufficient or weak evidence
 - Ignorance of underlying processes
 - Unmodeled variables
 - The world's just noisy it doesn't behave according to plan!

Reminder: Expectations

- We can define function f(X) of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- Example: How long to get to the airport?
 - Length of driving time as a function of traffic: L(none) = 20, L(light) = 30, L(heavy) = 60
 - What is my expected driving time?
 - Notation: E_{P(T)}[L(T)]
 - Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}
 - E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
 - E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)
- In general, we hard-wire utilities and let actions emerge (why don't we let agents decide their own utilities?)
- More on utilities soon...

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
 - For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes

Expectimax Pseudocode

def value(s)

- if s is a max node return maxValue(s)
- if s is an exp node return expValue(s)
- if s is a terminal node return evaluation(s)

```
def maxValue(s)
values = [value(s') for s' in successors(s)]
return max(values)
```

```
def expValue(s)
values = [value(s') for s' in successors(s)]
weights = [probability(s, s') for s' in successors(s)]
return expectation(values, weights)
```


Expectimax for Pacman

- Notice that we've gotten away from thinking that the ghosts are trying to minimize pacman's score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman's computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?

Expectimax for Pacman

Results from playing 5 games

	Minimizing Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 493	Won 5/5 Avg. Score: 483
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503

Pacman does depth 4 search with an eval function that avoids trouble Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Expectimax Pruning?

Not easy

- exact: need bounds on possible values
- approximate: sample high-probability branches

Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need *magnitudes* to be meaningful

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*)

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 4 = 20 x (21 x 20)³ 1.2 x 10⁹
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: worldchampion level play

Non-Zero-Sum Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically...

Preferences

- An agent chooses among:
 - Prizes: *A*, *B*, etc.
 - Lotteries: situations with uncertain prizes

$$L = [p, A; (1 - p), B]$$

- Notation:
 - $A \succ B$ A preferred over B
 - $A \sim B$ indifference between A and B
 - $A \succeq B$ B not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational
- For example: an agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
 - The axioms of rationality:

Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

 Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

 $U(A) \ge U(B) \Leftrightarrow A \succeq B$

 $U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

Utility Scales

- Normalized utilities: $u_{+} = 1.0$, $u_{-} = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation $U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

Money

- Money does not behave as a utility function
- Given a lottery L:
 - Define expected monetary value EMV(L)
 - Usually U(L) < U(EMV(L))</p>
 - I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:
 - A prize x
 - A lottery [p,\$M; (1-p),\$0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

Example: Human Rationality?

Famous example of Allais (1953)

- A: [0.8,\$4k; 0.2,\$0]
- B: [1.0,\$3k; 0.0,\$0]
- C: [0.2,\$4k; 0.8,\$0]
- D: [0.25,\$3k; 0.75,\$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - $B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)$
 - C > D ⇒ 0.8 U(\$4k) > U(\$3k)