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Announcements
 PS4 grades posted
 Syllabus revised

Machine learning focus
Exam solutions on lectures page

 We will do mini-project status reports 
during last class



Outline

 Probabilistic models: approx. inference and learning
 (Recap) Bayesian Networks (BNs)
 Approximate Inference: Sampling
 Naive Bayes models
 Parameter Estimation
 Smoothing



Recap: Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)
+b 0.001

¬b 0.999

E P(E)
+e 0.002
¬e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99



Recap: Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A → B → C where B 

is unobserved (either direction)
 Common cause A ← B → C where 

B is unobserved
 Common effect (aka v-structure)
 A → B ← C where B or one of its 

descendents is observed

 All it takes to block a path is 
a single inactive segment

 

Active Triples Inactive Triples



 Maintain a set of tables called factors

Variable Elimination Outline

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

 Any known values are selected
 E.g. if we know                  , the initial factors are

 VE: Alternately join factors and eliminate variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

 Initial factors are local CPTs (one per node)



Recap: General Variable Elimination

 Query:

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables (not Q or evidence):
 Pick a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize



Exact Inference: Variable Elimination

 Remaining Issues:
 Complexity: exponential in tree width (size of the 

largest factor created)
 Best elimination ordering? NP-hard problem

 We have seen a special case of VE already
 HMM Forward Inference

 What you need to know:
 Should be able to run it on small examples, understand 

the factor creation / reduction flow
 Better than enumeration: saves time by marginalizing 

variables as soon as possible rather than at the end



Approximate Inference

 Simulation has a name: sampling

 Sampling is a hot topic in machine learning,
and it’s really simple

 Basic idea:
 Draw N samples from a sampling distribution S
 Compute an approximate posterior probability
 Show this converges to the true probability P

 Why sample?
 Learning: get samples from a distribution you don’t know
 Inference: getting a sample is faster than computing the right 

answer (e.g. with variable elimination)

S

A

F



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c
+s 0.1

+c -s 0.9

-c
+s 0.5

-c -s 0.5

+c
+r 0.8

+c -r 0.2

-c
+r 0.2

-c -r 0.8

+s

+r
+w 0.99

+s

+r -w 0.01

+s -r
+w 0.90

+s -r -w 0.10

-s

+r
+w 0.90

-s

+r -w 0.10

-s -r
+w 0.01

-s -r -w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

 This process generates samples with probability:

 …i.e. the BN’s joint probability

 Then

 I.e., the sampling procedure is consistent

 Let the number of samples of an event be



Example

 We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r,  -w
 +c, -s, +r, +w
 -c,  -s,  -r, +w

 If we want to know P(W)

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

 We have counts <+w:4, -w:1>
 Normalize to get P(W) = <+w:0.8, -w:0.2>
 This will get closer to the true distribution with more samples
 Can estimate anything else, too
 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?
 Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling

 Let’s say we want P(C)

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

 Let’s say we want P(C| +s)
 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 
have S=+s

 This is called rejection sampling
 It is also consistent for conditional 

probabilities (i.e., correct in the 
limit)

 No point keeping all samples around
 Just tally counts of C as we go



Likelihood Weighting

 Problem with rejection sampling:
 If evidence is unlikely, you reject a lot of samples
 You don’t exploit your evidence as you sample
 Consider P(B|+a)

Burglary Alarm

Burglary Alarm

 -b,  -a
 -b,  -a
 -b,  -a
 -b,  -a
+b, +a

 -b  +a
 -b, +a
 -b, +a
 -b, +a
+b, +a

 Idea: fix evidence variables and sample the rest

 Problem: sample distribution not consistent!
 Solution: weight by probability of evidence given parents



Likelihood Weighting
+c 0.5
-c 0.5

+c
+s 0.1

+c -s 0.9

-c
+s 0.5

-c -s 0.5

+c
+r 0.8

+c -r 0.2

-c
+r 0.2

-c -r 0.8

+s

+r
+w 0.99

+s

+r -w 0.01

+s -r
+w 0.90

+s -r -w 0.10

-s

+r
+w 0.90

-s

+r -w 0.10

-s -r
+w 0.01

-s -r -w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
 Sampling distribution if z sampled and e fixed evidence

 Now, samples have weights

 Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting
 Likelihood weighting is good

 We have taken evidence into account as 
we generate the sample

 E.g. here, W’s value will get picked 
based on the evidence values of S, R

 More of our samples will reflect the state 
of the world suggested by the evidence

  Likelihood weighting doesn’t solve 
all our problems
 Evidence influences the choice of 

downstream variables, but not upstream 
ones (C isn’t more likely to get a value 
matching the evidence)

 We would like to consider evidence 
when we sample every variable

Cloudy

Rain

C

S R

W



Markov Chain Monte Carlo*
 Idea: instead of sampling from scratch, create samples 

that are each like the last one.

 Gibbs Sampling: resample one variable at a time, 
conditioned on the rest, but keep evidence fixed. 

+a +c+b +a +c-b -a +c-b

 Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators!

 What’s the point: both upstream and downstream 
variables condition on evidence.



Machine Learning

 Up until now: how to reason in a model 
and how to make optimal decisions

 Machine learning: how to acquire a model 
on the basis of data / experience
 Learning parameters (e.g. probabilities)
 Learning structure (e.g. BN graphs)
 Learning hidden concepts (e.g. clustering)



Example: Spam Filter

 Input: email
 Output: spam/ham
 Setup:

 Get a large collection of 
example emails, each 
labeled “spam” or “ham”

 Note: someone has to hand 
label all this data!

 Want to learn to predict 
labels of new, future emails

 Features: The attributes used to 
make the ham / spam decision
 Words: FREE!
 Text Patterns: $dd, CAPS
 Non-text: SenderInContacts
 …

Dear Sir.

First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened.



Example: Digit Recognition
 Input: images / pixel grids
 Output: a digit 0-9
 Setup:

 Get a large collection of example 
images, each labeled with a digit

 Note: someone has to hand label all 
this data!

 Want to learn to predict labels of new, 
future digit images

 Features: The attributes used to make the 
digit decision
 Pixels: (6,8)=ON
 Shape Patterns: NumComponents, 

AspectRatio, NumLoops
 …

0

1

2

1

??



Other Classification Tasks

 In classification, we predict labels y (classes) for inputs x

 Examples:
 Spam detection (input: document, classes: spam / ham)
 OCR (input: images, classes: characters)
 Medical diagnosis (input: symptoms, classes: diseases)
 Automatic essay grader (input: document, classes: grades)
 Fraud detection (input: account activity, classes: fraud / no fraud)
 Customer service email routing
 … many more

 Classification is an important commercial technology!



Important Concepts
 Data: labeled instances, e.g. emails marked spam/ham

 Training set
 Held out set
 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set
 (Tune hyperparameters on held-out set)
 Very important: never “peek” at the test set!

 Evaluation
 Compute accuracy of test set
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data
 Overfitting: fitting the training data very closely, but not 

generalizing well

Training
Data

Held-Out
Data

Test
Data



Bayes Nets for Classification

 One method of classification:
 Use a probabilistic model!
 Features are observed random variables Fi

 Y is the query variable
 Use probabilistic inference to compute most likely Y

 You already know how to do this inference



Simple Classification

 Simple example: two binary features M

S F

direct estimate

Bayes estimate 
(no assumptions)

Conditional 
independence

+



General Naïve Bayes

 A general naive Bayes model:

 We only specify how each feature depends on the class
 Total number of parameters is linear in n

Y

F1 FnF2



General Naïve Bayes

 What do we need in order to use naïve Bayes?

 Estimates of local conditional probability tables
 P(Y), the prior over labels
 P(Fi|Y) for each feature (evidence variable)
 These probabilities are collectively called the parameters of 

the model and denoted by θ
 Up until now, we assumed these appeared by magic, but…
 …they typically come from training data: we’ll look at this now

 Inference (you know this part)
 Start with a bunch of conditionals, P(Y) and the P(Fi|Y) tables
 Use standard inference to compute P(Y|F1…Fn)
 Nothing new here



A Digit Recognizer

 Input: pixel grids

 Output: a digit 0-9



Naïve Bayes for Digits

 Simple version:
 One feature Fij for each grid position <i,j>
 Possible feature values are on / off, based on whether intensity 

is more or less than 0.5 in underlying image
 Each input maps to a feature vector, e.g.

 Here: lots of features, each is binary valued

 Naïve Bayes model:

 What do we need to learn?



Examples: CPTs

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80



Parameter Estimation
 Estimating distribution of random variables like X or X | Y

 Elicitation: ask a human!
 Usually need domain experts, and sophisticated ways of eliciting 

probabilities (e.g. betting games)
 Trouble calibrating

r g g

 Empirically: use training data
 For each outcome x, look at the empirical rate of that value:

 This is the estimate that maximizes the likelihood of the data



A Spam Filter

 Naïve Bayes spam filter

 Data:
 Collection of emails, 

labeled spam or ham
 Note: someone has to 

hand label all this data!
 Split into training, held-

out, test sets

 Classifiers
 Learn on the training set
 (Tune it on a held-out set)
 Test it on new emails

Dear Sir.

First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened.



Naïve Bayes for Text
 Bag-of-Words Naïve Bayes:

 Predict unknown class label (spam vs. ham)
 Assume evidence features (e.g. the words) are independent
 Warning: subtly different assumptions than before!

 Generative model

 Tied distributions and bag-of-words
 Usually, each variable gets its own conditional probability 

distribution P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|C)
 Why make this assumption?

Word at position 
i, not ith word in 
the dictionary!



Example: Spam Filtering

 Model:

 What are the parameters?

the :  0.0156
to  :  0.0153
and :  0.0115
of  :  0.0095
you :  0.0093
a   :  0.0086
with:  0.0080
from:  0.0075
...

the :  0.0210
to  :  0.0133
of  :  0.0119
2002:  0.0110
with:  0.0108
from:  0.0107
and :  0.0105
a   :  0.0100
...

ham : 0.66
spam: 0.33

 Where do these come from?



Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4

Gary 0.00002 0.00021 -11.8 -8.9

would 0.00069 0.00084 -19.1 -16.0

you 0.00881 0.00304 -23.8 -21.8

like 0.00086 0.00083 -30.9 -28.9

to 0.01517 0.01339 -35.1 -33.2

lose 0.00008 0.00002 -44.5 -44.0

weight 0.00016 0.00002 -53.3 -55.0

while 0.00027 0.00027 -61.5 -63.2

you 0.00881 0.00304 -66.2 -69.0

sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9



Example: Overfitting

2 wins!!



Generalization and Overfitting
 Relative frequency parameters will overfit the training data!

 Just because we never saw a 3 with pixel (15,15) on during training 
doesn’t mean we won’t see it at test time

 Unlikely that every occurrence of “minute” is 100% spam
 Unlikely that every occurrence of “seriously” is 100% ham
 What about all the words that don’t occur in the training set at all?
 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only 
feature
 Would get the training data perfect (if deterministic labeling)
 Wouldn’t generalize at all
 Just making the bag-of-words assumption gives us some 

generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates



Estimation: Smoothing

 Problems with maximum likelihood estimates:
 If I flip a coin once, and it’s heads, what’s the estimate for P

(heads)?
 What if I flip 10 times with 8 heads?
 What if I flip 10M times with 8M heads?

 Basic idea:
 We have some prior expectation about parameters (here, 

the probability of heads)
 Given little evidence, we should skew towards our prior
 Given a lot of evidence, we should listen to the data



Estimation: Smoothing
 Relative frequencies are the maximum likelihood estimates

????

 In Bayesian statistics, we think of the parameters as just 
another random variable, with its own distribution



Estimation: Laplace Smoothing

 Laplace’s estimate:
 Pretend you saw every outcome once 

more than you actually did

 Can derive this as a MAP estimate 
with Dirichlet priors (Bayesian 
justfication)

H H T



Estimation: Laplace Smoothing

 Laplace’s estimate (extended):
 Pretend you saw every outcome 

k extra times

 What’s Laplace with k = 0?
 k is the strength of the prior

H H T

 Laplace for conditionals:
 Smooth each condition 

independently:



Estimation: Linear Interpolation 

 In practice, Laplace often performs poorly for P(X|Y):
 When |X| is very large
 When |Y| is very large

 Another option: linear interpolation
 Also get P(X) from the data
 Make sure the estimate of P(X|Y) isn’t too different from P(X)

 What if α is 0?  1?



Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns
 Parameters: the probabilities P(Y|X), P(Y)
 Hyperparameters, like the amount of 

smoothing to do: k, α

 Where to learn?
 Learn parameters from training data
 Must tune hyperparameters on different 

data
 Why?

 For each value of the hyperparameters, 
train and test on the held-out data

 Choose the best value and do a final test 
on the test data



Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures
 Help determine how hard the task is
 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the 

training set
 E.g. for spam filtering, might label everything as ham
 Accuracy might be very high if the problem is skewed
 E.g. calling everything “ham” gets 66%, so a classifier that gets 

70% isn’t very good…

 For real research, usually use previous work as a 
(strong) baseline



Confidences from a Classifier
 The confidence of a probabilistic classifier:

 Posterior over the top label

 Represents how sure the classifier is of the 
classification

 Any probabilistic model will have 
confidences

 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean 

higher accuracy
 Strong calibration: confidence predicts 

accuracy rate
 What’s the value of calibration?



Precision vs. Recall
 Let’s say we want to classify web pages as
 homepages or not

 In a test set of 1K pages, there are 3 homepages
 Our classifier says they are all non-homepages
 99.7 accuracy!
 Need new measures for rare positive events

 Precision: fraction of guessed positives which were actually positive

 Recall: fraction of actual positives which were guessed as positive

 Say we detect 5 spam emails, of which 2 were actually spam, and we 
missed one
 Precision: 2 correct / 5 guessed = 0.4
 Recall: 2 correct / 3 true = 0.67

 Which is more important in customer support email automation?

-

guessed +

actual +



Precision vs. Recall

 Precision/recall tradeoff
 Often, you can trade off 

precision and recall
 Only works well with weakly 

calibrated classifiers

 To summarize the tradeoff:
 Break-even point: precision 

value when p = r
 F-measure: harmonic mean of 

p and r:



Errors, and What to Do

 Examples of errors

Dear GlobalSCAPE Customer, 

GlobalSCAPE has partnered with ScanSoft to offer you the 
latest version of OmniPage Pro, for just $99.99* - the 
regular list price is $499! The most common question we've 
received about this offer is - Is this genuine? We would like 
to assure you that this offer is authorized by ScanSoft, is 
genuine and valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, 
click through to

  http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are 
there. We hope you enjoyed receiving this message. However, 
if you'd rather not receive future e-mails announcing new 
store launches, please click . . .



What to Do About Errors?

 Need more features– words aren’t enough!
 Have you emailed the sender before?
 Have 1K other people just gotten the same email?
 Is the sending information consistent? 
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Can add these information sources as new variables in 
the NB model

 Next class we’ll talk about classifiers which let you easily 
add arbitrary features more easily



Summary

 Bayes rule lets us do diagnostic queries with causal 
probabilities

 The naïve Bayes assumption takes all features to be 
independent given the class label

 We can build classifiers out of a naïve Bayes model 
using training data

 Smoothing estimates is important in real systems

 Classifier confidences are useful, when you can get 
them


