CSE 573: Artificial Intelligence Autumn 2010

Lecture 13: Bayesian Networks: Independence and Inference 11/15/2010

Luke Zettlemoyer
Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic models and inference
- Bayesian Networks (BNs)
- Independence in BNs
- Exact Inference: Variable Elimination
- Approximate Inference: Sampling

Announcements

- PS3 grades out yesterday
- PS4 in, done with Pacman -- Congrats!
- Mini-project guidelines out
- Exam Thursday
- In class, closed book, one page of notes (front and back)
- Look at Berkley exams for practice:
- http://inst.eecs.berkeley.edu/~cs188/ fa10/midterm.htm

Exam Topics

- Search
- BFS, DFS, UCS, A* (tree and graph)
- Completeness and Optimality
- Heuristics: admissibility and consistency
- Games
- Minimax, Alpha-beta pruning, Expectimax, Evaluation Functions
- MDPs
- Definition, rewards, values, qvalues
- Bellman equations
- Value and policy iteration
- Reinforcement Learning
- Exploration vs Exploitation
- Model-based vs. model-free
- TD learning and Q-learning
- Linear value function approx.
- Hidden Markov Models
- Markov chains
- Forward algorithm
- Particle Filter
- Bayesian Networks
- Basic definition
- Types of independence

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red

B: Bottom sensor is red
G : Ghost is in the top

- Queries:
$\mathrm{P}(+\mathrm{g})=? ?$
$\mathrm{P}(+\mathrm{g} \mid+\mathrm{t})=?$
$\mathrm{P}(+\mathrm{g} \mid+\mathrm{t},-\mathrm{b})=? ?$
- Problem: joint distribution too large / complex

Joint Distribution

T	B	G	P
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Recap: Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Example Bayes' Net: Car

Recap: Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $X \Perp Y$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Recap: Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{aligned}
& \forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \\
& \forall x, y, z: P(x \mid z, y)=P(x \mid z)
\end{aligned}
$$

$X \Perp Y \mid Z$

- What about this domain:
- Traffic
- Umbrella
- Raining
- What about fire, smoke, alarm?

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is

$$
P(T, B, G)=P(G) P(T \mid G) P(B \mid G)
$$

- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red

B: Bottom square is red
G: Ghost is in the top

- Can assume:

$$
\begin{aligned}
& P(+g)=0.5 \\
& P(+t \mid+g)=0.8 \\
& P(+t \mid-g)=0.4 \\
& P(+b \mid+g)=0.4 \\
& P(+b \mid r g)=0.8
\end{aligned}
$$

T	B	G	P
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

A	J	$P(\mathrm{~J} \mid \mathrm{A})$
+a	+j	0.9
+a	$\neg \mathrm{j}$	0.1
$\neg \mathrm{a}$	+j	0.05
$\neg \mathrm{a}$	$\neg \mathrm{j}$	0.95

A	\mathbf{M}	$P(M \mid A)$
+a	+m	0.7
+a	$\neg \mathrm{m}$	0.3
$\neg \mathrm{a}$	+m	0.01
$\neg \mathrm{a}$	$\neg \mathrm{m}$	0.99

B	E	A	$P(A \mid B, E)$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

Recap: Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution
(1)

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

- Adding unneeded arcs isn't wrong, it's just inefficient

$P\left(X_{2} \mid X_{1}\right)$

$\mathrm{h} \mid \mathrm{h}$	0.5
$\mathrm{t} \mid \mathrm{h}$	0.5
$\mathrm{~h} \mid \mathrm{t}$	0.5
$\mathrm{t} \mid \mathrm{t}$	0.5

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

- Evidence along the chain "blocks" the influence

Common Parent

- Another basic configuration: two children of the same parent
- Are X and Z independent?
- Are X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} & \begin{array}{l}
\text { Y: Project due } \\
\text { X: Newsgroup } \\
\text { busy } \\
\text { Z: Lab full }
\end{array} \\
& =P(z \mid y) \quad \text { Yes! } &
\end{aligned}
$$

- Observing the parent blocks influence between children.

Common Child

- Last configuration: two (or more) parents of one child (v-structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)
- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation?
- This is backwards from the other cases

X: Raining
Z: Ballgame
Y: Traffic

- Observing an effect activates influence between possible parents.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path
 unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Look for active paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Inactive Triples

Example: Independent?

$R \Perp B$
Yes
$R \Perp B \mid T$
$R \Perp B \mid T^{\prime}$

Example: Independent?

$L \Perp T^{\prime} \mid T \quad$ Yes
$L \Perp B$
$L \Perp B \mid T$
$L \Perp B \mid T^{\prime}$
$L \Perp B \mid T, R \quad$ Yes

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: l'm sad
- Questions:

$$
\begin{array}{lr}
T \Perp D & \\
T \Perp D \mid R \quad \text { Yes } \\
T \Perp D \mid R, S &
\end{array}
$$

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Review: Factor Zoo I

- Joint distribution: $P(X, Y)$
- Entries $P(x, y)$ for all x, y
- Sums to 1
$P(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

- Selected joint: $\mathrm{P}(\mathrm{x}, \mathrm{Y})$
- A slice of the joint distribution
- Entries $P(x, y)$ for fixed x, all y
- Sums to $P(x)$

T	W	P
cold	sun	0.2
cold	rain	0.3

Review: Factor Zoo II

- Family of conditionals:

P(X|Y)

- Multiple conditionals
- Entries $P(x \mid y)$ for all x, y
- Sums to |Y|
- Single conditional: $\mathrm{P}(\mathrm{Y} \mid \mathrm{x})$
- Entries $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for fixed x , all y
- Sums to 1
$P(W \mid$ cold $)$
$P(W \mid T)$
$\left.\begin{array}{|c|c|c|}\hline \mathrm{T} & \mathrm{W} & \mathrm{P} \\ \hline \text { hot } & \text { sun } & 0.8 \\ \hline \text { hot } & \text { rain } & 0.2 \\ \hline \text { cold } & \text { sun } & 0.4 \\ \hline \text { cold } & \text { rain } & 0.6 \\ \hline\end{array}\right\} P(W \mid$ hot $)$

$P(W \mid$ cold $)$		
T	W	P
cold	sun	0.4
cold	rain	0.6

Review: Factor Zoo III

$$
P(\text { rain } \mid T)
$$

- Specified family: $\mathrm{P}(\mathrm{y} \mid \mathrm{X})$
- Entries $P(y \mid x)$ for fixed y, but for all x
- Sums to ... who knows!
$\left.\begin{array}{|c|c|c|}\hline \mathrm{T} & \mathrm{W} & \mathrm{P} \\ \hline \text { hot } & \text { rain } & 0.2 \\ \hline \text { cold } & \text { rain } & 0.6 \\ \hline\end{array}\right\} P($ rain \mid hot $)$
- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are all $\mathrm{P}\left(\mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{N}} \mid \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{M}}\right)$
- Any assigned X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!
- First query: $\mathrm{P}(\mathrm{L})$

$$
P(l)=\sum_{t} \sum_{r} P(l \mid t) P(t \mid r) P(r)
$$

$P(R)$

$P(T \mid R)$		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$P(L \mid R)$		
+t		
+l		
+t		
-l		
-t		
l		
-t		

Variable Elimination Outline

- Maintain a set of tables called factors
- Initial factors are local CPTs (one per node)

$P(R)$	$P(T \mid R)$					
+r 0.1 -r 0.9	+r +t 0.8 +r -t 0.2 -r +t 0.1 -r -t 0.9			+t	+l	0.3
:---:	:---:	:---:				
+t	-l	0.7				
-t	+l	0.1				
-t	-l	0.9				

- Any known values are selected
- E.g. if we know $L=+\ell$, the initial factors are

| $P(R)$ |
:---:	:---:			$P(T \mid R)$	
+r	0.1				
-r	0.9	\quad	+r	+t	0.8
:---:	:---:	:---:			
+r	-t	0.2			
-r	+t	0.1			
-r	-t	0.9			

$P(+\ell \mid T)$

+t	+l	0.3
-t	+l	0.1

- VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved
- Example: Join on R

$$
P(R, T)
$$

- Computation for each entry: pointwise products

$$
\forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)
$$

Example: Multiple Joins

$P(R)$

$P(R, T)$		
+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

$P(L \mid T)$

+t	+l	0.
+t	-I	0.
-t	+l	0.
-t	-l	0.

Example: Multiple Joins

$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

$P(L \mid T)$		
+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

$P(R, T, L)$

+r	+t	+l	0.024
+r	+t	-l	0.056
+r	-t	+l	0.002
+r	-t	-l	0.018
-r	+t	+l	0.027
-r	+t	-l	0.063
-r	-t	+l	0.081
-r	-t	-l	0.729

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

| +r | +t | 0.08 |
| :---: | :---: | :---: | :---: | :---: |
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

Multiple Elimination

R, T, L

Sum
out R $\quad P(T, L) \quad$ out T $P(L)$

\longrightarrow| +t | +I | 0.051 |
| :--- | :--- | :--- |
| +t | -1 | 0.119 |
| -t | +1 | 0.083 |
| $-t$ | -1 | 0.747 |

Sum

P(L) : Marginalizing Early!

$P(R)$

+r	0.1
-r	0.9

Sum out R
$P(R, T)$

(R) $\begin{aligned} & P(T \mid R) \\ &$$+r+t 0.8$\end{aligned}				(R, T)				$P(T)$		
				+r	$+t$	0.08		+		0.17
				+r	-t	0.02		-		0.83
	+r	-t	0.2	-r	+t					
(T)	-r	+t	0.1	-r	-t	0.81				
-r	-r	-t	0.9				R, T			
	$P($	\|T			(L	\|T)			(L\|	
+	+t	+1	0.3	+t	+	10.3		+t	+1	0.3
	+t	-I	0.7	+t	-1	0.7	L	+t	-1	0.7
	-t	+1	0.1	-t	+	I 0.1		-t	+1	0.1
	-t	-I	0.9	-t	-1	0.9		-t	-1	0.9

Marginalizing Early (aka VE*)

Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:

$P(R)$	
$+r$ 0.1 $-r$ 0.9	$+r$ +t +r -t
-r	+t

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- Computing $P(L \mid+r)$, the initial factors become:

$P(+r)$	$P(T \mid+r)$	$P(L \mid T)$
+r 0.1	+r +t 0.8 +r -t 0.2	+t +l 0.3 +t -l 0.7 -t +l 0.1 -t -l 0.9

- We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $P(L \mid+r)$, we'd end up with:

$P(+r, L)$			Normalize	$P(L \mid+r)$	
+r	+1	0.026		+	0.26
+r	-1	0.074		-1	0.74

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Bayes Rule

Start / Select

$P(B)$	
B	P
$+b$	0.1
$-b$	0.9

$P(A \mid B) \rightarrow P(a \mid B)$

B	A	P
$+b$	$+a$	0.8
b	$+a$	0.2
$\neg b$	$+a$	0.1
b	a	0.0

Join on B
a, B
$P(a, B)$

A	B	P
+a	+b	0.08
+a	-b	0.09

Normalize
$P(B \mid a)$

A	B	P
+a	+b	$8 / 17$
+a	-b	$9 / 17$

Example

Query: $\quad P(B \mid j, m)$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$

Choose A

$$
\left.\begin{array}{l}
P(A \mid B, E) \\
P(j \mid A) \\
P(m \mid A)
\end{array} \quad \boxed{\times} P(j, m, A \mid B, E) \quad \sum\right\rangle P(j, m \mid B, E)
$$

$P(B) \quad P(E) \quad P(j, m \mid B, E)$

Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Choose E
$\begin{array}{ccc}P(E) & \times> & P(j, m, E \mid B) \quad \square \\ P(j, m \mid B, E) & \square(j, m \mid B)\end{array}$

$$
P(B) \quad P(j, m \mid B)
$$

Finish with B

$$
\begin{gathered}
P(B) \\
P(j, m \mid B)
\end{gathered} \stackrel{\times}{ } \quad P(j, m, B) \quad \underset{\sim}{\text { Normalize }} P(B \mid j, m)
$$

Exact Inference: Variable Elimination

- Remaining Issues:
- Complexity: exponential in tree width (size of the largest factor created)
- Best elimination ordering? NP-hard problem
- What you need to know:
- Should be able to run it on small examples, understand the factor creation / reduction flow
- Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We have seen a special case of VE already
- HMM Forward Inference

Approximate Inference

- Simulation has a name: sampling
- Sampling is a hot topic in machine learning, and it's really simple
- Basic idea:
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why sample?
- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Prior Sampling

Prior Sampling

- This process generates samples with probability:

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{P S}\left(x_{1} \ldots x_{n}\right)$
- Then $\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right)=\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$

$$
=S_{P S}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
=P\left(x_{1} \ldots x_{n}\right)
$$

- I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the BN:

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$

- If we want to know $\mathrm{P}(\mathrm{W})$
- We have counts <+w:4, -w:1>
- Normalize to get $\mathrm{P}(\mathrm{W})=<+w: 0.8,-w: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $\mathrm{P}(\mathrm{C} \mid+\mathrm{w})$? $\mathrm{P}(\mathrm{C} \mid+\mathrm{r},+\mathrm{w})$? $\mathrm{P}(\mathrm{C} \mid-\mathrm{r},-\mathrm{w})$?
- Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

- Let's say we want $\mathrm{P}(\mathrm{C})$
- No point keeping all samples around
- Just tally counts of C as we go

- Let's say we want $\mathrm{P}(\mathrm{C} \mid+\mathrm{s})$
- Same thing: tally C outcomes, but ignore (reject) samples which don't have $\mathrm{S}=+\mathrm{s}$
- This is called rejection sampling
- It is also consistent for conditional

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$ probabilities (i.e., correct in the limit)

Likelihood Weighting

- Problem with rejection sampling:
- If evidence is unlikely, you reject a lot of samples
- You don't exploit your evidence as you sample
- Consider P(B|+a)

$$
\begin{aligned}
& -b,-a \\
& -b,-a \\
& -b,-a \\
& -b,-a \\
& +b,+a
\end{aligned}
$$

- Idea: fix evidence variables and sample the rest

- Solution: weight by probability of evidence given parents

Likelihood Weighting

$P(C)$	
$+c$	0.5
$-c$	0.5

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \text { Parents }\left(E_{i}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{\mathrm{WS}}(z, e) \cdot w(z, e) & =\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right) \\
& =P(\mathbf{z}, \mathbf{e})
\end{aligned}
$$

Likelihood Weighting

- Likelihood weighting is good
- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems

- Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable

Markov Chain Monte Carlo*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Gibbs Sampling: resample one variable at a time, conditioned on the rest, but keep evidence fixed.

- Properties: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.

