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Outline

 Probabilistic models and inference
 Bayesian Networks (BNs)
 Independence in BNs
 Exact Inference: Variable Elimination
 Approximate Inference: Sampling



Announcements
 PS3 grades out yesterday
 PS4 in, done with Pacman -- Congrats!
 Mini-project guidelines out 
 Exam Thursday

 In class, closed book, one page of 
notes (front and back)

 Look at Berkley exams for practice:
http://inst.eecs.berkeley.edu/~cs188/

fa10/midterm.html 

http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html


Exam Topics
 Search

 BFS, DFS, UCS, A* (tree and 
graph)

 Completeness and Optimality
 Heuristics: admissibility and 

consistency

 Games
 Minimax, Alpha-beta pruning, 

Expectimax, Evaluation Functions

 MDPs
 Definition, rewards, values, q-

values
 Bellman equations
 Value and policy iteration

 Reinforcement Learning
 Exploration vs Exploitation
 Model-based vs. model-free
 TD learning and Q-learning
 Linear value function approx.

 Hidden Markov Models
 Markov chains
 Forward algorithm
 Particle Filter

 Bayesian Networks
 Basic definition
 Types of independence



Model for Ghostbusters

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Reminder: ghost is hidden, 
sensors are noisy

 T: Top sensor is red
B: Bottom sensor is red
G: Ghost is in the top

 Queries:
 P( +g) = ??

P( +g | +t) = ??
P( +g | +t, -b) = ??

 Problem: joint
 distribution too
 large / complex

Joint Distribution



Recap: Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’ Net: Car



Recap: Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions
 To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint
 Not every BN can represent every joint distribution

 The topology enforces certain independence assumptions
 Compare to the exact decomposition according to the chain rule!



Recap: Independence
 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity, Toothache}?



Recap: Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about this domain:
 Traffic
 Umbrella
 Raining

 What about fire, smoke, alarm?



Ghostbusters Chain Rule

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Each sensor depends only
on where the ghost is

 That means, the two sensors are 
conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(T,B,G) = P(G) P(T|G) P(B|G)

 Can assume:
 P( +g ) = 0.5
 P( +t  | +g ) = 0.8

P( +t  | ¬g ) = 0.4
P( +b | +g ) = 0.4
P( +b | ¬g ) = 0.8



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)
+b 0.001

¬b 0.999

E P(E)
+e 0.002
¬e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99



Recap: Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z



Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

 Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph
 Better answer: don’t make any false 

conditional independence assumptions



Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

h 0.5
t 0.5

X1 X2 X1 X2

h 0.5
t 0.5

h | h 0.5
t | h 0.5
h | t 0.5
t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5
t 0.5



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which 

causes traffic.
 X can influence Z, Z can influence X (via Y)
 Addendum: they could be independent: how?



Causal Chains

 This configuration is a “causal chain”

 Is X independent of Z given Y?

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

 Evidence along the chain “blocks” the influence



Common Parent

 Another basic configuration: two 
children of the same parent
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z

Yes!

Y: Project due

X: Newsgroup 
busy

Z: Lab full

 Observing the parent blocks influence between children.



Common Child

 Last configuration: two (or more)
parents of one child (v-structures)
 Are X and Z independent? X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

 Are X and Z independent given Y?
 No: seeing traffic puts the rain and the 

ballgame in competition as explanation?

 This is backwards from the other cases
 Observing an effect activates influence 

between possible parents.

 Yes: the ballgame and the rain cause 
traffic, but they are not correlated

 Still need to prove they must be (try it!)



The General Case

 Any complex example can be analyzed 
using these three canonical cases

 General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph



Reachability

 Recipe: shade evidence nodes

 Attempt 1: if two nodes are 
connected by an undirected path 
not blocked by a shaded node, 
they are conditionally independent R

T

B

D

L

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T 

doesn’t count as a link in a path 
unless “active”



Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A → B → C where B 

is unobserved (either direction)
 Common cause A ← B → C where 

B is unobserved
 Common effect (aka v-structure)
 A → B ← C where B or one of its 

descendents is observed

 All it takes to block a path is 
a single inactive segment

 

Active Triples Inactive Triples



Example: Independent?

Yes R

T

B

T’



Example: Independent?

R

T

B

D

L

T’

Yes

Yes

Yes



Example

 Variables:
 R: Raining
 T: Traffic
 D: Roof drips
 S: I’m sad

 Questions:

T

S

D

R

Yes



Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution



Variable Elimination

 Why is inference by enumeration so slow?
 You join up the whole joint distribution before you sum 

out the hidden variables
 You end up repeating a lot of work!

 Idea: interleave joining and marginalizing!
 Called “Variable Elimination”
 Still NP-hard, but usually much faster than inference 

by enumeration

 We’ll need some new notation to define VE



Review: Factor Zoo I

 Joint distribution: P(X,Y)
 Entries P(x,y) for all x, y
 Sums to 1

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
cold sun 0.2
cold rain 0.3

 Selected joint: P(x,Y)
 A slice of the joint distribution
 Entries P(x,y) for fixed x, all y
 Sums to P(x)



Review: Factor Zoo II
 Family of conditionals: 
 P(X |Y)

 Multiple conditionals
 Entries P(x | y) for all x, y
 Sums to |Y|

T W P
hot sun 0.8
hot rain 0.2
cold sun 0.4
cold rain 0.6

T W P
cold sun 0.4
cold rain 0.6

 Single conditional: P(Y | x)
 Entries P(y | x) for fixed x, 

all y
 Sums to 1



Review: Factor Zoo III

 Specified family: P(y | X)
 Entries P(y | x) for fixed y,
 but for all x
 Sums to … who knows!

T W P
hot rain 0.2
cold rain 0.6

 In general, when we write P(Y1 … YN | X1 … XM)
 It is a “factor,” a multi-dimensional array
 Its values are all P(y1 … yN | x1 … xM)

 Any assigned X or Y is a dimension missing (selected) from the array



Example: Traffic Domain

 Random Variables
 R: Raining
 T: Traffic
 L: Late for class!

T

L

R +r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

 First query: P(L)

BRIEF ARTICLE

THE AUTHOR

P (l) =
�

t

�

r

P (l|t)P (t|r)P (r)

1



 Maintain a set of tables called factors
 Initial factors are local CPTs (one per node)

Variable Elimination Outline

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

 Any known values are selected
 E.g. if we know                  , the initial factors are

 VE: Alternately join factors and eliminate variables



 First basic operation: joining factors
 Combining factors:

 Just like a database join
 Get all factors over the joining variable
 Build a new factor over the union of the variables involved

 Example: Join on R

Operation 1: Join Factors

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

T

R
+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

R,T

 Computation for each entry: pointwise products



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.
8+r -t 0.
2-r +t 0.
1-r -t 0.
9

+t +l 0.
3+t -l 0.
7-t +l 0.
1-t -l 0.
9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.
3+t -l 0.
7-t +l 0.
1-t -l 0.
9



Example: Multiple Joins

Join TR, T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729



Operation 2: Eliminate

 Second basic operation: marginalization
 Take a factor and sum out a variable

 Shrinks a factor to a smaller one
 A projection operation

 Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

T, L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

L

+l 0.134
-l 0.886

Sum
out R

Sum
out T



P(L) : Marginalizing Early!

Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L



Marginalizing Early (aka VE*)

* VE is variable elimination

T

L

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T, L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

L

+l 0.134
-l 0.886

Join T Sum out T



 If evidence, start with factors that select that evidence
 No evidence uses these initial factors:

 Computing                        , the initial factors become:

 We eliminate all vars other than query + evidence

Evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



 Result will be a selected joint of query and evidence
 E.g. for P(L | +r), we’d end up with:

Evidence II

+r +l 0.026
+r -l 0.074

+l 0.26
-l 0.74

Normalize

 To get our answer, just normalize this!

 That’s it!



General Variable Elimination

 Query:

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables (not Q or evidence):
 Pick a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize



Variable Elimination Bayes Rule

A B P
+a +b 0.08
+a ¬b 0.09

B A P
+b +a 0.8
b ¬a 0.2

¬b +a 0.1
¬b ¬a 0.9

B P
+b 0.1
¬b 0.9 a

B a, B

Start / Select Join on B Normalize

A B P
+a +b 8/17
+a ¬b 9/17



Example

Choose A

Query:



Example

Choose E

Finish with B

Normalize



Exact Inference: Variable Elimination

 Remaining Issues:
 Complexity: exponential in tree width (size of the 

largest factor created)
 Best elimination ordering? NP-hard problem

 We have seen a special case of VE already
 HMM Forward Inference

 What you need to know:
 Should be able to run it on small examples, understand 

the factor creation / reduction flow
 Better than enumeration: saves time by marginalizing 

variables as soon as possible rather than at the end



Approximate Inference

 Simulation has a name: sampling

 Sampling is a hot topic in machine learning,
and it’s really simple

 Basic idea:
 Draw N samples from a sampling distribution S
 Compute an approximate posterior probability
 Show this converges to the true probability P

 Why sample?
 Learning: get samples from a distribution you don’t know
 Inference: getting a sample is faster than computing the right 

answer (e.g. with variable elimination)

S

A

F



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c
+s 0.1

+c -s 0.9

-c
+s 0.5

-c -s 0.5

+c
+r 0.8

+c -r 0.2

-c
+r 0.2

-c -r 0.8

+s

+r
+w 0.99

+s

+r -w 0.01

+s -r
+w 0.90

+s -r -w 0.10

-s

+r
+w 0.90

-s

+r -w 0.10

-s -r
+w 0.01

-s -r -w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

 This process generates samples with probability:

 …i.e. the BN’s joint probability

 Let the number of samples of an event be
 Then

 I.e., the sampling procedure is consistent



Example

 We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r,  -w
 +c, -s, +r, +w
 -c,  -s,  -r, +w

 If we want to know P(W)

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

 We have counts <+w:4, -w:1>
 Normalize to get P(W) = <+w:0.8, -w:0.2>
 This will get closer to the true distribution with more samples
 Can estimate anything else, too
 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?
 Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling

 Let’s say we want P(C)

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

 Let’s say we want P(C| +s)
 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 
have S=+s

 This is called rejection sampling
 It is also consistent for conditional 

probabilities (i.e., correct in the 
limit)

 No point keeping all samples around
 Just tally counts of C as we go



Likelihood Weighting

 Problem with rejection sampling:
 If evidence is unlikely, you reject a lot of samples
 You don’t exploit your evidence as you sample
 Consider P(B|+a)

Burglary Alarm

Burglary Alarm

 -b,  -a
 -b,  -a
 -b,  -a
 -b,  -a
+b, +a

 -b  +a
 -b, +a
 -b, +a
 -b, +a
+b, +a

 Idea: fix evidence variables and sample the rest

 Problem: sample distribution not consistent!
 Solution: weight by probability of evidence given parents



Likelihood Weighting
+c 0.5
-c 0.5

+c
+s 0.1

+c -s 0.9

-c
+s 0.5

-c -s 0.5

+c
+r 0.8

+c -r 0.2

-c
+r 0.2

-c -r 0.8

+s

+r
+w 0.99

+s

+r -w 0.01

+s -r
+w 0.90

+s -r -w 0.10

-s

+r
+w 0.90

-s

+r -w 0.10

-s -r
+w 0.01

-s -r -w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
 Sampling distribution if z sampled and e fixed evidence

 Now, samples have weights

 Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting
 Likelihood weighting is good

 We have taken evidence into account as 
we generate the sample

 E.g. here, W’s value will get picked 
based on the evidence values of S, R

 More of our samples will reflect the state 
of the world suggested by the evidence

  Likelihood weighting doesn’t solve 
all our problems
 Evidence influences the choice of 

downstream variables, but not upstream 
ones (C isn’t more likely to get a value 
matching the evidence)

 We would like to consider evidence 
when we sample every variable

Cloudy

Rain

C

S R

W



Markov Chain Monte Carlo*
 Idea: instead of sampling from scratch, create samples 

that are each like the last one.

 Gibbs Sampling: resample one variable at a time, 
conditioned on the rest, but keep evidence fixed. 

+a +c+b +a +c-b -a +c-b

 Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators!

 What’s the point: both upstream and downstream 
variables condition on evidence.


