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Outline

 Probabilistic models and inference
 Bayesian Networks (BNs)
 Independence in BNs
 Exact Inference: Variable Elimination
 Approximate Inference: Sampling



Announcements
 PS3 grades out yesterday
 PS4 in, done with Pacman -- Congrats!
 Mini-project guidelines out 
 Exam Thursday

 In class, closed book, one page of 
notes (front and back)

 Look at Berkley exams for practice:
http://inst.eecs.berkeley.edu/~cs188/

fa10/midterm.html 

http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html


Exam Topics
 Search

 BFS, DFS, UCS, A* (tree and 
graph)

 Completeness and Optimality
 Heuristics: admissibility and 

consistency

 Games
 Minimax, Alpha-beta pruning, 

Expectimax, Evaluation Functions

 MDPs
 Definition, rewards, values, q-

values
 Bellman equations
 Value and policy iteration

 Reinforcement Learning
 Exploration vs Exploitation
 Model-based vs. model-free
 TD learning and Q-learning
 Linear value function approx.

 Hidden Markov Models
 Markov chains
 Forward algorithm
 Particle Filter

 Bayesian Networks
 Basic definition
 Types of independence



Model for Ghostbusters

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Reminder: ghost is hidden, 
sensors are noisy

 T: Top sensor is red
B: Bottom sensor is red
G: Ghost is in the top

 Queries:
 P( +g) = ??

P( +g | +t) = ??
P( +g | +t, -b) = ??

 Problem: joint
 distribution too
 large / complex

Joint Distribution



Recap: Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’ Net: Car



Recap: Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions
 To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint
 Not every BN can represent every joint distribution

 The topology enforces certain independence assumptions
 Compare to the exact decomposition according to the chain rule!



Recap: Independence
 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity, Toothache}?



Recap: Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about this domain:
 Traffic
 Umbrella
 Raining

 What about fire, smoke, alarm?



Ghostbusters Chain Rule

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Each sensor depends only
on where the ghost is

 That means, the two sensors are 
conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(T,B,G) = P(G) P(T|G) P(B|G)

 Can assume:
 P( +g ) = 0.5
 P( +t  | +g ) = 0.8

P( +t  | ¬g ) = 0.4
P( +b | +g ) = 0.4
P( +b | ¬g ) = 0.8



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)
+b 0.001

¬b 0.999

E P(E)
+e 0.002
¬e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99



Recap: Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z



Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

 Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph
 Better answer: don’t make any false 

conditional independence assumptions



Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

h 0.5
t 0.5

X1 X2 X1 X2

h 0.5
t 0.5

h | h 0.5
t | h 0.5
h | t 0.5
t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5
t 0.5



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which 

causes traffic.
 X can influence Z, Z can influence X (via Y)
 Addendum: they could be independent: how?



Causal Chains

 This configuration is a “causal chain”

 Is X independent of Z given Y?

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

 Evidence along the chain “blocks” the influence



Common Parent

 Another basic configuration: two 
children of the same parent
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z

Yes!

Y: Project due

X: Newsgroup 
busy

Z: Lab full

 Observing the parent blocks influence between children.



Common Child

 Last configuration: two (or more)
parents of one child (v-structures)
 Are X and Z independent? X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

 Are X and Z independent given Y?
 No: seeing traffic puts the rain and the 

ballgame in competition as explanation?

 This is backwards from the other cases
 Observing an effect activates influence 

between possible parents.

 Yes: the ballgame and the rain cause 
traffic, but they are not correlated

 Still need to prove they must be (try it!)



The General Case

 Any complex example can be analyzed 
using these three canonical cases

 General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph



Reachability

 Recipe: shade evidence nodes

 Attempt 1: if two nodes are 
connected by an undirected path 
not blocked by a shaded node, 
they are conditionally independent R

T

B

D

L

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T 

doesn’t count as a link in a path 
unless “active”



Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A → B → C where B 

is unobserved (either direction)
 Common cause A ← B → C where 

B is unobserved
 Common effect (aka v-structure)
 A → B ← C where B or one of its 

descendents is observed

 All it takes to block a path is 
a single inactive segment

 

Active Triples Inactive Triples



Example: Independent?

Yes R

T

B

T’



Example: Independent?

R

T

B

D

L

T’

Yes

Yes

Yes



Example

 Variables:
 R: Raining
 T: Traffic
 D: Roof drips
 S: I’m sad

 Questions:

T

S

D

R

Yes



Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution



Variable Elimination

 Why is inference by enumeration so slow?
 You join up the whole joint distribution before you sum 

out the hidden variables
 You end up repeating a lot of work!

 Idea: interleave joining and marginalizing!
 Called “Variable Elimination”
 Still NP-hard, but usually much faster than inference 

by enumeration

 We’ll need some new notation to define VE



Review: Factor Zoo I

 Joint distribution: P(X,Y)
 Entries P(x,y) for all x, y
 Sums to 1

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
cold sun 0.2
cold rain 0.3

 Selected joint: P(x,Y)
 A slice of the joint distribution
 Entries P(x,y) for fixed x, all y
 Sums to P(x)



Review: Factor Zoo II
 Family of conditionals: 
 P(X |Y)

 Multiple conditionals
 Entries P(x | y) for all x, y
 Sums to |Y|

T W P
hot sun 0.8
hot rain 0.2
cold sun 0.4
cold rain 0.6

T W P
cold sun 0.4
cold rain 0.6

 Single conditional: P(Y | x)
 Entries P(y | x) for fixed x, 

all y
 Sums to 1



Review: Factor Zoo III

 Specified family: P(y | X)
 Entries P(y | x) for fixed y,
 but for all x
 Sums to … who knows!

T W P
hot rain 0.2
cold rain 0.6

 In general, when we write P(Y1 … YN | X1 … XM)
 It is a “factor,” a multi-dimensional array
 Its values are all P(y1 … yN | x1 … xM)

 Any assigned X or Y is a dimension missing (selected) from the array



Example: Traffic Domain

 Random Variables
 R: Raining
 T: Traffic
 L: Late for class!

T

L

R +r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

 First query: P(L)

BRIEF ARTICLE

THE AUTHOR

P (l) =
�

t

�

r

P (l|t)P (t|r)P (r)

1



 Maintain a set of tables called factors
 Initial factors are local CPTs (one per node)

Variable Elimination Outline

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

 Any known values are selected
 E.g. if we know                  , the initial factors are

 VE: Alternately join factors and eliminate variables



 First basic operation: joining factors
 Combining factors:

 Just like a database join
 Get all factors over the joining variable
 Build a new factor over the union of the variables involved

 Example: Join on R

Operation 1: Join Factors

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

T

R
+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

R,T

 Computation for each entry: pointwise products



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.
8+r -t 0.
2-r +t 0.
1-r -t 0.
9

+t +l 0.
3+t -l 0.
7-t +l 0.
1-t -l 0.
9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.
3+t -l 0.
7-t +l 0.
1-t -l 0.
9



Example: Multiple Joins

Join TR, T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729



Operation 2: Eliminate

 Second basic operation: marginalization
 Take a factor and sum out a variable

 Shrinks a factor to a smaller one
 A projection operation

 Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

T, L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

L

+l 0.134
-l 0.886

Sum
out R

Sum
out T



P(L) : Marginalizing Early!

Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L



Marginalizing Early (aka VE*)

* VE is variable elimination

T

L

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T, L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

L

+l 0.134
-l 0.886

Join T Sum out T



 If evidence, start with factors that select that evidence
 No evidence uses these initial factors:

 Computing                        , the initial factors become:

 We eliminate all vars other than query + evidence

Evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



 Result will be a selected joint of query and evidence
 E.g. for P(L | +r), we’d end up with:

Evidence II

+r +l 0.026
+r -l 0.074

+l 0.26
-l 0.74

Normalize

 To get our answer, just normalize this!

 That’s it!



General Variable Elimination

 Query:

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables (not Q or evidence):
 Pick a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize



Variable Elimination Bayes Rule

A B P
+a +b 0.08
+a ¬b 0.09

B A P
+b +a 0.8
b ¬a 0.2

¬b +a 0.1
¬b ¬a 0.9

B P
+b 0.1
¬b 0.9 a

B a, B

Start / Select Join on B Normalize

A B P
+a +b 8/17
+a ¬b 9/17



Example

Choose A

Query:



Example

Choose E

Finish with B

Normalize



Exact Inference: Variable Elimination

 Remaining Issues:
 Complexity: exponential in tree width (size of the 

largest factor created)
 Best elimination ordering? NP-hard problem

 We have seen a special case of VE already
 HMM Forward Inference

 What you need to know:
 Should be able to run it on small examples, understand 

the factor creation / reduction flow
 Better than enumeration: saves time by marginalizing 

variables as soon as possible rather than at the end



Approximate Inference

 Simulation has a name: sampling

 Sampling is a hot topic in machine learning,
and it’s really simple

 Basic idea:
 Draw N samples from a sampling distribution S
 Compute an approximate posterior probability
 Show this converges to the true probability P

 Why sample?
 Learning: get samples from a distribution you don’t know
 Inference: getting a sample is faster than computing the right 

answer (e.g. with variable elimination)

S

A

F



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c
+s 0.1

+c -s 0.9

-c
+s 0.5

-c -s 0.5

+c
+r 0.8

+c -r 0.2

-c
+r 0.2

-c -r 0.8

+s

+r
+w 0.99

+s

+r -w 0.01

+s -r
+w 0.90

+s -r -w 0.10

-s

+r
+w 0.90

-s

+r -w 0.10

-s -r
+w 0.01

-s -r -w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

 This process generates samples with probability:

 …i.e. the BN’s joint probability

 Let the number of samples of an event be
 Then

 I.e., the sampling procedure is consistent



Example

 We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r,  -w
 +c, -s, +r, +w
 -c,  -s,  -r, +w

 If we want to know P(W)

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

 We have counts <+w:4, -w:1>
 Normalize to get P(W) = <+w:0.8, -w:0.2>
 This will get closer to the true distribution with more samples
 Can estimate anything else, too
 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?
 Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling

 Let’s say we want P(C)

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

 Let’s say we want P(C| +s)
 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 
have S=+s

 This is called rejection sampling
 It is also consistent for conditional 

probabilities (i.e., correct in the 
limit)

 No point keeping all samples around
 Just tally counts of C as we go



Likelihood Weighting

 Problem with rejection sampling:
 If evidence is unlikely, you reject a lot of samples
 You don’t exploit your evidence as you sample
 Consider P(B|+a)

Burglary Alarm

Burglary Alarm

 -b,  -a
 -b,  -a
 -b,  -a
 -b,  -a
+b, +a

 -b  +a
 -b, +a
 -b, +a
 -b, +a
+b, +a

 Idea: fix evidence variables and sample the rest

 Problem: sample distribution not consistent!
 Solution: weight by probability of evidence given parents



Likelihood Weighting
+c 0.5
-c 0.5

+c
+s 0.1

+c -s 0.9

-c
+s 0.5

-c -s 0.5

+c
+r 0.8

+c -r 0.2

-c
+r 0.2

-c -r 0.8

+s

+r
+w 0.99

+s

+r -w 0.01

+s -r
+w 0.90

+s -r -w 0.10

-s

+r
+w 0.90

-s

+r -w 0.10

-s -r
+w 0.01

-s -r -w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
 Sampling distribution if z sampled and e fixed evidence

 Now, samples have weights

 Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting
 Likelihood weighting is good

 We have taken evidence into account as 
we generate the sample

 E.g. here, W’s value will get picked 
based on the evidence values of S, R

 More of our samples will reflect the state 
of the world suggested by the evidence

  Likelihood weighting doesn’t solve 
all our problems
 Evidence influences the choice of 

downstream variables, but not upstream 
ones (C isn’t more likely to get a value 
matching the evidence)

 We would like to consider evidence 
when we sample every variable

Cloudy

Rain

C

S R

W



Markov Chain Monte Carlo*
 Idea: instead of sampling from scratch, create samples 

that are each like the last one.

 Gibbs Sampling: resample one variable at a time, 
conditioned on the rest, but keep evidence fixed. 

+a +c+b +a +c-b -a +c-b

 Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators!

 What’s the point: both upstream and downstream 
variables condition on evidence.


