
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 12: HMMs / Bayesian Networks
11/9/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, 
Stuart Russell or Andrew Moore

1



Outline

 Probabilistic sequence models (and inference)
 (Review) Hidden Markov Models
 (Review) Particle Filters
 (Postponed) Most Probable Explanations
 Dynamic Bayesian networks
 Bayesian Networks (BNs)
 Independence in BNs



Announcements
 We are still grading PS3 
 PS4 out, due next Monday
 Mini-project guidelines out this week
 Exam next Thursday

 In class, closed book, one page of 
notes

 Look at Berkley exams for practice:
http://inst.eecs.berkeley.edu/~cs188/

fa10/midterm.html 

http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html


Recap: Reasoning Over Time

 Stationary Markov models
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 Hidden Markov models



Recap: Hidden Markov Models

 Defines a joint probability distribution:
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Summary: Filtering

 Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )



Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Recap: Filtering Example



Example Pac-man



Recap: Particle Filtering
 Sometimes |X| is too big to use 

exact inference
 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5
 Solution: approximate inference

 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number 

of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works 
in practice



Recap: Particle Filtering
At each time step t, we have a set of N particles / samples
 Initialization: Sample from prior, reweight and resample
 Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next 
state

2. Reweight: for each particle, compute its weight given the 
actual observation e

3. Resample: normalize the weights, and sample N new 
particles from the resulting distribution over states



Representation: Particles
 Our representation of P(X) is now 

a list of N particles (samples)
 Generally, N << |X|
 Storing map from X to counts 

would defeat the point

 P(x) approximated by number of 
particles with value x
 So, many x will have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a 
weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (2,1)
    (3,3)
    (3,3)
    (2,1)



Particle Filtering: Elapse Time

 Each particle is moved by sampling its 
next position from the transition model

 This is like prior sampling – samples’ 
frequencies reflect the transition probs

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If we have enough samples, close to the 

exact values before and after (consistent)



Particle Filtering: Observe

 Slightly trickier:
 We don’t sample the observation, we fix it
 We weight our samples based on the 

evidence

 Note that, as before, the weights/
probabilities don’t sum to one, since most 
have been downweighted (in fact they 
sum to an approximation of P(e))



Particle Filtering: Resample
 Rather than tracking 

weighted samples, we 
resample

 N times, we choose 
from our weighted 
sample distribution 
(i.e. draw with 
replacement)

 This is equivalent to 
renormalizing the 
distribution

 Now the update is 
complete for this time 
step, continue with the 
next one

Old Particles:
    (3,3) w=0.1
    (2,1) w=0.9
    (2,1) w=0.9  
    (3,1) w=0.4
    (3,2) w=0.3
    (2,2) w=0.4
    (1,1) w=0.4
    (3,1) w=0.4
    (2,1) w=0.9
    (3,2) w=0.3

New Particles:
    (2,1) w=1
    (2,1) w=1
    (2,1) w=1  
    (3,2) w=1
    (2,2) w=1
    (2,1) w=1
    (1,1) w=1
    (3,1) w=1
    (2,1) w=1
    (1,1) w=1



Recap: Particle Filtering
At each time step t, we have a set of N particles / samples
 Initialization: Sample from prior, reweight and resample
 Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next 
state

2. Reweight: for each particle, compute its weight given the 
actual observation e

3. Resample: normalize the weights, and sample N new 
particles from the resulting distribution over states



Which Algorithm?
Particle filter, uniform initial belief, 300 particles



PS4: Ghostbusters

 Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.  

 He was blinded by his power, but could 
hear the ghosts’ banging and clanging.

 Transition Model: All ghosts move 
randomly, but are sometimes biased

 Emission Model: Pacman knows a 
“noisy” distance to each ghost

15
14
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9
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6
5
4
3
2
1

Noisy distance prob
True distance = 8



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, using 
multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at each time
 Variables from time t can condition on those from t-1

 Discrete valued dynamic Bayes nets are also HMMs
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G2
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E3
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b
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b

t =3



DBN Particle Filters

 A particle is a complete sample for a time step
 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1
a = (3,3) G1

b = (5,3) 

 Elapse time: Sample a successor for each particle 
 Example successor: G2

a = (2,3) G2
b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample
 Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

 Resample: Select samples (tuples of values) in 
proportion to their likelihood weights



Model for Ghostbusters

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Reminder: ghost is hidden, 
sensors are noisy

 T: Top sensor is red
B: Bottom sensor is red
G: Ghost is in the top

 Queries:
 P( +g) = ??

P( +g | +t) = ??
P( +g | +t, -b) = ??

 Problem: joint
 distribution too
 large / complex

Joint Distribution



Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions



Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’ Net: Car



Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions
 To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint
 Not every BN can represent every joint distribution

 The topology enforces certain independence assumptions
 Compare to the exact decomposition according to the chain rule!



Example Bayes’ Net: Insurance



Example: Independence

 N fair, independent coin flips:

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5



Example: Coin Flips

X1 X2 Xn

 N independent coin flips

 No interactions between variables: 
absolute independence



Independence
 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

T W P
warm sun 0.4
warm rain 0.1
cold sun 0.2
cold rain 0.3

T W P
warm sun 0.3
warm rain 0.2
cold sun 0.3
cold rain 0.2

T P
warm 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Conditional Independence
 P(Toothache, Cavity, Catch)
 If I have a cavity, the probability that the probe catches in it doesn't 

depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, ¬cavity) = P(+catch| ¬cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 One can be derived from the other easily



Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about this domain:
 Traffic
 Umbrella
 Raining

 What about fire, smoke, alarm?



Ghostbusters Chain Rule

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Each sensor depends only
on where the ghost is

 That means, the two sensors are 
conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(T,B,G) = P(G) P(T|G) P(B|G)

 Can assume:
 P( +g ) = 0.5
 P( +t  | +g ) = 0.8

P( +t  | ¬g ) = 0.4
P( +b | +g ) = 0.4
P( +b | ¬g ) = 0.8



Example: Traffic
 Variables:

 R: It rains
 T: There is traffic

 Model 1: independence

 Model 2: rain is conditioned on traffic

 Why is an agent using model 2 better?

 Model 3: traffic is conditioned on rain

 Is this better than model 2?



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)
+b 0.001

¬b 0.999

E P(E)
+e 0.002
¬e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99



Example: Traffic II

 Let’s build a causal graphical model

 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity



Example: Independence

 For this graph, you can fiddle with θ (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2

All distributions



Topology Limits Distributions
 Given some graph topology 

G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which 

causes traffic.
 X can influence Z, Z can influence X (via Y)
 Addendum: they could be independent: how?



Causal Chains

 This configuration is a “causal chain”

 Is X independent of Z given Y?

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

 Evidence along the chain “blocks” the influence



Common Cause

 Another basic configuration: two 
effects of the same cause
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z

Yes!

Y: Project due

X: Newsgroup 
busy

Z: Lab full

 Observing the cause blocks influence between effects.



Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent?

 Yes: the ballgame and the rain cause traffic, 
but they are not correlated

 Still need to prove they must be (try it!)

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

 Are X and Z independent given Y?
 No: seeing traffic puts the rain and the 

ballgame in competition as explanation?

 This is backwards from the other cases
 Observing an effect activates influence 

between possible causes.



The General Case

 Any complex example can be analyzed 
using these three canonical cases

 General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph



Reachability

 Recipe: shade evidence nodes

 Attempt 1: if two nodes are 
connected by an undirected path 
not blocked by a shaded node, 
they are conditionally independent R

T

B

D

L

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T 

doesn’t count as a link in a path 
unless “active”



Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A → B → C where B 

is unobserved (either direction)
 Common cause A ← B → C where 

B is unobserved
 Common effect (aka v-structure)
 A → B ← C where B or one of its 

descendents is observed

 All it takes to block a path is 
a single inactive segment

 

Active Triples Inactive Triples



Example: Independent?

Yes R

T

B

T’



Example: Independent?

R

T

B

D

L

T’

Yes

Yes

Yes



Example

 Variables:
 R: Raining
 T: Traffic
 D: Roof drips
 S: I’m sad

 Questions:

T

S

D

R

Yes



Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

 Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph
 Better answer: don’t make any false 

conditional independence assumptions



Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

h 0.5
t 0.5

X1 X2 X1 X2

h 0.5
t 0.5

h | h 0.5
t | h 0.5
h | t 0.5
t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5
t 0.5



Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution


