CSE 573: Artificial Intelligence Autumn 2010

Lecture 12: HMMs / Bayesian Networks 11/9/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic sequence models (and inference)
- (Review) Hidden Markov Models
- (Review) Particle Filters
- (Postponed) Most Probable Explanations
- Dynamic Bayesian networks
- Bayesian Networks (BNs)
- Independence in BNs

Announcements

- We are still grading PS3
- PS4 out, due next Monday
- Mini-project guidelines out this week
- Exam next Thursday
- In class, closed book, one page of notes
- Look at Berkley exams for practice:
- http://inst.eecs.berkeley.edu/~cs188/ fa10/midterm.html

Recap: Reasoning Over Time

- Stationary Markov models

$$
P\left(X_{1}\right) \quad P\left(X \mid X_{-1}\right)
$$

$$
P(E \mid X)
$$

- Hidden Markov models

X	E	P
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Recap: Hidden Markov Models

- Defines a joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}, E_{1}, \ldots, E_{n}\right)=
$$

$$
P\left(X_{1: n}, E_{1: n}\right)=
$$

$$
P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

Summary: Filtering

- Filtering is the inference process of finding a distribution over X_{T} given e_{1} through $e_{T}: P\left(X_{T} \mid e_{1: t}\right)$
- We first compute $\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{e}_{1}\right): \quad P\left(x_{1} \mid e_{1}\right) \propto P\left(x_{1}\right) \cdot P\left(e_{1} \mid x_{1}\right)$
- For each trom 2 to T, we have $P\left(X_{t-1} \mid e_{1: t-1}\right)$
- Elapse time: compute $P\left(X_{t} \mid \mathrm{e}_{1: \mathrm{t}-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- Observe: compute $P\left(X_{t} \mid e_{1: t-1}, e_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Example: Run the Filter

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P(E \mid X)$

Recap: Filtering Example

Example Pac-man

SCORE:
0

Recap: Particle Filtering

- Sometimes $|\mathrm{X}|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- $|\mathrm{X}|^{2}$ may be too big to do updates
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Recap: Particle Filtering

At each time step t , we have a set of N particles / samples

- Initialization: Sample from prior, reweight and resample
- Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next state

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

2. Reweight: for each particle, compute its weight given the actual observation e

$$
w(x)=P(e \mid x)
$$

3. Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x
- So, many x will have $P(x)=0$!
- So, many x will have $P(x)=0$!
- For now, all particles have a weight of 1

Particles:
$(3,3)$
$(3,2)$
$(2,1)$

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- We don't sample the observation, we fix it
- We weight our samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- Note that, as before, the weights/ probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Old Particles:
$(3,3) w=0.1$
$(2,1) w=0.9$
$(2,1) w=0.9$
$(3,1) w=0.4$
$(3,2) w=0.3$
$(2,2) w=0.4$
$(1,1) w=0.4$
$(3,1) w=0.4$
$(2,1) w=0.9$
$(3,2) w=0.3$

New Particles:
$(2,1) w=1$
$(2,1) w=1$
$(2,1) w=1$
$(3,2) w=1$
$(2,2) w=1$
$(2,1) w=1$
$(1,1) w=1$
$(3,1) w=1$
$(2,1) w=1$
$(1,1) w=1$

Recap: Particle Filtering

At each time step t , we have a set of N particles / samples

- Initialization: Sample from prior, reweight and resample
- Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next state

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

2. Reweight: for each particle, compute its weight given the actual observation e

$$
w(x)=P(e \mid x)
$$

3. Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Which Algorithm?

Particle filter, uniform initial belief, 300 particles

SCORE: 0

PS4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Noisy distance prob
True distance $=8$
15
14
13
12
11

10
9

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Discrete valued dynamic Bayes nets are also HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{1}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{2}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{2}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{1}{ }^{a} \mid \mathbf{G}_{1}{ }^{a}\right){ }^{*} P\left(E_{1}{ }^{\mathbf{b}} \mid \mathbf{G}_{1}{ }^{\mathbf{b}}\right)$
- Resample: Select samples (tuples of values) in proportion to their likelihood weights

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red

B: Bottom sensor is red
G : Ghost is in the top

- Queries:
$\mathrm{P}(+\mathrm{g})=? ?$
$\mathrm{P}(+\mathrm{g} \mid+\mathrm{t})=?$
$\mathrm{P}(+\mathrm{g} \mid+\mathrm{t},-\mathrm{b})=? ?$
- Problem: joint distribution too large / complex

Joint Distribution

T	B	G	P
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Example Bayes' Net: Car

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

Example Bayes' Net: Insurance

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$		$P\left(X_{2}\right)$			$P\left(X_{n}\right)$	
h	0.5	h	0.5	\ldots	h	0.5
t	0.5	t	0.5		t	0.5

Example: Coin Flips

- N independent coin flips

-••

- No interactions between variables: absolute independence

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $X \Perp Y$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- P (+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch | +toothache, \neg cavity $)=\mathrm{P}(+$ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}$ (Toothache | Cavity)
- P (Toothache, Catch | Cavity) $=\mathrm{P}($ Toothache | Cavity) P (Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{aligned}
& \forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \\
& \forall x, y, z: P(x \mid z, y)=P(x \mid z)
\end{aligned}
$$

- What about this domain:
- Traffic
- Umbrella
- Raining
- What about fire, smoke, alarm?

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is

$$
P(T, B, G)=P(G) P(T \mid G) P(B \mid G)
$$

- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red

B: Bottom square is red
G: Ghost is in the top

- Can assume:

$$
\begin{aligned}
& P(+g)=0.5 \\
& P(+t \mid+g)=0.8 \\
& P(+t \mid-g)=0.4 \\
& P(+b \mid+g)=0.4 \\
& P(+b \mid r g)=0.8
\end{aligned}
$$

T	B	G	P
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence
- Model 2: rain is conditioned on traffic
- Why is an agent using model 2 better?
- Model 3: traffic is conditioned on rain
- Is this better than model 2?

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

A	J	$P(\mathrm{~J} \mid \mathrm{A})$
+a	+j	0.9
+a	$\neg \mathrm{j}$	0.1
$\neg \mathrm{a}$	+j	0.05
$\neg \mathrm{a}$	$\neg \mathrm{j}$	0.95

A	\mathbf{M}	$P(M \mid A)$
+a	+m	0.7
+a	$\neg \mathrm{m}$	0.3
$\neg \mathrm{a}$	+m	0.01
$\neg \mathrm{a}$	$\neg \mathrm{m}$	0.99

B	E	A	$P(A \mid B, E)$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

Example: Traffic II

- Let's build a causal graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Independence

- For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution
(1)

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

- Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
- Are X and Z independent?
- Are X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} & \begin{array}{l}
\text { Y: Project due } \\
\text { X: Newsgroup } \\
\text { busy } \\
\text { Z: Lab full }
\end{array} \\
& =P(z \mid y) \quad \text { Yes! } &
\end{aligned}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v -structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation?
- This is backwards from the other cases

X: Raining
Z: Ballgame
Y: Traffic

- Observing an effect activates influence between possible causes.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path
 unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Look for active paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Inactive Triples

Example: Independent?

$R \Perp B$
Yes
$R \Perp B \mid T$
$R \Perp B \mid T^{\prime}$

Example: Independent?

$L \Perp T^{\prime} \mid T \quad$ Yes
$L \Perp B$
$L \Perp B \mid T$
$L \Perp B \mid T^{\prime}$
$L \Perp B \mid T, R \quad$ Yes

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: l'm sad
- Questions:

$$
\begin{array}{lr}
T \Perp D & \\
T \Perp D \mid R \quad \text { Yes } \\
T \Perp D \mid R, S &
\end{array}
$$

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

- Adding unneeded arcs isn't wrong, it's just inefficient

$P\left(X_{2} \mid X_{1}\right)$

$\mathrm{h} \mid \mathrm{h}$	0.5
$\mathrm{t} \mid \mathrm{h}$	0.5
$\mathrm{~h} \mid \mathrm{t}$	0.5
$\mathrm{t} \mid \mathrm{t}$	0.5

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

