Knowledge Representation
II
CSE 573

Logistics

• Reading for Monday
 ???
• Office Hours
 No Office Hour Next Monday (10/25)
 Bonus Office Hour: Today 3-4
 • Or email me

573 Topics

- Agencies
- Problem Spaces
- Search
- Knowledge Representation & Inference
- Supervised Learning
- Reinforcement Learning
- Planning
- Case-Based Planning
 - Retrieve old plan which worked on similar problem
 - Revise retrieved plan for this problem
- Logic-Based Probabilistic
- Reinforcement Learning
 - Act "randomly" - noticing effects
 - Learn reward, action models, policy

Ways to make "plans"

Generative Planning
 - Reason from first principles (knowledge of actions)
 - Requires formal model of actions
Case-Based Planning
 - Retrieve old plan which worked on similar problem
 - Revise retrieved plan for this problem
Reinforcement Learning
 - Act "randomly" - noticing effects
 - Learn reward, action models, policy

Generative Planning

Input
 - Description of (initial state of) world \((in\ some\ KR)\)
 - Description of goal \((in\ some\ KR)\)
 - Description of available actions \((in\ some\ KR)\)

Output
 - Controller
 - E.g. Sequence of actions
 - E.g. Plan with loops and conditionals
 - E.g. Policy = \(f\): states \(\rightarrow\) actions

Input Representation

- Description of initial state of world
 - E.g., Set of propositions:
 - ((block a) (block b) (block c) (on-table a) (on-table b) (clear a) (clear b) (clear c) (arm-empty))
- Description of goal: i.e. set of worlds or ??
 - E.g., Logical conjunction
 - Any world satisfying conjunction is a goal
 - (and (on a b) (on b c)))
- Description of available actions
Planning Outline

- The planning problem
- Representation
- Compilation to SAT
- Searching world states
 - Regression
 - Heuristics
- Graphplan
- Reachability analysis & heuristics
- Planning under uncertainty

How Represent Actions?

- **Simplifying assumptions**
 - Atomic time
 - Agent is omniscient (no sensing necessary)
 - Agent is sole cause of change
 - Actions have deterministic effects

- **STRIPS representation**
 - World = set of true propositions
 - Actions:
 - Precondition: (conjunction of literals)
 - Effects (conjunction of literals)

How Encode STRIPS → Logic?

- The simplifying assumptions
- Atomic time
- Agent is omniscient (no sensing necessary)
- Agent is sole cause of change
- Actions have deterministic effects

- STRIPS representation
 - World = set of true propositions
 - Actions:
 - Precondition: (conjunction of literals)
 - Effects (conjunction of literals)
Time in STRIPS Representation

- **Action** = function: worldState → worldState
- **Precondition**
 - says where function defined
- **Effects**
 - say how to change set of propositions

```
north11
precond: (and (agent-at 1 1) (agent-facing north))
effect: (and (agent-at 1 2) (not (agent-at 1 1)))
```

Note: strips doesn’t allow derived effects; you must be complete!

Action Schemata

- Instead of defining:
 pickup-A and pickup-B and ...
- Define a schema:

```
(:operator pickup
  :parameters ((block ?ob1))
  :precondition (and (clear ?ob1) (on-table ?ob1) (arm-empty))
  :effect (and (not (clear ?ob1)) (not (on-table ?ob1)) (not (arm-empty)) (holding ?ob1))
```

Note: strips doesn’t allow derived effects; you must be complete!

Time Arguments in Logic

- **Initial Conditions**
 - On(a, b, 0)
 - Have(bluePaint, 0)
 - Red(a, 0)

- **Goal**
 - On(b, a, ?)
 - Blue(a, ?)

Closed World Assumption

Preconditions & Effects

- If action is executed at time t

```
Paint(a, blue, t) =>
  Have(bluePaint, t-1)

Paint(a, blue, t) =>
  Blue(a, t+1) ∧ ¬Have(bluePaint, t+1)
```

Compilation to SAT

- Init state
- Actions
- Goal
The Idea

- Suppose a plan of length n exists
- Encode this hypothesis in SAT
 - Init state true at t₀
 - Goal true at T₀
 - Actions imply effects, etc
- Look for satisfying assignment
- Decode into plan

RISC: The Revolutionary Excitement

History

- Green IJCAI-69
- STRIPS AIJ-71
- Decades of work on “specialized theorem provers”
- Kautz+Selman ECAI-92
- Rapid progress on SAT solving
- Kautz+Selman AAAI-96
 - Electrifying results (on hand coded formulae)
- Kautz, McAllester & Selman KR-96
 - Variety of encodings (but no compiler)
- CSE 573 => Ernst et al. IJCAI-97

Blackbox

- Blackbox solves planning problems by converting them into SAT.
 - Very fast
 - Initially hand coded SAT; later...
 - Tried different solvers
 - Local search (GSAT)
 - Systematic search with EBL (RelSAT)
- In 2000, GP-CSP could beat Blackbox
 - But in 2001, a newer “SUPER-DUPER” SAT solver called CHAFF was developed.
 - CSP people are trying to copy over the ideas from CHAFF to CSP.
- In 2004, Blackbox...

Medic

Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description / Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>The initial state holds at t=0</td>
</tr>
<tr>
<td>Goal</td>
<td>The goal holds at t=2n</td>
</tr>
<tr>
<td>A ⇒ P, E</td>
<td>Paint(A, Red, t) ⇒ Block(A, t-1)</td>
</tr>
<tr>
<td></td>
<td>Paint(A, Red, t) ⇒ Color(A, Red, t+1)</td>
</tr>
<tr>
<td>Frame</td>
<td>At-least-one</td>
</tr>
<tr>
<td>Exclude</td>
<td></td>
</tr>
</tbody>
</table>

Space of Encodings

- Action Representations
 - Regular
 - Simplyu-Split
 - Overloaded-Split
 - Bitwise
- Frame Axioms
 - Classical
 - Explanatory
Frame Axioms

- Classical
 \[\forall P, A, t \text{ if } P(t-1) \land A(t) \land A \text{ doesn't affect } P \text{ then } P(t+1) \]

- Explanatory

Explanatory Frame Axioms

- Classical
 \[\forall P, A, t \text{ if } P(t-1) \land A(t) \land A \text{ doesn't affect } P \text{ then } P(t+1) \]

- Explanatory

Action Representation

<table>
<thead>
<tr>
<th>Representation</th>
<th>One Propositional Variable per</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simply-split</td>
<td>fully-instantiated action's argument</td>
<td>Paint-Arg1-A, Paint-Arg2-Red</td>
</tr>
<tr>
<td>Overloaded-split</td>
<td>fully-instantiated argument</td>
<td>Act-Paint \land Arg1-A \land Arg2-Red</td>
</tr>
<tr>
<td>Bitwise</td>
<td>Binary encodings of actions</td>
<td>Bit1 \land \neg Bit2 \land Bit3</td>
</tr>
</tbody>
</table>

Main Ideas

- Clear taxonomy
- Utility of
 - Explanatory frame axioms (most things don't change)
 - Parallelism & conflict exclusion
 - Type inference
 - Domain axioms
- Surprising
 - Effectiveness of regular action encodings

Comparison Among Encodings

- Explanatory Frames beat classical
 - few actions affect each fluent
 - explanatory frames aid simplifications
- Parallelism is a major factor
 - fewer mutual exclusion clauses
 - fewer time steps
- Regular actions representation is smallest!
 - exploits full parallelism
 - aids simplification
- Overloaded, bitwise reps. are infeasible
 - prohibitively many clauses
 - sharing hinders simplification

Optimization 1: Factored Splitting

- use partially-instantiated actions

 \[\text{HasColor-A-Blue-(t-1)} \land \text{Paint-Arg1-B-t} \land \text{Paint-Arg2-Red-t} \Rightarrow \text{HasColor-A-Blue-(t+1)} \]

Optimization 2: Types

- A type is a fluent which no actions affects.
 - type interference
 - prune impossible operator instantiations
 - type elimination

<table>
<thead>
<tr>
<th>Type opts</th>
<th>No type opts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literals</td>
<td></td>
</tr>
<tr>
<td>Classical</td>
<td>.27</td>
</tr>
<tr>
<td>Explanatory</td>
<td>.10</td>
</tr>
<tr>
<td>Overloaded</td>
<td>.34</td>
</tr>
<tr>
<td>Bitwise</td>
<td>.30</td>
</tr>
<tr>
<td>Bitwise</td>
<td>.97</td>
</tr>
<tr>
<td>Bitwise</td>
<td>.67</td>
</tr>
<tr>
<td>Bitwise</td>
<td>.74</td>
</tr>
</tbody>
</table>
Domain-Specific Axioms

Adding domain-specific axioms increases clauses decreases variables decreases solve time dramatically.

<table>
<thead>
<tr>
<th>domain info</th>
<th>Vars</th>
<th>Clauses</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>no domain info</td>
<td>a</td>
<td>.86</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>.88</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>.86</td>
<td>2.24</td>
</tr>
</tbody>
</table>

Future Work

- Negation, disjunctive preconds, ∀
- Domain axioms
 \[\forall t \text{ clear}(x, t) \equiv \neg \exists y \text{ on}(y, x, t) \]

Future Work

- Automatically choose best encoding
 Might do this for frame axioms
- Analyze SAT formulae structure
 Generate WalkSAT params
 Which SAT solver works best (DPLL vs ?)
- Handle continuous vars (resource planning)
 Steve Wolfman's quals project, IJCAI99

Domain Axioms

- Domain knowledge
 Synchronic vs Diachronic constraints
- Speedup knowledge
 Action conflicts (\(\Rightarrow \) by action schemata alone)
 Domain invariants (\(\Rightarrow \) by initial state+schemata)
 Optimality heuristics
 Simplifying assumptions