Logic in AI

CSE 573

Logistics

- Monday?
- Reading
 - Ch 8
 - Ch 9 thru p 278
 - Section 10.3
- Projects
 - Due 11/10
 - Teams and project plan due by this Fri

Search

Problem spaces
- Blind
 - Depth-first, breadth-first, iterative-deepening, iterative broadening
- Informed
 - Best-first, Dijkstra’s, A*, IDA*, SMA*, DFB&B, Beam,
 - Local search
 - Hill climbing, limited discrepancy, RTDP

Heuristics
- Evaluation, construction via relaxation
- Pattern databases
- Constraint satisfaction
- Adversary search

Takeaways

- Formulating a problem space (and a CSPI)
- Sampler of methods
- Importance of heuristics
- Speed / completeness tradeoff
- Space complexity

573 Topics

- Agency
- Problem Spaces
- Search
- Supervised Learning
- Reinforcement Learning
- Planning
- Knowledge Representation
- Probabilistic
- Inference
- Logic-Based

Today

- Review of Propositional Logic
- Inference Algorithms
 - As search: systematic & stochastic
- Themes
 - Expressivity vs. Tractability
Some KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Semantic Networks
- Concept Description Languages
- Nonmonotonic Logic

In Fact...

- All popular knowledge representation systems are equivalent to (or a subset of) Logic
 - Either Propositional Logic
 - Or Predicate Calculus
- Probability Theory

What is Propositional Logic?

- And why have you studied it?

Basic Idea of Logic

- By starting with true assumptions, you can deduce true conclusions.

Truth

- Francis Bacon (1561-1626)
 No pleasure is comparable to the standing upon the vantage-ground of truth.
- Thomas Henry Huxley (1825-1895)
 Irrationally held truths may be more harmful than reasoned errors.
- John Keats (1795-1821)
 Beauty is truth, truth beauty; that is all ye know on earth, and all ye need to know.
- Blaise Pascal (1623-1662)
 We know the truth, not only by the reason, but also by the heart.
- François Rabelais (c. 1490-1553)
 Speak the truth and shame the Devil.
- Daniel Webster (1782-1852)
 There is nothing so powerful as truth, and often nothing so strange.

AI=Knowledge Representation & Reasoning

- Syntax
- Semantics
- Inference Procedure
 - Algorithm
 - Sound?
 - Complete?
 - Complexity
Propositional Logic

- **Syntax**
 Atomic sentences: P, Q, ...
 Connectives: \(\land, \lor, \neg, \implies\)

- **Semantics**
 Truth Tables

- **Inference**
 Modus Ponens
 Resolution
 DPLL
 GSAT

- **Complexity**

Propositional Logic: Syntax

- **Atoms**
 P, Q, R, ...

- **Literals**
 P, \neg P

- **Sentences**
 Any literal is a sentence
 If S is a sentence
 - Then \((S \land S)\) is a sentence
 - Then \((S \lor S)\) is a sentence

- **Conveniences**
 \(P \implies Q\) same as \(\neg P \lor Q\)

Special Syntactic Forms

- **General Form:**
 \(((q \land \neg r) \implies s) \land \neg (s \land t)\)

- **Conjunction Normal Form (CNF):**
 \((- q \lor r \lor s) \land (- s \lor r \lor t)\)
 Set notation: \(\{(- q, r, s), (- s, r, t)\}\)
 empty clause \(\emptyset = \text{false}\)

- **Binary clauses:** 1 or 2 literals per clause
 \((- q \lor r)\)

- **Horn clauses:** 0 or 1 positive literal per clause
 \((- q \lor \neg r \lor s)\)
 \((q \land r) \implies s\)
 \((s \land t) \implies \text{false}\)

Semantics

- **Syntax:** which arrangements of symbols are legal
 (Def "sentences")

- **Semantics:** what the symbols mean in the world
 (Mapping between symbols and worlds)

Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
 Assignment to each variable either T or F
 Assignment of T or F to each connective via defns

 \[
 \begin{array}{c|c|c}
 Q & T & F \\
 \hline
 P \land Q & T & F \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c}
 Q & T & F \\
 \hline
 P \lor Q & T & F \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c}
 \neg P & T & F \\
 \hline
 S & T & F \\
 \end{array}
 \]

Satisfiability, Validity, & Entailment

- **S is satisfiable if it is true in some world**
- **S is unsatisfiable if it is false all worlds**
- **S is valid if it is true in all worlds**
- **S1 entails S2 if wherever S1 is true S2 is also true**
Examples

\[P \implies Q \]
\[R \implies \neg R \]
\[S \land (W \land \neg S) \]
\[T \lor \neg T \]
\[X \implies X \]

Notation

\[\implies \] \quad \text{Implication (syntactic symbol)}
\[\vdash \] \quad \text{Proves: } S_1 \vdash S_2 \text{ if } `ie' \text{ algorithm says } `S2' \text{ from } S_1
\[\models \] \quad \text{Entails: } S_1 \models S_2 \text{ if wherever } S_1 \text{ is true } S_2 \text{ is also true}

- Sound \[\vdash \implies \models \]
- Complete \[\models \implies \vdash \]

Prop. Logic: Knowledge Engr

1. Choose Vocabulary
 - Universe: Lisa, Dave, Jim, Mary
 - LD = "Lisa is immediately ahead of Dave"
 - D = "Dave is a Bio Major"

2. Choose initial sentences (wffs)

Reasoning Tasks

- Model finding
 - KB = background knowledge
 - S = description of problem
 - Show (KB \land S) is satisfiable
 - A kind of constraint satisfaction
 - Deduction
 - S = question
 - Prove that KB \models S
 - Two approaches:
 - Rules to derive new formulas from old (inference)
 - Show (KB \land \neg S) is unsatisfiable

Propositional Logic: Inference

- A mechanical process for computing new sentences

1. Backward & Forward Chaining
 - Based on rule of \textit{modus ponens}
 - If know P_1, …, P_n \land (P_1 \land … \land P_n) \implies Q
 - Then can conclude Q
2. Resolution (Proof by Contradiction)
3. GSAT
4. Davis Putnam

Inference 1: Forward Chaining

Forward (\& Backward) Chaining
- Based on rule of \textit{modus ponens}
 - If know P_1, …, P_n \land (P_1 \land … \land P_n) \implies Q
 - Then can conclude Q

Pose as Search thru Problem Space?
- States?
- Operators?
Analysis

• Sound?
• Complete?

Can you prove
\[\{ \} \models Q \lor \neg Q \]

Special Syntactic Forms: CNF

• General Form:
 \[((q \land \neg r) \lor s) \land \neg (s \land t) \]

• Conjunction Normal Form (CNF)
 \[\neg q \lor r \lor s \land \neg s \lor \neg t \]
 Set notation: \{ (\neg q, r, s), (\neg s, \neg t) \}
 empty clause \(\bot = false \)

Inference 2: Resolution

[Robinson 1965]

\{ (p \lor \alpha), (\neg p \lor \beta \lor \gamma) \} \models_R (\alpha \lor \beta \lor \gamma)

Correctness
If \(S_1 \models_R S_2 \) then \(S_1 \models S_2 \)

Refutation Completeness:
If \(S \) is unsatisfiable then \(S \models_R \bot \)

Resolution

If the unicorn is mythical, then it is immortal, but
if it is not mythical, it is a mammal. If the
unicorn is either immortal or a mammal, then it
is horned.

Prove: the unicorn is horned.

\begin{align*}
M &= \text{mythical} \\
I &= \text{immortal} \\
A &= \text{mammal} \\
H &= \text{horned}
\end{align*}

Resolution as Search

• States?
• Operators

Inference 3: Model Enumeration

\begin{verbatim}
for (m in truth assignments) {
 if (m makes \(\Phi \) true)
 then return "Sat!"
 }
return "Unsat!"
\end{verbatim}

View as Search?
Critique?
Inference 4: DPLL
(Enumeration of Partial Models)

[Davis, Putnam, Loveland & Logemann 1962]

DPLL Version 1

\[
\begin{align*}
\text{dpll}_1(pa) & \{
 \text{if (pa makes F false) return false;} \\
 \text{if (pa makes F true) return true;} \\
 \text{choose P in F;} \\
 \text{if (dpll}_1(pa \cup \{P=0\})) \text{ return true;} \\
 \text{return dpll}_1(pa \cup \{P=1\});
\end{align*}
\]

Returns true if F is satisfiable, false otherwise

DPLL as Search

- Search Space?
- Algorithm?

Improving DPLL

If literal \(L_i \) is true, then clause \((L_i \lor L_j \lor \ldots) \) is true
If clause \(C_i \) is true, then \(C_i \land C_j \land \ldots \) has the same value as \(C_i \land C_j \land \ldots \)
Therefore: Okay to delete clauses containing true literals!

Improving DPLL (more)

If literal \(L_i \) is false, then clause \((L_i \lor L_j \lor \ldots) \) has the same value as \((L_i \lor L_j \lor \ldots) \)
Therefore: Okay to delete clauses containing false literals!

Observation!

If literal \(L_i \) is false, then clause \((L_i) \) is false
Therefore: the empty clause means false!
DPLL version 2

Davis – Putnam – Loveland – Logemann

dpll_2(F, literal){
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing ¬literal
 if (F contains empty clause) return false;
 choose V in F;
 if (dpll(F, ¬V)) return true;
 return dpll_2(F, V);
}

Partial assignment corresponding to a node is the
set of chosen literals on the path from the root
to the node.

Structure in Clauses

• Unit Literals
 A literal that appears in a singleton clause
 {¬b c}{¬c{a b e}{d b}{e a ¬c}}
 \textbf{Might as well set it true! And simplify}
 {¬b}{a b e}{d b}
 \textbf{(d)}

• Pure Literals
 A symbol that always appears with same sign
 {a b c}{¬c d ¬e}{¬a b e}{d b}{e a ¬c}
 \textbf{Might as well set it true! And simplify}
 {a b c}{¬a b e}{e a ¬c}

Further Improvements

DPLL (previous version)

Davis – Putnam – Loveland – Logemann

dpll(F, literal){
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing
 return false;
 if (F contains a unit or pure L)
 return dpll(F, L);
 choose V in F;
 if (dpll(F, ¬V)) return true;
 return dpll_2(F, V);
}

Further Improvements

Formula \((L) \land C_j \land C_i \land \ldots\) is only true when literal \(L\) is true
Therefore: Branch immediately on unit literals!

Formula \((L) \land C_j \land C_i \land \ldots\) is only true when literal \(L\) is true
Therefore: Branch immediately on pure literals!

\textbf{May view this as adding constraint propagation techniques into play}
DPLL (for real!)
Davis - Putnam - Loveland - Logemann

dpll(F, literal){
 remove clauses containing literal
 if (F contains no clauses) return true;
 shorten clauses containing ¬literal
 if (F contains empty clause) return false;
 if (F contains a unit or pure L)
 return dpll(F, L);
 choose V in F;
 if (dpll(F, ¬V)) return true;
 return dpll(F, V);
}

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-unit, non-pure) proposition for branching
• Idea: identify a most constrained variable
 Likely to create many unit clauses
• MOM’s heuristic:
 Most occurrences in clauses of minimum length

Success of DPLL

• 1962 - DPLL invented
• 1992 - 300 propositions
• 1997 - 600 propositions (satz)
• Additional techniques:
 Learning conflict clauses at backtrack points
 Randomized restarts
 2002 (zChaff) 1,000,000 propositions - encodings of hardware verification problems

Horn Theories

• Recall the special case of Horn clauses:
 \{ (¬q ∨ ¬r ∨ s), (¬s ∨ ¬t) \}
 \{ ((q;r) ⊃ s), ((s;t) ⊃ false) \}
• Many problems naturally take the form of such if/then rules
 If (fever) AND (vomiting) then FLU
• Unit propagation is refutation complete for Horn theories
 Good implementation - linear time!
WalkSat

- Local search over space of complete truth assignments
 - With probability P: flip any variable in any unsatisfied clause
 - With probability $(1-P)$: flip best variable in any unsatisfied clause
 - Like fixed-temperature simulated annealing
- SAT encodings of N-Queens, scheduling
- Best algorithm for random K-SAT
 - Best DPLL: 700 variables
 - Walksat: 100,000 variables

Random 3-SAT

- Random 3-SAT
 - Sample uniformly from space of all possible 3-clauses n variables, l clauses
- Which are the hard instances?
 - Around $l/n = 4.3$

Random 3-SAT

- Varying problem size, n
- Complexity peak appears to be largely invariant of algorithm
 - Backtracking algorithms like Davis-Putnam
 - Local search procedures like GSAT
- What's so special about 4.3?

Project Issues

- DPLL vs. WalkSAT vs. ???
- Heuristics?
- Test problems?

Real-World Phase Transition Phenomena

- Many NP-hard problem distributions show phase transitions -
 - Job shop scheduling problems
 - TSP instances from TSPLib
 - Exam timetables @ Edinburgh
 - Boolean circuit synthesis
 - Latin squares (alias sports scheduling)
- Hot research topic: predicting hardness of a given instance, & using hardness to control search strategy (Horvitz, Kautz, Ruan 2001-3)
Summary: Algorithms

- Forward Chaining
- Resolution
- Model Enumeration
- Enumeration of Partial Models (DPLL)
- Walksat

Themes

- Expressiveness
 - Expressive but awkward
 - No notion of objects, properties, or relations
 - Number of propositions is fixed

- Tractability
 - NPC in general
 - Completeness / speed tradeoff
 - Horn clauses, binary clauses