
Probabilistic Models of Quake II Player Movement

Stefan Schoenmackers and Seth Cooper

Abstract

Probabilistic models have proven an effective means for
reasoning in the face of uncertainty. We are interested
in applying these probabilistic methods to computer
games. We build Markov models of Quake II maps
and use them to analyze and predict player movements.
We show these models provide decent prediction in the
short term, but grow worse when trying to predict fur-
ther into the future. We further analyze the difficulty
of predicting behavior over longer time periods, and use
the KL-divergence metric to indicate the differences in
play styles.

Introduction

Probabilistic Models

Many models exist that attempt to represent the world
in such a way that computers can reason about it and
make rational choices. One family of models involves
using logic to represent the world. In this case, things
are either true or false, and the rules of logic can be
used to reason about the world. However, in a world
where we do not have full information, it can be diffi-
cult to determine without a doubt whether something
is actually true or not. This is where probability enters.
In a probabilistic model, things are still either true or
false, but there is some amount of certainty associated
with the value, called its probability.

Probabilistic models work well for a game world be-
cause there is such limited information. Because of
that, it is difficult, if not impossible, for a player to
deduce the state of the world accurately. The best that
can be hoped for is to have some high confidence about
the state of the world. Further, the world is rapidly
changing and there may be other entities in the world
competing against the player. The probabilistic model
we choose to represent our world is a Markov model.
We will discuss how we use it to represent the world
later.

Quake II

Quake II is a popular First Person Shooter (FPS) game
that was released several years ago. Screenshots from

Copyright c© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Figure 1: Quake II: Main menu

Figure 2: Quake II: A staircase

the game can be seen in figures 1, 2, and 3. Although
at this point the graphics appear quite dated, Quake
II is an excellent platform for testing new gaming ideas
because the source is available under GPL. Quake II
has a single player mode, in which a human player is
presented with a map full of obstacles (generally tak-
ing the form of computer-controlled opponents) which
the player must overcome to reach the exit. Quake II
has another mode of play, known as “deathmatch”, in
which several human players can compete against each
other in free-for-all combat. Computer-controlled play-
ers known as “bots” can also compete, but we consider
only human players because their behavior is more in-
teresting. Deathmatch is the mode of play to which we
turn our attention. In a deathmatch, players appear on
the map at one of a set of predetermined “spawn” loca-
tions. They begin with a minimal set of equipment, but

Figure 3: Quake II: About to get pWnz0r’d

can build up their arsenal by collecting items that are
scattered throughout the map. When one player defeats
another player in combat, it is known as a “frag”. Once
a player has been fragged, he will lose the equipment
he has gained and respawn. After a certain amount of
time is up, the player with the most frags wins.

Motivation

We are curious as to whether or not the probabilistic
models that have been applied to real-world movement
prediction will fare well in a game world. We pose the
following questions:

• How well does a player’s previous movement predict
his future movement? Presumably, players are mov-
ing erratically to make it difficult for other players to
predict their location. At what point is gaining more
data a diminishing return? We refer to this as the
“Self Prediction” problem.

• How well can we predict where a player will go next?
Knowing this could be useful in giving a player ad-
vice of safer paths, or reminding them if they are
passing by a commonly visited location. Can we fig-
ure out which item a player will attempt to get next?
We refer to this as the “Interest Target Prediction”
problem.

• Can we use one player’s movement data to predict
another player’s movement? In a fair environment,
the only movement data we will have access to is our
own; if we had access to the other player’s location
we could just use that to know where they are. Are
the high-level movement patterns of different players
similar enough for these estimates to be useful? Do
players generally navigate the world in a similar fa-
sion? We refer to this as the “Opponent Prediction”
problem.

Game and Model

We began by modifying the freely available Quake
II source (ftp://ftp.idsoftware.com/idstuff/
source/quake2.zip) to record a log file of each
player’s movement. We also logged other information
that could prove useful in movement analysis, such as
when the player fired, gained health, got a frag, and so
forth. We then proceeded to collect data by playing a

Q

PN

P1 R1

RN

Figure 4: One state in a first order Markov model. Edges
are weighted with probabilities.

deathmatch for an extended period of time on the first
map of Quake II demo.

Models

We represent maps as a directed graph. Nodes in the
graph represent locations on the map and edges repre-
sent possible paths between the locations.

To use these graphs to capture the movement pat-
terns of a player, the first model we tried was a first or-
der Markov model (FOMM). States in the FOMM rep-
resent locations on the map, and the edges are weighted
by the probabilities that the player will exit that loca-
tion to a different location. Self-referential edges rep-
resent the player staying at that location. Making a
FOMM essentially amounted to weighting the edges of
our graph of the map with probabilities; one is shown
in figure 4.

One weakness of a FOMM is that is assumes that the
next state is only a function of the current state; it has
no memory of past events. This assumption does not
work well with the way that a player moves through a
level, because which location a player was at previously
has a large effect on which location the player will visit
next. Consider a player running down a long hallway:
the fact that the player moved to the right previously
means that the player will probably move to the right
next. Remembering a player’s last action is a useful
tool when predicting a player’s next one. We can ex-
tend the FOMM to a model which takes into account
a player’s movement history. Instead of the next state
only being a function of the current state, we can make
it a function of the current state and some number of
previous states. This is known as an nth order Markov
model.

Building Models from Data

We obtained many of the ideas we used for building
our model from (Ashbrook & Starner 2003). The first
step of analyzing the data was to turn the list of points
logged during play into a set of locations. We used a k-
means clustering algorithm to find locations. The basic
k-means algorithm we employed is as follows:

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

N
um

be
r

of
 L

oc
at

io
ns

k-means Radius

knee

Player A
Player B

Figure 5: Effect of k-means radius on number of locations

Q

PN

P1 R1

RN

Q’1

Q’N

Figure 6: One state in our second order Markov model

1. Select a point from the data; this point is the starting
mean. We selected the first point in the list.

2. Take the mean of all points within some radius r of
the current mean; that becomes the new mean.

3. Repeat step 2 until the mean moves less than some
threshold value.

4. Add the mean to the set of locations and remove all
points within r of the mean from the data set.

5. Repeat steps 1-4 until there are no points in the data
set.

This clusters spatially similar data and effectively dis-
cretizes the map into a more manageable model. As
the radius of the mean goes up, the number of loca-
tions goes down. In order to find the optimum radius
for k-means, we try several radii and plot radii against
number of locations, as in figure 5. We then attempt to
find the “knee” of the graph where the number of loca-
tions converges on the number of points. We find this
point simply by looking for where the slope of the line
goes from being less that -1 to being greater than -1.
For our data we concluded the optimal k-means radius
was 500.

Once we have a set of locations, we must figure out
the connectivity of the locations. To do this, we first
assign each point in the data set to a location. This is
simply the closest location to the point. Then we tra-
verse the list of points in order and increase the proba-

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

P
ro

ba
bi

lit
y

of
 G

ue
ss

in
g

P
la

ye
r’s

 N
ex

t L
oc

at
io

n
C

or
re

ct
ly

Markov Model Order

True Paths
Uniq Paths

Figure 7: Effect of Markov model order on prediction
accuracy

Figure 8: Model visualization. A location’s size is pro-
portional to the number of points assigned to it. Green
locations are spawn points.

bility of moving from a point’s location to the following
point’s location by 1 for each pair of points. Note that
this often corresponds to an edge referring back to the
same location. At the end, we go back and renormalize
all probabilities.

KL-Divergence

KL-divergence (or relative entropy) is a useful measure
of the distance between two probability distributions
(Zhai 2003). We use KL-divergence to measure the
distance between the probability distributions of two
Markov models over time. The models each start with
some distribution of probabilities across their locations,
and at each timestep the probabilities are updated by
moving the probability distributions at the locations
along the edges. Thus the KL-divergence of two distri-
butions P and Q at timestep t can be calculated as:

Dt(P ‖ Q) =
∑

l∈L

Pt(l) log
Pt(l)

Qt(l)

In practice, we assign each location some small prob-
ability when calculating the divergence to prevent the
singularities in the equations.

Self Prediction
Upon finding the connectivity of the locations, we ex-
perimented with various orders of Markov models to de-
termine which would give us the highest accuracy when
predicting player movements. We also experimented
with the way in which the model remembered a player’s
location history. One model remembered the player’s
previous locations as the path of locations the player
went through to get to the current location, including
transitioning to the same state multiple times in a row.
We call this the “true path”. The other model remem-
bered the path of the player’s previous locations, but
removed any locations visited twice in a row from the
path. We call this the “uniq path”. Using the uniq
path allows us to capture more of a player’s previous
history in a lower order model. To test the accuracy of
a model, we built them using the first 90% of the data.
Then we looked at each time the player made a tran-
sition from one state to another the remaining 10% of
the data. The accuracy of a model was the number of
transitions made which corresponded to the most likely
transition in the model over the total number of tran-
sitions made. The results are shown in figure 7. We
decided to use a second order Markov model (SOMM)
using the uniq path, since it had the highest prediction
accuracy. To implement a SOMM, we augment each
state of our initial FOMM with a number of substates,
one for each incoming edge, as in figure 6. Each sub-
state has its own probability distribution over exiting
states. In this way, the next state depends on not only
the current state but also the previous one. Notice that
transitions back to the same state transition back to
the same substate. This ensures uniqness of paths. A
visualization of one of our model can be seen in figure 8.
We repeated the previous experiment, removing blocks
of 10% and testing for next-location accuracy. On aver-
age, we were able to predict the player’s next location
accurately about 55% of the time. A random guess was
correct only 41% of the time.

A simple initial test of predictability in the Quake II
environment is to build the SOMM as described above,
and examine how well it is able to predict that same
player’s actions over longer amounts of time. We had
initially thought this would yield a relatively high ac-
curacy, similar to the behavior tracking in (Liao, Fox,
& Kautz 2004), since players tend to repeat actions.
However, our initial experiments showed that this was
not the case. We realized that with no opponent, a
user’s actions would probably tend to be predictable
(and uninteresting), but once there is an adversary in
the environment, a player changes his style, due to the
complex hunter-hunted nature of the game. Namely,
players spend very little time picking up items and much
more of their time searching for or dueling their oppo-
nent. The pattern of a player’s search for his opponent
is often highly random, based only on the player’s guess
of where his opponent is, and the details of how a player
moves during a fight are further altered and biased by
the location of his opponent. This leads to small in-

tervals of highly deterministic behavior (e.g. grabbing
a weapon when the opponent isn’t around) followed by
large intervals of unpredictable behavior.

Since we weren’t able to accurately predict this be-
havior, we wanted to examine to what extent it was at
least self-similar. Namely, how much data is needed to
generate something similar to a player’s model of the
world built using the full data set.

To examine the similarity of two models, we com-
pare the KL-divergence of the two models as their be-
lief states vary over time, given that the player starts at
one of the spawn points. We use a common set of loca-
tions/states, and compute the transition probabilities
for each model based on the data for that model.

To account for the randomness in a player’s move-
ment, and to ensure that we don’t reach singularities in
the KL-divergence equation, we assume that each state
has a base probability of some very small epsilon. We
then initialize each of the spawn points’ probabilities to
1/#spawn points. At each step, we update the proba-
bilities for each state as each SOMM probability model
specifies, and normalize so the total probability is 1. We
then compute the KL-divergence of the two models. We
do this each step for 1000 steps, since this is more than
enough time to reach steady-state, and would be more
than enough time for a player to get anywhere on the
map.

We run this over many time-steps and examine how
the models diverge over time. If the two models are
identical, then the divergence will be 0, whereas if they
are different, the divergence will be a very large number.
Consider the following example: the world is a long
hallway with a box in the middle. If player A always
goes left around the box, and player B always goes right
around the box, but otherwise they move identically
from one end of the hall to the other, the divergence
over time will slowly increase up to the time when the
players would reach the box, and then it would decrease
until it reached a steady state. The divergence in this
case would be a nonzero, but small number, related
to their slight differences in path. In computing the
divergence over time, it provides information both on
how similar the models are at a given point in time, and
how similar they are at the steady state.

We wanted to examine how much data is needed to
create an accurate model of the player’s behavior. To
do this, we computed the KL-divergence of a model
built using only the first X% of the data, and the model
built using the entire data set. Figure 9 shows the di-
vergences over time of models using varying amounts
of data with respect to the model using all of the data.
The graphs for player A’s partial models were similar.
As is expected, only using small amounts of data leads
to large divergences, since the first 10% of the data is
missing a large amount of the (current state, previous
state) pairs needed to fully create the SOMM.

In the early steps there are large divergences, due to
slightly different models of how the player moves away
from the spawn points (some of those points were only

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900 1000

K
L-

D
iv

er
ge

nc
e

Step

10%
25%
50%
75%
90%

Figure 9: KL-Divergence of the models based on using
just the first X% of player B’s the data, with respect to
their full model. As expected, the more data causes the
model diverge less. The relatively large values for models
up through 75% shows that a player’s behaviors have great
variation over time.

appeared a few times for a player, and thus the diver-
gence is probably due to missing data.) The oscillations
in the 50% models are most likely due to small repeat-
ing patterns (e.g. a player running in a loop), and the
model is missing some critical information to break that
loop. We suspect the 75% model has similar oscillations
to begin with, but contains enough information to es-
cape from those loops.

Finally, eventhough the 90% line looks relatively low,
reaching a steady-state of 0.035 divergence, it’s still far
from ideal, since it is probably due to the inability of the
final 10% of the data to change the probability model
much, and not due to the increased ability of model to
accurately predict a player’s behavior.

Interest Target Prediction

Given the difficulties of predicting a player’s exact path,
we also examined the problem of predicting which “in-
teresting location” the player would go to next. There
has been recent work (Liao, Fox, & Kautz 2004) in au-
tomatically finding “interesting locations” in people’s
daily habits. This work has taken the approach of defin-
ing an interesting location as a location where a person
spends a great deal of time (e.g. their work, home,
friend’s house, etc.) While this assumption holds for
predicting everyday behavior, we realized that this ap-
proach would not be suitable in the Quake II environ-
ment. In the real world, a person has quite a bit to
gain by staying in one place (e.g. making progress in
their work, sleeping, etc.), but if a player stays still in
the Quake II environment, all they have to look forward
to is being an easy target 1. In Quake II it is advanta-
geous for a player to be constantly moving, which makes

1This excludes waiting in a strategic area for your oppo-
nent to show up, but this behavior, known as “camping”,
is generally frowned by the community, and there was only
one such point in the map for the test data.

them more difficult to frag, but also makes the method
of (Liao, Fox, & Kautz 2004) more difficult.

We can instead define an “interesting location” as
a location containing a beneficial item in the map.
Namely, we define it as any location containing a health
pack, weapon, or ammunition. We believe this is fair,
since they are unique locations that players tend to visit
repeatedly. We would like to predict where the player
is going at a high level (i.e. to which item), so that we
can suggest safer routes to that target.

We wanted to examine if our model could predict
what item the player would pick up next, given their
current location. Since the SOMM performed better
than the FOMM one in the previous prediction steps,
we used it to predict the next interesting location the
player will move to. In this model, the clustered loca-
tions represent the states, and each state predicts what
item the player will pick up next, given his current and
previous locations.

To determine the probabilities, we first trace the
player as they walk through the world. If they enter
a location with an item, then we propagate this in-
formation in the model by incrementing a counter for
each (location, previous location) pair the player went
through from either their last time of being fragged, or
the last item they picked up. Finally, we normalize the
counters to turn them into appropriate probabilities.

To measure the accuracy, we used a “leave-one-out”
rule. Namely, we build the model and probabilities on
X% of a player’s data, and then test the model’s in
prediction accuracy on the remainder of their data. To
account for noise, we do this starting at different posi-
tions in the data, and average the results. To calculate
the accuracy of the model, each time a player enters a
location, we use the model to find their most likely next
target. If this ends up being the actual next target, we
increment a counter for the number of correct predic-
tions. The overall accuracy is defined as the number
of correct predictions/the total number of predictions.
We ignore predictions made from the last item a player
picks up until they are fragged, since these predictions
would unfairly skew the results, as the player is not
given the chance to get to that item. When the player
respawns they will most likely head for other items,
since they will be in an entirely new location.

Figure 10 shows the average “next item” prediction
accuracy when training on varying amounts of data.
The results are averaged between the two players. As
you can see, we are able to correctly predict the next
item 1.5-3.5 times better than random. While the over-
all accuracy is not that high (7% at most), this is not
too bad considering how erradic a player’s motions are.
This also doesn’t include information about when an
item was present at that location (since items have a
respawn time), so a player would probably skip visiting
a location if the item were not present at the time. If we
had this information, then we should be able to increase
this prediction accuracy to a much larger number. How-
ever, due to time constraints, we weren’t able to modify

Figure 10: Interesting Target prediction accuracy, using
X% of the data as a model, averaged over both players.
The model performs 1.5-3.5 times better than random at
predicting what the next item the player will head for is.
This is artificially low due to a player skipping a location
when the item hasn’t spawned yet.

the model to account for these mispredictions, so the
model is unfairly penalized because of this.

Opponent Prediction

Previous sections focused primarily on predicting a
player’s behavior, based on their past behavior. In this
section we examine the possibility of using one player’s
behavior to predict their opponent’s behavior. Initially
we had hoped to predict with some accuracy, and with-
out cheating, where your opponent is. This would be
useful in everything from recommending safe paths to
items to allowing the player to set traps for their op-
ponent. However, as we observed in the section on Self
Prediction, even predicting your own patterns over time
is difficult, due to the erratic way players move through
the environment. While we do not expect a high ac-
curacy in predicting where your opponent is, even a
relatively low accuracy would give some knowledge to
the system. Furthermore, a comparison of one player’s
model with their opponent would give some indication
of the playing style. Namely, if a player has a similar
style as their opponent, their models should be similar
(to the extent a player’s model is self-similar). How-
ever, if they have drastically different styles, then their
models should differ significantly.

We examined two methods of Opponent Prediction.
The first method we examined was the KL-divergence
as in the Self Prediction method above. Namely, we
create the probability distributions of each state in an
SOMM, and then compute the KL-divergence of the
two models over time.

Figure 11 shows the KL-divergences of the model for
each player with respect to their opponent. The large
divergences in the beginning, which are much larger
than any of the Self Prediction models in 9, indicate
that players have different strategies when they spawn.
Furthermore, the relatively large steady-state diver-

 0.1

 1

 10

 100

 0 200 400 600 800 1000

K
L-

D
iv

er
ge

nc
e

Time

Player A’s Opponent Prediction
Player B’s Opponent Prediction

Figure 11: KL-divergence of each player with respect to
the other. The large divergences in the beginning indicate
that the players have different strategies when first spawn-
ing, and the steady-state divergences indicate that there
is a large discrepancy between where each player moves in
the long run.

gences indicate that, even with the full model, the play-
ers would end up in significantly different distributions
of states. Since the models are so significantly differ-
ent, even from the Self Prediction models that had any
accuracy, we are able to see that the two players have
significantly different styles of play. When we traced
what each player did, we found this to be true, since
one player spent a fair amount of time “camping”, while
the other player moved around the map much more.

In addition to comparing the KL-divergences of the
two models, in Figure12 we also examined the accuracy
of using a particle filter to predict the opponent’s loca-
tion. The use of a particle filter has several advantages
over the method of comparing KL-divergences. For one
thing, it is fast enough to do online. Additionally, we
can use other signals a player receives during play.

The KL-divergence measure looks at statically pre-
dicting where a player will move, given that they start
at a spawn location. With a particle-filter, we can use
information about whether the player fired, was hit,
was fragged, or fragged their opponent to give a better
indication of where that player is. This doesn’t violate
the “non-cheating” rule, since all observations are made
on properties of the player, and not on any information
obtained from the opponent.

For the particle filter, we update particles at each step
based on the player’s model of the world. Each particle
has some likelihood of staying in the same state, or
transitioning to a new state. When a player has one
of these indications, we resample the particles to be
within a small radius of the player’s current position
(since if the player is firing, that means their opponent
is probably nearby). Similarly, if the player got a frag,
the particles are resampled from the static spawn-points
with equal likelihood (since at that point the opponent’s
location is known to be at one of the spawn points).

To measure the accuracy of the particle filter at each

 0

 0.1

 0.2

A
’s

 O
pp

on
en

t P
re

d.
 A

cc
ur

ac
y

 0

 0.1

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000B
’s

 O
pp

on
en

t P
re

d.
 A

cc
ur

ac
y

Step

Figure 12: Accuracy of particle filters on predicting your
opponent’s location, over a 7.5 minute span of gameplay.
The accuracies increase and decrease at the same time,
indicating when the two players are dueling. Large spikes
represent that player getting a frag (i.e. opponent is now
at a spawn point).

step, we look at the number of particles in the oppo-
nent’s state/total number of particles. The results of
this are shown in Figure12 As was expected, the pre-
diction accuracies were quite low (<1%, on average).
However, it is interesting to observe that the accura-
cies of the two players increase at the same times, such
as the pattern at about 3700 samples. These increases
in probability are during a duel, where the two play-
ers are both firing at each other. The accuracies in-
crease, because we are more sure that the opponent
is in the immediate area during these times. Finally,
the large spikes in accuracy generally occur just after
a player gets a frag, since immediately following that
they know their opponent’s location must be one of the
spawn points. These results just confirm the difficulty
of using one player’s behavior model to predict their
opponents behavior, especially given the differences in
style of the two players.

Conclusions

We conclude that at best, it is difficult to predict where
a player will move in Quake II. There are several reasons
for this.

One is that many players are making a conscious de-
cision to produce unpredictable movement patterns. If
a player moves in a very predictable way, then the other
players will most likely pick up on it and use it to their
advantage.

Also, players are for the most part constantly moving.
This distributes the density of datapoints evenly and
makes it difficult to find important locations in the data.
Unlike real life, where people may spend around half
their day at work and the other half at home, in our
analysis there was no one location where a player spent
the bulk of his time. Again, if a player spends most of
his time in one place, other players will know to expect
him there.

Figure 13: Quake II: Prototype user guidance system.
The light blue squares direct the user to a point of interest.

The relative density of spawn points and size of the
maps present a large problem with predicting where an
opponent will be. Since he could start at any spawn
point, that already diffuses the probabilities of where
he might be. Since the maps are fairly small, it doesn’t
take that long for a player to run all the way across
it. This causes the probability density to diffuse very
quickly from the spawn points, until it is hard to say
with any high probability where an opponent is.

Future Work

The next step seems to be using the models we have
built to present the user with useful information. This
could take the form of an on-screen display that the
user can turn on or off. It could inform the user of
the probability that an opponent is nearby, or inform
the user of safe paths to nearby points of interest. To
this end, we developed a simple prototype of a user
guidance system, shown in figure 13. It consists simply
of a directed pointer that can guide the user toward
a particular point. It would be interesting to see if
guidance from the predictions made by our model could
improve the performance of human players.

Another interesting idea would be to try to pick out
different movement patterns within a player’s overall
movement data. A player will most likely have differ-
ent movement patterns if he is low on health, in combat
with another player, or trying to reach a specific loca-
tion. Currently, we look at all points in the data set
as equal. We could split the input data sets into dif-
ferent sets based on the extra information in the log
files. For example, we could take the points where a
player has less than half health and presume that they
represent the player’s movement when he is on guard,
and take the points around where a player fires or is
damaged and presume that they represent the player’s
movement during combat. We could then do a more
fine-grained movement analysis that would allow us to
better predict how a player would move in a given sit-
uation.

References

[1] Ashbrook, D., and Starner, T. 2003. Using gps
to learn significant locations and predict movement

across multiple users.

[2] Liao, L.; Fox, D.; and Kautz, H. 2004. Learning
and inferring transportation routines.

[3] Zhai, C. 2003. Notes on the kl-divergence retreival
formula and dirichlet prior smoothing.

