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Abstract

Unsolicited commercial email, commonly known as
spam has been known to pollute the medium of elec-
tronic mail. Recipients of spam messages must waste
time deleting annoying and possibly offensive mes-
sages. One problem that can arise is the possibility of
users deleting legitimate messages. This paper presents
analysis on various aspects of robust spam filtering. Ex-
periments were performed to compare the performance
of various learning classifier for identifying spam mes-
sages. Additional experiments were carried out to re-
veal the importance of choosing statistically meaningful
attributes to in improving the performance of spam clas-
sifiers. We also compared the performance of ensemble
learning classifiers against single classifiers. Lastly, we
investigated the ’temporal evolution’ of spam messages
over a period of time. We conclude by providing some
pointers to future research work for developing robust
spam classifiers.

1 Introduction
The Merriam-Webster Online Dictionary
(http://www.m-w.com) defines spam as ”unso-
licited, usually commercial, email sent to a large number
of recipients”. Given the increasing dependence of today’s
society on Internet, spam has become an electronic thorn
in the foot of the ubiquitous computer user. Spam takes
away resources from users and service suppliers without
compensation or authorization. Spam emails are typically
sent using bulk mailers and address lists obtained from web
pages and newsgroup archives. Their content varies from
deal to real estate to pornography.

Unfortunately, the definition of spam is subjective: one
person’s spam could easily be another person’s gold. Hence,
spam filters have a unique challenge in ensuring effective-
ness and accuracy. Effectiveness is measured by the per-
centage of spam caught. This percentage should be as high
as possible. Accuracy is measured by the percentage of

∗Loosely inspired by William Shakespeare’s Hamlet, Act
III,Scene 1.

emails incorrectly classified as spam. This second percent-
age should be as low as possible.

In order to solve to spam filtering problem, researchers
have directed efforts on numerous statistical and non-
statistical approaches to design spam classifiers. The in-
creasing relevance of research in this topic is evident from
the proceedings of two recent conferences, (CEAS-2004 )
and (Spam 2004). Both conferences aim to bring together
communities from diverse fields such as machine learning,
cryptography, natural language processing, security, net-
works, systems and human computer interaction with the
common goal of eliminating spam messages.

This paper is organized as follows: Section 2 provides
a discussion of various spam filtering approaches and de-
scribes state-of-the-art techniques used for the purpose. In
Section 3, we provide a performance evaluation of various
machine learning algorithms such as Decision Trees, Naive
Bayes, Support Vector Machines, and ensemble techniques
such as Ensemble Decision Trees, Stacking and Boosting.
We also analyze the importance of statistically meaningful
attribute selection and provide some interesting results for
analyzing the temporal evolution of spam. Section 4 con-
cludes with some pointers to future research directions for
developing robust spam classifiers.

2 Existing Approaches: A survey
A study of the ever increasing research on spam filtering
shows that methods fall primarily under two categories –
statistical and non-statistical (CEAS-2004 ). We examine
the non-statistical approaches first.

One category of such approaches use the service pro-
vided by email server to attack spam messages at the
network level. Using these approaches, email servers
can now block spam messages based on the Real Time
Black Hole list (RBLs) ( Popular RBL services are
MAPS(http://mail-abuse.org/rbl) and Spam-
Cop (http://www.spamcop.net)). RBLs are an at-



tempt to maintain lists of hosts (mail servers) that are used
regularly by spammers. When a mail server receives a con-
nection from another server trying to send a message, it can
check against the list whether the connecting server is in the
RBL list. If it is, the mail server can choose to refuse to
accept any mails. This approach is not the most effective
method as the chance of blocking a legitimate message is
quite high. One spam sender can result in hundreds of legit-
imate users being blocked by the list. Another problem with
the earlier approach is that it focuses only on the content in
the email header.

This motivated algorithms to filter spam based on key-
words. Essentially, they employ hand-crafted rules to
search for particular keywords, phrases, or suspicious pat-
terns in the message (SpamAssassin ), (Sahami et al.
1998), (Schleimer, Wilkerson, & Aiken 2003).

An interesting example in the non-statistical category is
Vipul’s Razor (Vipul ). The approach employs collaborative
filtering while relying on a network of servers which store
spam message signatures to verify if an incoming message
is spam. If the incoming message escapes detection, the user
can report it so that all the other users can avoid it (by virtue
of using the same network of servers).

Another approach that is complementary to maintaining
black-lists is maintaining white-lists, where the spam filter
sends mails to senders not in the user’s white-list, asking
them to answer a simple question in order to rule out spam-
ming robots.

The problem with the previous two approaches and non-
statistical approaches is that there is no learning component
to admit messages whose content ’looks’ legitimate. This
may lead to undetected spam and in the latter case, a frus-
trating proliferation of automatic answer-seeking replies.

Due to the above limitations, developers of anti-spam fil-
ters are increasingly drawn to the potential of statistical ma-
chine learning. Consequently, there is a growing number of
spam filter implementations that incorporate learning-based
components. With its roots in text classification research,
learning-based spam filtering seeks to answer the question
”Is message x spam?”. How this question is answered varies
upon the type of classification algorithm in place. But while
categorization method differs between statistical filters, their
basic functionality is similar. The classification algorithm
uses feature vectors to judge the documents.

One of the widely used methods, Bayesian classifica-
tion, attempts to calculate the probability that a message
is spam based upon previous feature frequencies in spam
and ham (Androutsopoulos et al. 2000), (Sahami et al.
1998), (Graham 2003). A notable example is the open

source software SpamBayes1. The popularity of Sup-
port Vector Machines has been enhanced with successful
applications in spam classification (Drucker, Wu, & Vap-
nik 1999), (CEAS-2004 ). Other popular learning algo-
rithms applied to spam filtering include boosting (Carreras
& Márquez 2001), and neural networks.

3 Experiments
In this section, we describe experiments performed in or-
der to analyze various design and implementation aspects
of spam filtering. Our focus was on the classification algo-
rithms that could be used for the purpose. In particular, we
looked at the following:

1. Decision Trees (DT)

2. Support Vector Machines (SVM)

3. Naive Bayes (NB)

4. Neural Networks

5. Ensemble Decision Trees (EDT)

6. Boosting

7. Bagging

8. Stacking

For a brief but very readable description of these meth-
ods, the reader is encouraged to consult (Mitchell 1997)
and (Russell & Norvig 2003). In addition, we also exam-
ined the temporal evolution of spam and explored heuristics
that could be used to improve the performance of one of the
most widely used classifiers – Naive Bayes2.

For all the experiments, we used the open source WEKA
framework (Witten & Frank 2000) to test the classifiers.
WEKA is a collection of machine learning algorithms for
data mining tasks. It is well-suited for developing new ma-
chine learning schemes. Our emphasis has been on the per-
formance analysis of the aforementioned algorithms so that
the results assist in developing novel and effective spam fil-
ters. Moreover, WEKA has a highly customizable inter-
face and efficient implementations which enabled us to run a
large number of experiments. For this reason, we have used
WEKA rather than get bogged down by implementation de-
tails and tweaks thereof for various classification methods.

For all the experiments, we used a training set of labeled
spam/ham mails to train the classifiers. Testing was per-
formed on a testing set, unseen by the classifier and the per-
formance was measured by evaluating the accuracy, preci-
sion and recall for various techniques. Each of the experi-
ments is described in detail below.

1http://spambase.org
2Ironically, Naive Bayes has also been abused for a variety of

reasons which we point out later.



Experiment 1 - Evaluating various classifiers on
spambase dataset.

For our preliminary experiments, we used the spambase
corpus (Forman 1999). The dataset contains 4601 instances
of email, of which about 39% is spam. Each instance cor-
responds to a single email, and is represented with 57 at-
tributes plus a class label (1 if spam, 0 if not). The data files
contain one instance per line, and each line has 58 comma
delimited attributes, ending with the class label. Most of
the attributes indicate whether a particular word or charac-
ter was frequently occurring in the e-mail; frequency is en-
coded as a percentage in [0, 1]. A few attributes measure
the length of sequences of consecutive capital letters. The
dataset and the associated documentation can be accessed
publicly at (spambaseftp ).

The performance of 8 different algorithms is presented as
a series of ROC curves in Figure 1. In the current context,
the value of (1 - Precision) tells us how often a classifier will
label a legitimate email(ham) as spam. Recall tells us how
effective the classifier is at detecting spam. Although Near-
est Neighbor was not included in the original list of classi-
fiers, we have shown it in order to provide a contrast and also
to rule out methods which employ simplistic distance-based
measures3. Also note that the ROC curve for Nearest Neigh-
bor indicates that higher recall comes at an unacceptable
price – an increase in the likelihood of ham being classified
as spam. This observation merely provides support to a fact
well known in the machine learning community —- Nearest
Neighbor classifier is a poor generalizer. Naive Bayes and
Decision Trees afford extremely good accuracy because of
the inherent simplicity of their models but since this sim-
plicity leads to search in a restricted hypothesis space, they
seem to perform not as well as Neural Networks and Sup-
port Vector Machines. Note however that the hypothesis re-
striction is somewhat relaxed when ensemble methods are
employed, leading to an improvement in performance . As
the curves demonstrate, ADABOOST and Ensemble Deci-
sion Trees provide the best performance in the operational
region. The significance of this result is explored separately
in Experiment 3. Table 1 contains the accuracy each algo-
rithm attains on the test set. The results are consistent with
the Precision-Recall curves of Figure 1.

We performed additional experiments on the spambase
dataset by performing a random 50% − 50% split into ham
/spam for training data and a leave-one-out cross-validation
and k-fold cross validation where we chose k = 10. How-
ever, we did not observe any significant improvements from

3Note that k-NN uses a Euclidean or Mahalanobis distance
measure.

above results.
The spambase corpus serves as a good testbed for eval-

uating a new spam filter. However, it has certain limitations.
The first among them is that the attributes were selected on
the basis of email arriving at one particular individual at
one particular corporate organization4 and hence, not rep-
resentative of a general spam sample. Extracting these at-
tributes from other email collections could result in rather
sparse data. Figure 2(left) shows that the occurrences of
each attribute for a different dataset ( SpamAssassin ) are
infrequent. This indicates the unsuitability of spambase
attributes for developing spam classifiers.

Table 1: Classifier accuracy performance on spambase
dataset. The accuracies were sorted in decreasing order. En-
semble Decision Tree had the highest accuracy, while the
Nearest Neighbor classifier performed the worst.

Classifier Accuracy
Ensemble Decision Tree (# of tree = 25) 96.40
Adaboost 95.00
Stacking 93.80
SVM 93.40
Bagging 92.80
Decision Tree 92.58
Neural Network 90.80
Naive Bayes 89.57
Nearest Neighbor (k = 5) 89.40

Experiment 2 - Importance of meaningful
attributes for classification.
Due to the above limitation of the spambase dataset, the
second experiment was performed on a bigger and more
general dataset: the SpamAssassin corpus (SpamAs-
sassin ). The dataset contains 8681 instances of email, of
which 2230 are spam. We divided the dataset into 5791

training instances (1490 spam and 4301 ham) and 2890 test-
ing instances (740 spam and 2150 ham). From this dataset,
we extract attributes based on the well known tf-idf weight-
ing (Jones 1972). We used ifile5 preprocessor to extract
the list of words in email6. Each instance was then repre-
sented as a feature vector of 100 words obtained using the
tf-idf weighting method plus one class label.

For comparison, we extracted spambase feature at-
tributes from the SpamAssassin dataset. The attribute

4George Forman, an employee at Hewlett-Packard.
5http://www.nognu.org/ifile
6More conveniently, ifile removes frequently used stop

words.



Figure 1: ROC curve of the 9 classifiers on spambase test data. Note that ADABOOST and EDT perform the best, closely
followed by other ensemble methods. SVM and Neural Networks perform competitively as they can model complex hypotheses.
The simplifying assumptions of Naive Bayes and Decision Trees cause them to perform slightly poorer. As expected, Nearest
Neighbor performs the worst.

presence is much more pronounced for tf-idf attributes (see
Figure 2 for a comparison with spambase attributes).
The superiority of tf-idf attributes is evident from the ROC
curves in Figure 3, which show that classifiers perform bet-
ter when tf-idf attributes are used. This result emphasizes
the importance of extracting meaningful attributes for im-
proving classification performance. The accuracies achieved
by each attribute type shown in Table 2 support this obser-
vation.

Experiment 3 - Ensemble vs. non-ensemble
classification.
A combination of multiple classifiers may be able to pro-
duce an overall classifier which is more stable and accu-
rate than any of its components. This observation, coupled
with the fact that ensemble classifiers tend to be more ro-
bust to over fitting while avoiding the instability problems
of local minima, has made ensemble classification the dar-

ling of machine learning community. Prompted by the suc-
cess of methods such as Bagging (Quinlan 1996) and Boost-
ing (Schapire 2002), we employed them to learn ensemble
classifiers – ADABOOST, Stacking and Ensemble Decision
Trees. We compared the best performances of three different
ensemble classifiers and three single classifiers. For EDTs,
we tried different number of trees to represent the ensemble
and found that 25 trees resulted in the best performance. An
ensemble of Decision Tree, SVM and Naive Bayes with AD-
ABOOST as the meta-learner proved to be the best classifier
combination for Stacking. ADABOOST performed particu-
larly well in boosting the performance of weak classifiers
(see Figures 1 and 3). Our results (shown in Table 3)
are consistent with those reported in machine learning lit-
erature – ensemble methods generally perform better than
single classifiers.



Figure 2: A graphical representation of attribute presence in SpamAssassin dataset for spambase (left) and tf-idf (right). Note
the sparsity of attributes for spambase in the left figure. For each attribute type, we show 48 significant word-level attributes.

Experiment 4 - Tackling the poor assumptions of
Naive Bayes.
Judging from the number of spam filtering software which
use Naive Bayes as the classification engine, it would not
at all be an exaggeration to say that Naive Bayes is the
’workhorse of spam classification’. This is a consequence
of its attractive features - simple model, easy to implement
and speed . However, Naive Bayes has its own share of
shortcomings, primarily arising out of its severe assump-
tions and in certain contexts, it has been denigrated as the
”punching bag” of classifiers. (Rennie et al. 2003) an-
alyzed the multinomial Naive Bayes model and proposed
simple, heuristic solutions in an attempt to tackle its poor
assumptions. However, they presented their results for text
categorization. Naturally, it would be interesting to ob-
serve the performance on spam filtering – which is after
all, a form of text categorization. For this, we used the
ComplementNaiveBayesmodule in WEKA. As the re-
sults in Table 4 demonstrate, the algorithm performs better
than the original Naive Bayes model and is competitive with
other classification algorithms.

Experiment 5 - Tracking the temporal evolution of
spam.
A recently observed trend is that spammer techniques have
evolved in response to the appearance of more and bet-
ter filters. As soon as companies develop effective filters,
spammers change their tactics to avoid the new spam block-
ers. This leads to a vicious cycle, with spammers actually
reinvesting their profits into developing new techniques to
evade new spam filters. During the course of our litera-
ture survey, we noticed that most of the existing evalua-
tions of spam detection algorithms completely ignore this

’evolution-in-time’ issue, randomly selecting training and
testing sets from a email corpus. If this temporal evolution
can be learned, spam filters can adapt to the ever-changing
tactics of spammers with greater ease. As a first step to-
wards the development of this genre of adaptive spam fil-
ters, we performed an analysis of attribute-level changes in
spam over time. For this, we extracted all email instances
in year 2002 from the SpamAssassin dataset and split
the data into 6 different time periods: January - August,
January - September, January - October, January - Novem-
ber, and January - December 2002. We then trained these
6 datasets using the J48 Decision Tree classifier. J48 se-
lects the most prominent attributes based on the maximum
Information Gain criterion (Cover & Thomas 1991). In Ta-
ble 5, we list 7 most prominent attributes seen for each of
the 6 time periods described previously. The results show
that there is some evolution in the spam data from August
to September, but not in the subsequent months. A closer
observation reveals that many of the selected attributes are
HTML keywords such as td and font. This is because
spammers typically send mails in HTML format. Also no-
tice the presence of a familiar spam keyword click which
persists over time.

4 Conclusions and Future Work
In this paper, we analyzed various aspects of spam filter-
ing. We focused on the performance evaluation of various
machine learning algorithms for the task of detecting spam
by performing various experiments. As an initial experi-
ment, we compared 9 classifiers on spambase dataset us-
ing spambase-attributes. This experiment was help-
ful in determining the best classifiers, however, further anal-
ysis revealed that the attributes were very specific to the



Figure 3: ROC curve of the three best classifiers on SpamAssassin dataset. The curves show that tf-idf attributes (thin lines)
provide better performance compared to spambase attributes(thick lines).

Table 2: Comparison of the best three classifier on SpamAs-
sassin dataset represented using spambase attributes and
tf-idf attributes. tf-idf attributes gives better accuracy per-
formance for all three classifiers.

Accuracy
Classifier spambase attributes tf-idf attributes
Bagging 94.12 96.06
Naive Bayes 86.82 96.23
Adaboost 89.62 96.06

dataset and not representative of general spam.

To alleviate this, we experimented with various attribute
selection methods and observed that attributes that are sta-
tistically meaningful have a dense presence over the entire
data (spam/ham). An attractive feature of such attributes is
that they tend to be data-independent and can provide bet-
ter separability over many kinds of spam/ham. In particular,

Table 3: Performance comparison – Ensemble classifiers vs
single classifiers. DT = Decision Tree, NB = Naive Bayes,
NNet = Neural Network, EDT = Ensemble Decision Tree,
AB = Adaboost, Stk = Stacking.

DT NB NNet EDT AB Stk
Prec 90.70 89.80 89.70 96.80 94.60 93.90
Rec 90.40 83.20 85.00 93.70 92.10 88.00
Acc 92.58 89.57 90.80 96.40 95.00 93.80

we employed the tf-idf (Jones 1972) weighting method as a
statistically meaningful method for extracting attributes and
found that it improved the performance of the classifiers.

Prompted by the success of ensemble learning methods,
we built ensemble classifiers – ADABOOST, Stacking and
Ensemble Decision Tree and compared their performance
with the best performances of single classifiers. Our results
confirm findings in literature – ensemble classifiers entail



Table 5: Temporal evolution of spam – The seven most important attributes for each month during the period August 2002 -
December 2002. The attributes are chosen by a breadth first traversal of the corresponding decision tree.

Attribute Aug Sep Oct Nov Dec
First precedence td td td td
Second references date date date date
Third ist click click click click
Fourth font references references references references
Fifth exim font work work work
Sixth received linux font font font
Seventh td imap linux linux link

Table 4: Comparison between Complement Naive Bayes
and original Naive Bayes on spambase dataset.

Classifier Precision Recall Accuracy
Naive Bayes 0.79 0.691 81.2
Complement Naive Bayes 0.775 0.723 81.4

superior performance compared to single classifiers.
Following (Rennie et al. 2003), we experimented with

the multinomial Naive Bayes model and extended their re-
sults. We showed that tackling the poor assumptions present
in the Naive Bayes has the potential to increase its popularity
in the spam filtering community.

Spammers change tactics over time and this is reflected as
a ’temporal evolution’ of spam attributes. As an initial study
of this ’evolution’, we analyzed attribute-level changes in
spam messages over time and found that spammers tend to
send HTML formatted messages. It would be interesting
to observe this evolution for a longer time period and use
adaptive prediction techniques from machine learning. An
interesting work in the same flavor is presented in (Dalvi et
al. 2004) which treats spam detection as a two player adver-
sarial game between the spam filter and the spammer. We
believe that this paper is the first step towards a potentially
rich area for future research. We defer a discussion on this
for future work.

Among other directions for future research, we contem-
plate using a Mixture of Naive Bayes model (Nigam et al.
2000) as an alternative to Naive Bayes model. Also, to
handle common morphological and inflectional endings, the
word stemming algorithm (Porter 1980) can be used. For in-
stance, this converts taking to take,cardiovascular and cardi-
ology to cardio etc. so that variations of the same spam key-
word can be detected more effectively. Another interesting
direction would be to apply Latent Semantic Indexing (Pa-

padimitriou et al. 1998) as a means of learning relevance-
driven spam classifiers.

To conclude, the problem of spam classification has sev-
eral aspects to it, notably in the design of robust classi-
fiers. However, emerging trends suggest that this prob-
lem is more likely to be solved by a combination of sev-
eral techniques involving non-statistical (hand-crafted rules,
white-lists, black-list, Vipul’s Razor) and statistical (ma-
chine learning) techniques.
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