
Using a Visualization Based Simulator to Test Location
Inference Techniques on Movement Patterns

Jon Froehlich and Jonas Klink

Department of Computer Science
University of Washington

Seattle, WA 98195
{jfroehli, jklink}@cs.washington.edu

Abstract
The evolution of GPS into the civilian world ushered in a
new area of high fidelity, location-sensitive consumer
electronics. Current, pervasive technologies such as the cell-
phone and PDA provide a rich platform for location-aware
applications and many can be purchased with GPS
capabilities. Following this trend, recent research has
investigated how movement patterns can be learned and
future actions can be predicted. In this paper, we describe a
novel simulation tool, called Simulöc, which provides a
visualization framework for testing location-based
inferencing algorithms. Simulöc combines data about a
person’s known schedule, bus activity, current location, and
past movement history to learn movement patterns and
predict future destinations. The visualizer uses global
positioning data along with satellite imagery to display
simulated user movement and bus activity. This tool is then
used to evaluate the performance of three known artificial
intelligence inferencing techniques: a naïve first-order
Markov model, a first-order Markov model with a uniform
prior, and a naïve Markov model with time dependency.

Introduction
At a superficial level, movement often appears to be
random – objects move about with seemingly little or no
pattern. This feeling of randomness, however, is a matter of
perspective - it can be reduced through a combination of
contextual knowledge and historical precedence. How is it,
for example, that for no obvious reason our friend’s cat
decides to jump down from the kitchen window sill and run
under the living room table whenever we arrive for a visit?
Without historical precedence, one might infer that my cat
is simply skittish. However, with a certain amount of prior
observation, a keen eye might begin to notice the following
pattern: The cat, as it so happens, is particularly fond of
greeting people; however, she also tends to be quite
cautious. Upon seeing someone reach the front door, the
cat runs to her shielded observation point under the table
(which provides a perfect lookout). Given this knowledge,
it seems reasonable to claim that if the cat is on the window
sill, her likely next location will be under the living room
table -- particularly if visitors are expected.

Learning movement patterns and making predictions like
the one above is a particularly rich field in artificial
intelligence, as it includes many AI mainstays such as
learning and inferencing, pattern recognition, and decision
theory. Mid to large scale location-inferencing research is
often difficult to quickly test and evaluate as it requires the
researcher to move about a locale. This makes location-
related AI research a rather fertile ground for simulation.

Our goal in this initial research was to, first, construct a
visual simulation environment for testing multiple location-
based inferencing techniques and second, use this
environment to evaluate the performance of known
inferencing algorithms on location prediction and
movement behavior. With the outcome of our tests, we
hope to pursue our original vision of using location
inferencing and movement pattern detection to build a
mobile application that supplies the user with contextually
useful data, such as the proximity and location of bus stops
that serve the user’s bus line given the user’s current
location.

This system would work by aggregating data from a user
tracked via GPS (Global Positioning System), with real-
time bus data gathered from MyBus.org1. The MyBus.org
service provides constantly refreshed information on the
predicted arrival times (delayed, early, or on time) of any
bus on any Seattle bus line. The algorithm used is
described in Cathey and Dailey 2003. As we’re not actually
building a contextually aware mobile application in this
project, but rather simulating a world to test the viability of
one, the bus data and GPS data are automatically generated
by the simulator.

The problems specifically addressed in this simulation
world project are: first, can we predict movement and
thereby possible destinations of our user. If so, how can we
present them with contextually useful information on the

1 http://www.mybus.org

current status of the nearby bus net to the user.
Contextually useful and nearby are determined by the
learned user movement pattern, combined with information
on preferred bus routes (the bus routes the user takes most
often) and proximity to bus stops in which suitable buses
will reach at a convenient time for the user.

Data gathering and technology
Ideally, one would like to implement and test the above
described tool in and for the real world. However,
accurately gathering sufficient data from the amount of
users we need for constructing our application would
require much more time than given to this project.
Therefore, we made some simplifying arrangements and
assumptions, to make data gathering and testing run swiftly.

Collecting GPS data
For the setting of this project, the need for accurate GPS
data, spanning over the entire campus was essential. Also,
mappings between specific locations (e.g. bus stops) and
their GPS coordinates were also needed. Systems for
collecting and predicting these data are presented in several
other contemporary research papers (Ashbrook and Starner
2003; and Liao et al. 2004), but for the scale and simplicity
of this project, we chose to do a direct mapping by creating
databases holding the needed information.

TerraServer. To collect sufficient data of high quality, we
used two different sources, both with their own advantages

(as well as limitations). The first one, TerraServer2, is an
online database operated by the Microsoft Corporation,
providing search options through archived satellite images.
The TerraServer-USA Website (which was used in this
project) is one of the world's largest online databases,
providing free public access to a vast data store of maps
and aerial photographs of the United States.

TerraServer is also said to be designed to work with
commonly available computer systems and Web browsers
over slow speed communications links. Although those
restrictions were not an issue in the setting of this project, it
provides a valuable opportunity for running mobile
applications with TerraServer as well.

The high fidelity of the satellite photography available
through TerraServer provides a convincing argument for
the viability of integrating satellite imagery into current
map systems. The resolution of the picture shown in Figure
2 is set to one meter per pixel. The maximum available
resolution TerraServer is four times that (0.250 meters per
pixel).

The search option is not the only way of retrieving
information from TerraServer, but image retrieval and GPS
coordinate mapping can also be done via easy web services
provided by Microsoft. An extension of our product to an
online version is therefore feasible, but in our current
version we have included support for generic satellite
images ourselves.

2 http://terraserver.microsoft.com/

Figure 1. Visualization of real data collected with the
GeoLogger and displayed using Simulöc

Figure 2. TerraServer high resolution satellite
image, showing Husky Stadium.

GeoLogger. Though we used TerraServer to map building
GPS coordinates, a tool for making more precise
measurements was needed. For tracking down the exact
GPS location of all bus stops included (27 in total), we
used the wearable GPS-tool of GeoLogger3. The
GeoLogger consists of an antenna and a logging unit,
powered by either a rechargeable or an internal 9V battery.
The flexibility of this tool provides high freedom of
movement, and the only additional information needed for
establishing connection between the exact location and its
GPS coordinates, is a manual recording of the time at the
wanted location (e.g. at a bus stop). Since the logger is
continuously recording data (with a one-second frequency),
these recorded points also provided us with an exact walk
over campus. This data could then be loaded up into
Simulöc to verify both the implementation of our tool as
well as the GeoLogger. For coordinates not available to us
with the GeoLogger, we used TerraServer data.

Simulöc Visualizer
Simulöc combines data about a person’s known schedule,
bus activity, current location, and past movement history to
learn movement patterns and predict future destinations.
The visualizer uses global positioning data along with
satellite imagery to display simulated user movement and
bus activity. This simulation system grew over the course
of its development to be a rapid experimental environment,
which allows for the implementation, testing and
visualization of many different AI methods for location
context-awareness and computations on movement
patterns.

3 http://www.geostats.com/products.php

Data gathering and visualization
Combining our two GPS sources, the tool for data
visualization provides an accurate and descriptive way of
presenting the different data used. The interface provides
the user with the opportunity of displaying any satellite
image. By naming the image according to our name
principles (let the name consist of the four GPS coordinate
pairs for the corners of the image, e.g. TL(-
122.31281,47.65694), BL(-122.31291,47.64974), TR(-
122.29949,47.65686), BR(-122.29959,47.64966)1.jpg).
This way, the application is flexible enough to handle any
image, while still providing the correct GPS coordinates for
every point on the map, using our mouse-over information
display tool. The satellite images of the University of
Washington campus used in this setting are actual images,
collected from the TerraServer database.

Also presented on the visual map are our own bounding
boxes for all buildings on campus. These bounding boxes
can individually be switched on and off and the
highlighting scheme changed, to make the visual freedom
as high as possible and configurable for every user and
project setting. Also, the names of buildings and bus stops
are printed, to make the visualization of the simulation and
inference process easily available to any user.

Simulation
One of the most important parts in an artificial setting like
ours is that the simulation closely matches real scenarios. If
not, the confidence put to the test results cannot be very
high, when used as an early evaluation for any real-world
application.

For accurate modeling of the real world, we conducted
several interviews with students, to correctly get their
average weekly schedules; containing information about

Figure 3. Displaying TerraServer satellite images in
Simulöc

Figure 4. Displaying TerraServer satellite images (with
labels and buildings highlighted) in Simulöc

when they get to and from campus, what bus routes they
ride, and the weekly schedules (on a five day basis).
Information gathered from these interviews was used to
structure our database of several schedule files, with the
capability of adding an infinite number of individuals

Busstop and busline data is gathered and parsed from the
Seattle area bus transportation website
(http://transit.metrokc.org). This information is then used to
accurately simulate the arrival and departures of buses
through campus.

The person activity schedule files are read by the simulator,
and their corresponding movement patterns are displayed
on the visualization screen. The addition of uncertainty,
using randomness, is done in two ways. Firstly, randomness
is used in this setting to illustrate the fact that people do not
always strictly follow their schedules. Secondly, a person
might (with a certain probability) change his mind in
midpath, and update his goal to be another location. To
make the simulation more realistic, the new target goal
must be within 500 ft. of the person’s current location.
Even though these rules for modeling accurate behavior are
very simple, the outcome can be viewed as most realistic.

Learning movement patterns
One of the most critical features of any location agent is the
ability to keep track of the current state; such is especially
true in an environment such as ours. The world we operate
in contains an uncertainty as to where people will be
heading next, which is connected to the learning problem
of which bus stop and bus line will be accessed next. At
best, these constraints on future information available only
allow the agent to obtain a probabilistic assessment of the
current state (and which are the plausible next ones).

Movement patterns and uncertainty
The inference process is simplified by the fact that our
problem is set in a highly scheduled environment (on
campus), so we implemented the possibility of random
actions amongst the modeled people. Walking is most often
not random by itself, but rather goal-directed. Introducing
the fact of instant changes of goal for the walk (e.g. the
sudden realization of you left your umbrella in a building
you visited this morning), however adds an element of
randomness and uncertainty to our setting. Also, the fact
that users might be at different locations at given times
each week (due to the instant decisions of changing
movement pattern for a period of time), the introduction of
the bus system further adds to the uncertainty. For dynamic
worlds, such as the campus environment, we need a model
that can handle this uncertainty in future observations.

Markov processes
To simplify the inference process, it is common to make
the assumption of the world being looked upon as a series
of snapshots, or time slices, wherein each time slice is
treated as a time-state in the current world. Each state
contains a number of stochastic variables, of which some
are directly observable (such as our current location) and
some are partially or totally unobservable (such as the next
movement action in a random system). The observability of
each variable can change over time (a fact that is often
ignored for simplicity).

However, there are some additional problems with this
model. Due to the fact that the number of variables are
unbounded (since they exist for every time slice, in an
infinite time space), we have conditional probabilistic
dependency on a number of parents that is very hard to deal
with (infinitely many). The solution to this is two-fold, and
includes the concepts of stationary processes and the
Markov assumption. These assumptions simplify our model
to only depend on laws that do not change over time and to
only depend on the directly previous state, respectively.
This type of Markov process is called a first-order Markov
process (Markov Chain), and is written as

P(Xt|X0:t-1) = P(Xt|t-1)

The general Markov process is a system that can be in one
of several (numbered) states, and can pass from one state to
another each time step according to fixed probabilities. If a
Markov system is in state i, there is a fixed probability, pij,
of it going into state j the next time step, and pij is called a
transition probability.

A Markov system can be illustrated by means of a state
transition diagram, which is a diagram showing all the
states and transition probabilities (see Figure 5) below
(notice that transitions with zero probability have no arc).

Figure 5. Transistion diagram

The same diagram can also be modeled by the matrix P,
whose ijth entry is pij, Matrix P is called the transition
matrix associated with the system. The entries in each row
add up to 1. Thus, for instance, the above transition
diagram would be modeled in its matrix form as in Figure 6
below.

A simple example. Let us now illustrate the use of Markov
processes with a simple and informal example. A Markov
model could look at a long sequence of rainy and sunny
days, and analyze the likelihood that one kind of weather
gets followed by another kind. Let's say it was found that
25% of the time, a rainy day was followed by a sunny day,
and 75% of the time, rain was followed by more rain. Let's
say we found out additionally, that sunny days were
followed 50% of the time by rain, and 50% by sun. Given
this analysis, we could generate a new sequence of
statistically similar weather by following these steps:

1. Start with today's weather.
2. Given today's weather, choose a random number

to pick tomorrow's weather.
3. Make tomorrow's weather "today's weather" and

iterate, starting each iteration at step 2.

What we would get when the above algorithm is applied to
the probabilities stated above, is a sequence of days like:
Sunny, Sunny, Rainy, Rainy, Rainy, Rainy, Sunny, Rainy,
Rainy, Sunny, Sunny,… and so on. In other words, the
"output chain" of the Markov reasoning would statistically
reflect the transition probabilities derived from weather we
observed. Such a Markov Chain, while similar to the source
in the small, is often nonsensical in the large (which is why
it is a terrible way to predict weather). That is, the overall
shape of the generated material will bear little formal
resemblance to the overall shape of the source, but taken a
few events at a time, this simple model seems to work.

Higher Order and Hidden Markov Models
Whether the application of a first-order Markov process is
appropriate to a problem setting depends on the domain
itself. The loss of accuracy (through the assumption of the
most previous state containing all needed information) can
be remedied by increasing the order of the Markov model
(that is, adding more parents into the dependence of the
past). Increased accuracy can also be achieved by adding
more state variables; depicting the fact that the process

depends on additional variables, previously unaccounted
for.

Hidden Markov Model (HMM). In practice, there is a
need for yet another kind of Markov Model, called Hidden
Markov Model. The HMM illustrates the fact that the
actual states of the world is not directly observable, but
only indirectly do we interact with the states through our
observations. Some (or all) of the states are therefore
considered “hidden” from the external observer.

There are a number of variations on HMM problems, e.g.

1. The number of states and transition probabilities are
known

a. Given data, find the optimum (most likely)
position of the change points.

b. How precisely should the points be stated?
2. The number of states is known, but the transition

probabilities are not.
a. Estimate the transition probabilities.
b. What accuracy is appropriate for the

estimates?
3. The number of states, and the architecture, are

unknown.
a. Find an HMM which models the data "well".
b. The simplest model has one state, the most

complex model has one state per data value;
almost certainly neither extreme is justified.
Quantifying model complexity is therefore a
crucial issue.

Movement patterns and Markov Models

For the specific setting we are facing in this paper, there are
some arguments concerning which model is needed for
accurately learn and predict the behavior in our system. As
stated earlier, this decision depends highly on the domain
the prediction is taking place in.

Turning our attention towards the real setting of the
problem we are addressing, we see that it contains many
challenges for the AI used. To be able to correctly infer
movement patterns and make predictions on behavior
based upon those, we need a model that addresses all the
problems of the real world. The challenge here though, lies
in the fact that the real world is not perfect: with noisy data,
randomness, and other factors in play. In the span of this
mini project, we have had no opportunity to collect real
data over a long period of time, and also no “real” persons
to follow during the same period. A simulator was therefore
constructed for the sake of this project, and it allowed us to
effectively control our world and running a sizeable amount
of experiments, without losing connection to the real world.
Fully accounting for all difficulties of the real world is a
challenging problem, as the use of a three-level dynamic
Bayesian network in (Liao et al. 2004) shows.

Figure 6. Transition matrix

)|()()}({ 111

2
−

=
∏= t

T

t
tt sspspsp T

Our goal throughout the course of this project has been to
model the real world as accurately as possible in our
simulator, but still some limiting assumptions has have
been made, thereby affecting our choice of process model.
Firstly, since we are moving in a simulated world, there is
no real noise on the data. In the real world, using the GPS
system, there are of course several ways noise could be
introduced into the data. If, for instance, the signal will beis
lost for a while (traveling in a tunnel, or entering a
building), only low credibility can be assigned to the data
point directly before and directly following the loss of the
signal. Also, as with all electronic devices, the reception of
the logger used is somewhat affected by magnetic fields in
the surrounding world.

In our simulated world, we are still using collected real
GPS data points, but with the simplification that they are
static, not dynamically generated (although our system is
fully capable to handle dynamic generation of data points
as well). This simplification reduces the amount of
uncertainty we have to take into account. Still, the
randomness existing through the user’s sometimes instant
change of goals, forces us to use process for probabilistic
learning and reasoning.

When turning to the question on of whether or not or
problem setting qualifies as an instance of the Hidden
Markov problem domain, let us reason about what
information we have available. What we need, to correctly
predict the movement patterns, is to visit every location
possible (including bus stops and buildings) and the
transition probability of taking the transition from a given
location (state) to the next. As we have done extensive
mappings all over campus (and also all locations in GPS
coordinates are available), the information for the first part
of the above problem formulation is certainly satisfied.
Unfortunately, we are missing the transition probabilities,
with which the user will choose which state to move to
from the current location. Therefore, our problem setting
falls under point 2, on the listing on the previous page; the
transition probabilities need to be estimated.

Are the states of the Markov Model for the setting
discussed in this project then really hidden? Are they not
all known, and fully accessible by the GPS coordinates or
the location name? All of the previous reasoning is true,
but as pointed out by (François et al.), any given state can
be on several paths through the world, and the states are
therefore in practice hidden (although they can be deduced
form observation sequences).

Implementing Markov Models
As our framework is designed to handle and visualize any
inference algorithm, we started out by running several tests
on the more basic Markov Models. The variants
implemented are both derived from the simple first-order

form, where dependence on parent nodes other than the
directly previous one, is assumed to be non-existent. These
models are very well suited for quick implementation, but
can still generate some interesting results and find possible
flaws in our design.

The implementation is, as hinted suggested earlier, pretty
fairly straight-forward, and relies on two simple formulas
derived from a more general one. The goal of evaluation,
using a Markov Model, is to estimate the probabilities of
seeing a certain output sequence. In the first-order case, the
probability of arriving in a state only depends on the most
recent state before. The formula below sums up these
observations, and it’s states using the fact that the
probabilities of seeing a certain sequence as time goes from
1 to T (left side), is the probability of seeing the initial
state, p(s1), multiplied by the product of the conditional
probabilities of ending up in st given st-1 (a transition
probability).

Assuming that we have the probability of s1 being our
initial state; p(s1), we only need to model the conditional
probabilities to the far right. We used two different
methods for establishing these probabilities, to then be able
to evaluate the probability of seeing the entire sequence.
The easiest way of doing this is to just perform a count; a
count which gives us the number of times a given output B
is observed together with its input A, divided by the
number of times we observed A. The formula for this is
given below.

The formula above illustrates what is called the Naïve first-
order Markov Model. To do better, we will include the
addition of a 1 in the numerator, and the addition of the
number of symbols available in the system, Nsymbols, to the
denominator. By doing this, we add the notion of a uniform
prior over the transition probabilities. The enhanced
formula will therefore be as presented below.

Testing and results
The extensive work on the visualization part proved to be
highly interesting, and the testing of our implemented
framework for inference proved to be equally so.

The settings for our experiments were as follows. Having
implemented the two first-order Markov Models above into
our framework, there were some interesting tests to run; for
proving the accuracy of our system, but also to evaluate the
effect of time and randomness on the inference process.

For testing purposes, we ran three different Markov Models
on the test data; the first-order naïve model, the first-order
model with uniform prior and also the naïve one with a
time dependency (that is, what minute in the week the
action was taken was added as a parent).

For the first setup of tests, we ran the models on a
simplified schedule file, which held the same day schedule
for every day of the week. Also, randomness was excluded
from the system. By creating the simplest available setting
for the models, we wanted to first establish that the models
performed accurate predictions. Indeed, all three models
got a perfect score of predicting where the person would
move next. These results are verified in the graph below,
where all three models can be seen converging towards the
result that gave them, individually, the optimal probability
setting for doing perfect inference.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23

NaiveProbability UniformProbability NaiveWithTimeProbability

In the second setting, we introduced the models to a more
complex schedule, but still without random goal changes in
the simulated world. This setting was then used in running
all three models, over a simulated one and a two year time
period. The distinction between the simpler and the more
complex models now became very clear. The importance of
including the additional information of departure time (in
the naïve model) also became clear. The two first-order

models both dropped to an accuracy of 61% correctly
inferred transitions. The time dependant model however
remained on a high accuracy of 92%, while being tested on
about 3500 path predictions in the two year setting.

Test Run Description Total
Possible
Correct

Pred.

Correct
Pred. by

Naïve
Model

Correct
Pred. by
Naïve w/
Uniform

Prior

Correct
Pred. by
Naïve w/

Time
Model

1. Uniform daily activity
schedule; no randomness in
simulation; ran for one
simulated month. Used to
verify correctness of
learners.

199 199
(100%)

199
(100%)

199
(100%)

2. Uniform daily activity
schedule; 5% goal
randomness 0.01% in-route
goal randomness; ran for
one simulated month

212 140
(66.0%)

175
(82.5%)

166
(78.3%)

3. 5-day daily activity
schedule; no randomness;
ran for one simulated year

1776 1082
(60.9%)

1078
(60.7%)

1640
(92.3%)

4. 5-day daily activity
schedule; no randomness;
run for two simulated years

3551 2181
(61.1%)

2176
(61.2%)

3310
(93.2%)

5. 5-day daily activity
schedule; 5% goal
randomness 0.01% in-route
goal randomness; ran for
two simulated years

3749 2066
(55.1%)

2044
(54.5%)

2936
(78.3%)

6. 5-day daily activity
schedule; 30% goal
randomness 0.01% in-route
goal randomness; ran for
two simulated years

4542 1012
(22.28%)

1429
(31.46%)

1540
(33.9%)

7. 5-day daily activity
schedule; 5% goal
randomness 0.5% in-route
goal randomness; ran for
two simulated years

4988 1157
(23.9%)

1537
(30.81%)

1926
(38.6%)

For our two measures of randomness: changing a goal
randomly from a given start location and turning randomly
in midroute, we introduced small values of 5% and 0.01%,
respectively. This setting was now evaluated for all three
Markovs, over a simulated one month period and then over
two years. For the shorter time period, the uniform prior
model dominated the other models, with 82% accuracy,
compared to 66% and 78% for the naïve and the naïve with
time dependency, respectively. Over the longer time period
of two years, the time dependent one widely surpassed the
less complex ones, with 93% compared to 61% for both.
These results can be explained by the fact that over a short
time period, the time dependent one have not seen enough
examples of randomness, and will score less over a longer
time period.

However, when either one of the random values was
increased by much (to 30% and 0.05%, independently), the
performance of all three models drops sharply to 22% for
the naïve model, 30% for the model with uniform prior
and, on average, 36% for the naïve with time dependency.

Inferencing Comparison

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7

Test Run #

C
o

rr
ec

t
P

re
d

ic
ti

o
ns

Total Possible Correct NaiveCorrect

UniformPriorCorrect NaiveWithTimeCorrect

Clearly, the results achieved through this testing (which
was set up more as a verification of the visualization and
inference framework), were not overly surprising. All three
models were able to perfectly classify a repeated day
schedule with no randomness, even in a short simulation
time period of 1 simulated month. As the complexity of the
schedules increased, the time-dependent first-order
Markovian left the other two models far behind. This
pattern was even more obvious when a small amount of
randomness was included in the setting, and a longer time
period given to learn the transition probabilities.
Concluding, however, that all three systems did poorly
when randomness was brought up to a more significant
level, shows us the need for stronger models in such an
unpredictable environment.

Future work
Tis section introduces the reader to some of the concepts
that can be added to extend and further evaluate the
performance of Simulöc Visualizer.

To add an extra measure of reality to the simulation, there
are a few things that could be extended. Given more time,
another natural feature to introduce would be that of
routing. Routing in an environment such as the one
Simulöc is working in basically means avoiding obstacles
(at the simplest level). To extend the visual accuracy, the
fact that the people walking around should be avoiding
larger obstacles is of course obvious. An additional benefit

of this extension is also an improvement of the walking
time elapsed; making it more realistic.

A limitation of the GPS system is its inability to record data
information at all times. When losing the signal, e.g. when
entering a building or tunnel, no data can be recorded.
Also, data recorded just prior to and directly after entering
and exiting the building cannot be fully trusted. These are
just limitations and sources of error directly associated with
user location and movement, and a full discussion on
common errors is given in Arpin 2003. Though GPS
systems are widely promoted as the ultimate navigation and
vehicle-tracking tool, GPS systems are in fact fragile, prone
to error, easily disabled, and best suited for navigation
purposes only. Since a satellite is orbiting at a 20.000 km
distance from the objects it is currently tracking, errors due
to receiver noise, atmospheric issues and orbital
miscalculations can and do commonly happen.

To overcome the somewhat limited trustworthiness of the
GPS system, an effort to introduce a compliment system to
our current one must be made. The fact that the current
simulation takes place on the University of Washington
campus, introduces some interesting possibilities. Available
on the UW campus, the Place Lab project provides an
alternative way of collecting data for accurate positioning.
Place Lab is a software alternative, providing device
positioning for location-enhanced computing applications.
The software provides positioning both indoors and out,
which would make it suitable for an application like the
Simulöc.

The Place Lab approach is to allow commodity hardware
clients like notebooks, PDAs and cell phones to locate
themselves by listening for radio beacons such as 802.11
access points, GSM cell phone towers, and fixed Bluetooth
devices around us in the environment. These beacons all
have at least semi-unique IDs, for example, a MAC
address. Clients compute their own location by hearing one
or more IDs, looking up the associated beacons’ positions
in a locally cached map, and estimating their own position
by triangulation.

These usual approaches to solve the problem of lost signal
when moving indoors, is by assigning it a state, say
BUILDING (Liao et al. 2004), and treat this as a location.
A more intelligent approach would be to make use of the
Place Lab system for continuously tracking the user inside
the building. This approach presents us with several
advantages; 1) We have a compliment for verifying GPS
data outside. 2) We have an opportunity to treat a
BUILDING not only as a whole location, but also divide it
further into sublocations. This way, users such as the
cognitively challenged can use the continuous benefit of
any location-aware application, both outdoors and indoors.
3) We can make optimal use of the highest quality data

available, and will not suffer from the loss of accurate data
in moving from inside to outside and vice versa.

Another point we want to stress as important future work, is
the implementation and testing of additional inference
techniques in our system. The framework created in
Simulöc makes the efficient implementation and testing
easy for any possible inference model. While we only
implemented a few simple inference models, more
advanced models exist and can be implemented and
plugged in for simulation and visualization.

In the current version of Simulöc, the user will be provided
with an aid as to their navigation on campus. Buses are
available in the simulation, but not included as an option
for randomly changed goals. Given more time, we would
like to extend the current functionality to include the bus
stops in the simulation. This will give us the added
functionality of being able to make recommendations for
which bus stop to go to and which bus to take, given the
Mybus.org times and the preferred user bus lines. These
preferences can also be learned, using an inference model
of the same type as for the persons’ schedules.

The last two issues we have implemented, but want to
extend, is the use of larger maps and more actual people to
provide test results. In the current version of Simulöc, maps
can easily be interchanged (as described earlier), but
providing the user with an easy scrolling opportunity
between satellite images displayed on the interface, would
be optimal. Even though extensive interviewing was
conducted on schedules, we would like to provide the user
of Simulöc with a larger schedule database, with
classification for testing persons of different behavior and
movement pattern in the application.

Related work
The field of context-awareness in software agents,
combined with the task of localization and tracking, has
been a focus of interest in quite a few papers in recent
years. The value of a localization aid, for everybody as well
as those with special needs, is a topic found interesting by
many (in academic environments, as well as industry). We
present here a brief summary of some of the more
important works; in terms of the impact it had on our
project, but also the value they hold for future research and
development in the field.

The aspect of aid of the kind of products discussed in this
paper, comes to a most important use in the case of helping
cognitively disabled (Patterson et al. 2002). As an example
of such individuals, the world’s ever-increasing number of
Alzheimer’s patients provides a target group, where
context-aware agents are certainly useful. The paper of
(Patterson et al. 2002) stresses the importance of active

agent-intervention in times of challenge or confusion for
the patient, and has its focus on from the background
identifying occurring abnormal (and potentially harmful
and confusing) behavior. The balance of missing
potentially dangerous activities, while not disturbing the

user with unwanted warnings, is a task that requires solid
inference from learning, and even more so while predicting
future behavior as we do. Combining the positive aspects
of awareness with that of prediction accurately could
enhance the aid for cognitively disabled greatly.

Many techniques have been suggested to accomplish the
task of tracking and learning a person’s behavior, using
his/her location at given times. The abundant source of
information from GPS is used in a similar way to ours in
(Liao et al. 2004). The setting is that of a hierarchical
Markov model for learning the movement pattern of the
user, and applying the filtered GPS data to an underlying
graph of roads, intersections and transfer points. The
system provides astonishingly accurate predictions of
behavior (98% correct after training on 30 days of
everyday movement). While the importance of such a
system for future research is great, (Liao et al. 2004) also
presents a way of detecting user errors, by tracking two
models; one based on learning and the other one on
potential, but probabilistically less likely, actions. When
the user takes an “unexpected” action, the likelihood of the
potential model is increased. While our model also includes
leaning under the presence of seemingly random behavior,
the tracker system suggested can in a more developed form
hold great impact on a system such as ours.

Turning to other applications of the context-aware product,
the paper of (Starner and Ashbrook 2004), describes its
usefulness in both single-user and multi-user contexts (but
focuses on the latter). In moving from single-user
applications, (such as e.g. reminders of various tasks and

Figure 7. Simulöc visualization showing movement
patterns after two simulated months with four people

transmission optimization), to the multi-user domain, the
potential use for location-based learners is huge. In joint
interaction with both environment and other users, a vision
on a society of greater social interaction and mutual
agreeability is close at hand. The paper introduces an
interesting notion of using the movement patterns to learn
places, defined as all geographical points where the user
stays a certain amount of time, and then using additional
data for clustering correlated places into locations and
sublocations. This way, no information is needed before
(as our predefined buildings), and the system makes
efficient use of all data available. While spending much
time on this building of the inference base, this idea can be
applied to previously unknown environments, and
combined with the movement data of other (maybe local)
users, to give a heuristic for the prediction algorithm in our
system. Also, the movement pattern of others learned in our
system, could be used as a solving base for problems in a
highly scheduled environment (like ours on campus), such
as quick adaptation to drastic schedule changes from
semester to semester.

The use of context-awareness in a mobile setting using cell
phones is discussed in François et al. 2004. The use of
HMMs in a similar way to ours is here the basis of an
application for allowing for smooth handovers of mobile
hosts (MHs) between access points (APs). The Hidden
Markov Model is used for modeling and learning the
predicted path a user is on. Thereby, earlier notification to
neighboring APs can be sent out, notifying that a user will
be accessing them soon. This adds another layer to the
context-awareness, by allowing for a conditional use and
transformation of information between internal states,
rather than being output to an external viewer. For a system
like ours, such an idea could be used in the sense of
internal “communication” between locations, with the
intention of e.g. preparing the potentially following
location for the arrival of one or many individuals.

Conclusion
In conclusion, we’ve shown how the Simulöc simulation
system can be used to investigate various location-based
inferencing models. Simulöc, as a visualization system, is
particularly useful for researchers to observe differences in
their programmed inference models (as the predicted
locations as well as the actual locations are drawn on the
screen). We used three different Markov models to validate
Simulöc framework, one of which – the naïve Markov
model with time dependency – was shown to work better
than the others.

Contributions
1. Jon Froehlich: Designed and wrote Simulöc including
the tests to evaluate our three Markov inference models.
Assisted with the paper (wrote abstract, edited paper).

2. Jonas Klink: Primary author on most of the paper.
Helped design Markov model algorithms for predicting
location. Created Markov model diagrams and equations.

External Code
All code was written from scratch for this project except
for:

• The Vector2D class which was previously written
by Jonas and then updated by Jon.

• The four Polygon2D classes which are open
sourced by John Reekie at the University of
California.

Acknowledgements
We wish to acknowledge the contributions of Lin Liao and
Donald Patterson of the University of Washington to our
efforts. Without their help in providing valuable advice and
means for collecting essential data, this project would
never have been possible to realize. We would also like to
acknowledge Kevin Wampler for his assistance with vector
and geometry math.

References
Starner, T.; and Ashbrook, D. eds. 2003. Using GPS to
Learn Significant Locations and Predict Movement Across
Multiple Users. Retrieved December 12th, 2004, from:
http://www.cc.gatech.edu/ccg/publications/persubi2003.pdf

François, J-M.; Leduc, G.; and Martin, S. eds. 2004.
Learning movement patterns in mobile networks: a generic
method. Retrieved December 12th, 2004, from:
http://research.ac.upc.es/EW2004/papers/55.pdf

Liao, L.; Fox, D.; and Kautz, H.; eds. 2004. Learning and
Inferring Transportation Routines. Retrieved December
12th, 2004, from:
http://www.cs.washington.edu/ai/Mobile_Robotics/postscri
pts/gps-aaai-04.pdf

Patterson, D.; Liao, L.; Gajos, K.; (et al.) eds. 2004.
Opportunity Knocks: a System to Provide Cognitive
Assistance with Transportation Services. Retrieved
December 12th, 2004, from:
http://www.cs.washington.edu/homes/djp3/AI/AssistedCog

nition/publications/UBICOMP/2004/UBICOMP2004Patter
son.pdf
In Proceedings of the Sixth International Conference on
Ubiquitous Computing (UBICOMP ’04)

Patterson, D.; Etzioni, O., Fox, D.; and Kautz, H.; eds.
2002. Intelligent Ubiquitous Computing to Support
Alzheimer’s Patients: Enabling the Cognitively Disabled.
Retrieved December 12th, 2004, from:
http://www.cs.washington.edu/homes/djp3/AI/AssistedCog
nition/publications/UBICOMP/acubi.pdf
In Proceedings of the First International Workshop on
Ubiquitous Computing for Cognitive Aids (UBICOG ‘02)

Rabiner, L.R. eds. 1989. A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition.
Retrieved December 12th, 2004, from:
http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf
In Proceedings of the IEEE, 77(2):257-282 (IEEE ’89)

Cathey, F.W.; and Dailey, D.J. eds. 2003. A prescription
for transit arrival/departure prediction using automatic
vehicle location data.
Retrieved December 12th, 2004, from:
http://www.its.washington.edu/pubs/trc2003.pdf
In Transportation Research Part C 11 (2003) 241–264

Arpin, C. eds. 2003. Global Positioning System (GPS)
Errors
& Limitations for Vehicle Tracking
Retrieved December 12th, 2004, from:
http://www.boomerangtracking.com/en/pdf/whitepaper.pdf

LaMarca, A.; Chawathe, Y.; (et al.) eds. 2004. PlaceLab:
Device Positioning Using Radio Beacons in the Wild
Retrieved December 12th, 2004, from:
http://placelab.org/publications/pubs/IRS-TR-04-016.pdf

Hinton, G. eds. 2004 Hidden Markov Models
Retrieved December 12th, 2004, from:
http://www.cs.toronto.edu/~hinton/csc321/

Russell, S.; and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition.

