
Using a Visualization Based Simulator to Test Location  
Inference Techniques on Movement Patterns 

Jon Froehlich and Jonas Klink 
 

Department of Computer Science 
University of Washington 

Seattle, WA 98195 
{jfroehli, jklink}@cs.washington.edu 

 
 
 

Abstract 
The evolution of GPS into the civilian world ushered in a 
new area of high fidelity, location-sensitive consumer 
electronics. Current, pervasive technologies such as the cell-
phone and PDA provide a rich platform for location-aware 
applications and many can be purchased with GPS 
capabilities. Following this trend, recent research has 
investigated how movement patterns can be learned and 
future actions can be predicted. In this paper, we describe a 
novel simulation tool, called Simulöc, which provides a 
visualization framework for testing location-based 
inferencing algorithms. Simulöc combines data about a 
person’s known schedule, bus activity, current location, and 
past movement history to learn movement patterns and 
predict future destinations. The visualizer uses global 
positioning data along with satellite imagery to display 
simulated user movement and bus activity.  This tool is then 
used to evaluate the performance of three known artificial 
intelligence inferencing techniques: a naïve first-order 
Markov model, a first-order Markov model with a uniform 
prior, and a naïve Markov model with time dependency.  

Introduction 
At a superficial level, movement often appears to be 
random – objects move about with seemingly little or no 
pattern. This feeling of randomness, however, is a matter of 
perspective - it can be reduced through a combination of 
contextual knowledge and historical precedence. How is it, 
for example, that for no obvious reason our friend’s cat 
decides to jump down from the kitchen window sill and run 
under the living room table whenever we arrive for a visit? 
Without historical precedence, one might infer that my cat 
is simply skittish. However, with a certain amount of prior 
observation, a keen eye might begin to notice the following 
pattern: The cat, as it so happens, is particularly fond of 
greeting people; however, she also tends to be quite 
cautious. Upon seeing someone reach the front door, the 
cat runs to her shielded observation point under the table 
(which provides a perfect lookout). Given this knowledge, 
it seems reasonable to claim that if the cat is on the window 
sill, her likely next location will be under the living room 
table -- particularly if visitors are expected.  

 
Learning movement patterns and making predictions like 
the one above is a particularly rich field in artificial 
intelligence, as it includes many AI mainstays such as 
learning and inferencing, pattern recognition, and decision 
theory. Mid to large scale location-inferencing research is 
often difficult to quickly test and evaluate as it requires the 
researcher to move about a locale. This makes location-
related AI research a rather fertile ground for simulation. 
 
Our goal in this initial research was to, first, construct a 
visual simulation environment for testing multiple location-
based inferencing techniques and second, use this 
environment to evaluate the performance of known 
inferencing algorithms on location prediction and 
movement behavior. With the outcome of our tests, we 
hope to pursue our original vision of using location 
inferencing and movement pattern detection to build a 
mobile application that supplies the user with contextually 
useful data, such as the proximity and location of bus stops 
that serve the user’s bus line given the user’s current 
location. 
 
This system would work by aggregating data from a user 
tracked via GPS (Global Positioning System), with real-
time bus data gathered from MyBus.org1. The MyBus.org 
service provides constantly refreshed information on the 
predicted arrival times (delayed, early, or on time) of any 
bus on any Seattle bus line. The algorithm used is 
described in Cathey and Dailey 2003. As we’re not actually 
building a contextually aware mobile application in this 
project, but rather simulating a world to test the viability of 
one, the bus data and GPS data are automatically generated 
by the simulator.  
 
 
The problems specifically addressed in this simulation 
world project are:  first, can we predict movement and 
thereby possible destinations of our user. If so, how can we 
present them with contextually useful information on the 
                                                 
1 http://www.mybus.org 



current status of the nearby bus net to the user. 
Contextually useful and nearby are determined by the 
learned user movement pattern, combined with information 
on preferred bus routes (the bus routes the user takes most 
often) and proximity to bus stops in which suitable buses 
will reach at a convenient time for the user. 

Data gathering and technology 
Ideally, one would like to implement and test the above 
described tool in and for the real world. However, 
accurately gathering sufficient data from the amount of 
users we need for constructing our application would 
require much more time than given to this project. 
Therefore, we made some simplifying arrangements and 
assumptions, to make data gathering and testing run swiftly. 

Collecting GPS data 
For the setting of this project, the need for accurate GPS 
data, spanning over the entire campus was essential. Also, 
mappings between specific locations (e.g. bus stops) and 
their GPS coordinates were also needed. Systems for 
collecting and predicting these data are presented in several 
other contemporary research papers (Ashbrook and Starner 
2003; and Liao et al. 2004), but for the scale and simplicity 
of this project, we chose to do a direct mapping by creating 
databases holding the needed information. 
 
TerraServer. To collect sufficient data of high quality, we 
used two different sources, both with their own advantages 

(as well as limitations). The first one, TerraServer2, is an 
online database operated by the Microsoft Corporation, 
providing search options through archived satellite images. 
The TerraServer-USA Website (which was used in this 
project) is one of the world's largest online databases, 
providing free public access to a vast data store of maps 
and aerial photographs of the United States.  
 
TerraServer is also said to be designed to work with 
commonly available computer systems and Web browsers 
over slow speed communications links. Although those 
restrictions were not an issue in the setting of this project, it 
provides a valuable opportunity for running mobile 
applications with TerraServer as well.  

 
The high fidelity of the satellite photography available 
through TerraServer provides a convincing argument for 
the viability of integrating satellite imagery into current 
map systems. The resolution of the picture shown in Figure 
2 is set to one meter per pixel. The maximum available 
resolution TerraServer is four times that (0.250 meters per 
pixel). 
 
The search option is not the only way of retrieving 
information from TerraServer, but image retrieval and GPS 
coordinate mapping can also be done via easy web services 
provided by Microsoft. An extension of our product to an 
online version is therefore feasible, but in our current 
version we have included support for generic satellite 
images ourselves. 
 
                                                 
2 http://terraserver.microsoft.com/ 

Figure 1. Visualization of real data collected with the 
GeoLogger and displayed using Simulöc 

Figure 2. TerraServer high resolution satellite 
image, showing Husky Stadium. 



GeoLogger. Though we used TerraServer to map building 
GPS coordinates, a tool for making more precise 
measurements was needed. For tracking down the exact 
GPS location of all bus stops included (27 in total), we 
used the wearable GPS-tool of GeoLogger3. The 
GeoLogger consists of an antenna and a logging unit, 
powered by either a rechargeable or an internal 9V battery. 
The flexibility of this tool provides high freedom of 
movement, and the only additional information needed for 
establishing connection between the exact location and its 
GPS coordinates, is a manual recording of the time at the 
wanted location (e.g. at a bus stop). Since the logger is 
continuously recording data (with a one-second frequency), 
these recorded points also provided us with an exact walk 
over campus. This data could then be loaded up into 
Simulöc to verify both the implementation of our tool as 
well as the GeoLogger. For coordinates not available to us 
with the GeoLogger, we used TerraServer data. 

Simulöc Visualizer 
Simulöc combines data about a person’s known schedule, 
bus activity, current location, and past movement history to 
learn movement patterns and predict future destinations. 
The visualizer uses global positioning data along with 
satellite imagery to display simulated user movement and 
bus activity.  This simulation system grew over the course 
of its development to be a rapid experimental environment, 
which allows for the implementation, testing and 
visualization of many different AI methods for location 
context-awareness and computations on movement 
patterns. 
                                                 
3 http://www.geostats.com/products.php 

Data gathering and visualization 
Combining our two GPS sources, the tool for data 
visualization provides an accurate and descriptive way of 
presenting the different data used. The interface provides 
the user with the opportunity of displaying any satellite 
image. By naming the image according to our name 
principles (let the name consist of the four GPS coordinate 
pairs for the corners of the image, e.g. TL(-
122.31281,47.65694), BL(-122.31291,47.64974), TR(-
122.29949,47.65686), BR(-122.29959,47.64966)1.jpg). 
This way, the application is flexible enough to handle any 
image, while still providing the correct GPS coordinates for 
every point on the map, using our mouse-over information 
display tool. The satellite images of the University of 
Washington campus used in this setting are actual images, 
collected from the TerraServer database. 
 
Also presented on the visual map are our own bounding 
boxes for all buildings on campus. These bounding boxes 
can individually be switched on and off and the 
highlighting scheme changed, to make the visual freedom 
as high as possible and configurable for every user and 
project setting. Also, the names of buildings and bus stops 
are printed, to make the visualization of the simulation and 
inference process easily available to any user. 

Simulation 
One of the most important parts in an artificial setting like 
ours is that the simulation closely matches real scenarios. If 
not, the confidence put to the test results cannot be very 
high, when used as an early evaluation for any real-world 
application.  
 
For accurate modeling of the real world, we conducted 
several interviews with students, to correctly get their 
average weekly schedules; containing information about 

Figure 3. Displaying TerraServer satellite images in 
Simulöc 

Figure 4. Displaying TerraServer satellite images (with 
labels and buildings highlighted) in Simulöc 



when they get to and from campus, what bus routes they 
ride, and the weekly schedules (on a five day basis). 
Information gathered from these interviews was used to 
structure our database of several schedule files, with the 
capability of adding an infinite number of individuals  
 
Busstop and busline data is gathered and parsed from the 
Seattle area bus transportation website 
(http://transit.metrokc.org). This information is then used to 
accurately simulate the arrival and departures of buses 
through campus.  
 
The person activity schedule files are read by the simulator, 
and their corresponding movement patterns are displayed 
on the visualization screen. The addition of uncertainty, 
using randomness, is done in two ways. Firstly, randomness 
is used in this setting to illustrate the fact that people do not 
always strictly follow their schedules. Secondly, a person 
might (with a certain probability) change his mind in 
midpath, and update his goal to be another location. To 
make the simulation more realistic, the new target goal 
must be within 500 ft. of the person’s current location. 
Even though these rules for modeling accurate behavior are 
very simple, the outcome can be viewed as most realistic. 

Learning movement patterns 
One of the most critical features of any location agent is the 
ability to keep track of the current state; such is especially 
true in an environment such as ours. The world we operate 
in contains an uncertainty as to where people will be 
heading next, which is connected to the learning problem 
of which bus stop and bus line will be accessed next. At 
best, these constraints on future information available only 
allow the agent to obtain a probabilistic assessment of the 
current state (and which are the plausible next ones). 

Movement patterns and uncertainty  
The inference process is simplified by the fact that our 
problem is set in a highly scheduled environment (on 
campus), so we implemented the possibility of random 
actions amongst the modeled people. Walking is most often 
not random by itself, but rather goal-directed. Introducing 
the fact of instant changes of goal for the walk (e.g. the 
sudden realization of you left your umbrella in a building 
you visited this morning), however adds an element of 
randomness and uncertainty to our setting. Also, the fact 
that users might be at different locations at given times 
each week (due to the instant decisions of changing 
movement pattern for a period of time), the introduction of 
the bus system further adds to the uncertainty. For dynamic 
worlds, such as the campus environment, we need a model 
that can handle this uncertainty in future observations. 

Markov processes 
To simplify the inference process, it is common to make 
the assumption of the world being looked upon as a series 
of snapshots, or time slices, wherein each time slice is 
treated as a time-state in the current world. Each state 
contains a number of stochastic variables, of which some 
are directly observable (such as our current location) and 
some are partially or totally unobservable (such as the next 
movement action in a random system). The observability of 
each variable can change over time (a fact that is often 
ignored for simplicity).  
 
However, there are some additional problems with this 
model. Due to the fact that the number of variables are 
unbounded (since they exist for every time slice, in an 
infinite time space), we have conditional probabilistic 
dependency on a number of parents that is very hard to deal 
with (infinitely many). The solution to this is two-fold, and 
includes the concepts of stationary processes and the 
Markov assumption. These assumptions simplify our model 
to only depend on laws that do not change over time and to 
only depend on the directly previous state, respectively. 
This type of Markov process is called a first-order Markov 
process (Markov Chain), and is written as 
 

P(Xt|X0:t-1) = P(Xt|t-1) 
 
The general Markov process is a system that can be in one 
of several (numbered) states, and can pass from one state to 
another each time step according to fixed probabilities. If a 
Markov system is in state i, there is a fixed probability, pij, 
of it going into state j the next time step, and pij is called a 
transition probability.  
 
A Markov system can be illustrated by means of a state 
transition diagram, which is a diagram showing all the 
states and transition probabilities (see Figure 5) below 
(notice that transitions with zero probability have no arc).  
 

Figure 5. Transistion diagram 



The same diagram can also be modeled by the matrix P, 
whose ijth entry is pij, Matrix P is called the transition 
matrix associated with the system. The entries in each row 
add up to 1. Thus, for instance, the above transition 
diagram would be modeled in its matrix form as in Figure 6 
below. 

 
A simple example. Let us now illustrate the use of Markov 
processes with a simple and informal example. A Markov 
model could look at a long sequence of rainy and sunny 
days, and analyze the likelihood that one kind of weather 
gets followed by another kind. Let's say it was found that 
25% of the time, a rainy day was followed by a sunny day, 
and 75% of the time, rain was followed by more rain. Let's 
say we found out additionally, that sunny days were 
followed 50% of the time by rain, and 50% by sun. Given 
this analysis, we could generate a new sequence of 
statistically similar weather by following these steps: 
 

1. Start with today's weather.  
2. Given today's weather, choose a random number 

to pick tomorrow's weather.  
3. Make tomorrow's weather "today's weather" and 

iterate, starting each iteration at step 2. 
 
What we would get when the above algorithm is applied to 
the probabilities stated above, is a sequence of days like: 
Sunny, Sunny, Rainy, Rainy, Rainy, Rainy, Sunny, Rainy, 
Rainy, Sunny, Sunny,… and so on. In other words, the 
"output chain" of the Markov reasoning would statistically 
reflect the transition probabilities derived from weather we 
observed. Such a Markov Chain, while similar to the source 
in the small, is often nonsensical in the large (which is why 
it is a terrible way to predict weather). That is, the overall 
shape of the generated material will bear little formal 
resemblance to the overall shape of the source, but taken a 
few events at a time, this simple model seems to work. 
 

Higher Order and Hidden Markov Models 
Whether the application of a first-order Markov process is 
appropriate to a problem setting depends on the domain 
itself. The loss of accuracy (through the assumption of the 
most previous state containing all needed information) can 
be remedied by increasing the order of the Markov model 
(that is, adding more parents into the dependence of the 
past). Increased accuracy can also be achieved by adding 
more state variables; depicting the fact that the process 

depends on additional variables, previously unaccounted 
for.  
 
Hidden Markov Model (HMM). In practice, there is a 
need for yet another kind of Markov Model, called Hidden 
Markov Model. The HMM illustrates the fact that the 
actual states of the world is not directly observable, but 
only indirectly do we interact with the states through our 
observations. Some (or all) of the states are therefore 
considered “hidden” from the external observer. 
 
There are a number of variations on HMM problems, e.g.  

1. The number of states and transition probabilities are 
known  

a. Given data, find the optimum (most likely) 
position of the change points.  

b. How precisely should the points be stated?  
2. The number of states is known, but the transition 

probabilities are not.  
a. Estimate the transition probabilities.  
b. What accuracy is appropriate for the 

estimates?  
3. The number of states, and the architecture, are 

unknown.  
a. Find an HMM which models the data "well". 
b. The simplest model has one state, the most 

complex model has one state per data value; 
almost certainly neither extreme is justified. 
Quantifying model complexity is therefore a 
crucial issue. 

Movement patterns and Markov Models 

For the specific setting we are facing in this paper, there are 
some arguments concerning which model is needed for 
accurately learn and predict the behavior in our system. As 
stated earlier, this decision depends highly on the domain 
the prediction is taking place in.  

Turning our attention towards the real setting of the 
problem we are addressing, we see that it contains many 
challenges for the AI used. To be able to correctly infer 
movement patterns and make predictions on behavior 
based upon those, we need a model that addresses all the 
problems of the real world. The challenge here though, lies 
in the fact that the real world is not perfect: with noisy data, 
randomness, and other factors in play. In the span of this 
mini project, we have had no opportunity to collect real 
data over a long period of time, and also no “real” persons 
to follow during the same period. A simulator was therefore 
constructed for the sake of this project, and it allowed us to 
effectively control our world and running a sizeable amount 
of experiments, without losing connection to the real world. 
Fully accounting for all difficulties of the real world is a 
challenging problem, as the use of a three-level dynamic 
Bayesian network in (Liao et al. 2004) shows. 

Figure 6. Transition matrix 
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Our goal throughout the course of this project has been to 
model the real world as accurately as possible in our 
simulator, but still some limiting assumptions has have 
been made, thereby affecting our choice of process model. 
Firstly, since we are moving in a simulated world, there is 
no real noise on the data. In the real world, using the GPS 
system, there are of course several ways noise could be 
introduced into the data. If, for instance, the signal will beis 
lost for a while (traveling in a tunnel, or entering a 
building), only low credibility can be assigned to the data 
point directly before and directly following the loss of the 
signal. Also, as with all electronic devices, the reception of 
the logger used is somewhat affected by magnetic fields in 
the surrounding world. 

In our simulated world, we are still using collected real 
GPS data points, but with the simplification that they are 
static, not dynamically generated (although our system is 
fully capable to handle dynamic generation of data points 
as well). This simplification reduces the amount of 
uncertainty we have to take into account. Still, the 
randomness existing through the user’s sometimes instant 
change of goals, forces us to use process for probabilistic 
learning and reasoning. 

When turning to the question on of whether or not or 
problem setting qualifies as an instance of the Hidden 
Markov problem domain, let us reason about what 
information we have available. What we need, to correctly 
predict the movement patterns, is to visit every location 
possible (including bus stops and buildings) and the 
transition probability of taking the transition from a given 
location (state) to the next. As we have done extensive 
mappings all over campus (and also all locations in GPS 
coordinates are available), the information for the first part 
of the above problem formulation is certainly satisfied. 
Unfortunately, we are missing the transition probabilities, 
with which the user will choose which state to move to 
from the current location. Therefore, our problem setting 
falls under point 2, on the listing on the previous page; the 
transition probabilities need to be estimated. 

Are the states of the Markov Model for the setting 
discussed in this project then really hidden? Are they not 
all known, and fully accessible by the GPS coordinates or 
the location name? All of the previous reasoning is true, 
but as pointed out by (François et al.), any given state can 
be on several paths through the world, and the states are 
therefore in practice hidden (although they can be deduced 
form observation sequences). 

Implementing Markov Models 
As our framework is designed to handle and visualize any 
inference algorithm, we started out by running several tests 
on the more basic Markov Models. The variants 
implemented are both derived from the simple first-order 

form, where dependence on parent nodes other than the 
directly previous one, is assumed to be non-existent. These 
models are very well suited for quick implementation, but 
can still generate some interesting results and find possible 
flaws in our design. 
 
The implementation is, as hinted suggested earlier, pretty 
fairly straight-forward, and relies on two simple formulas 
derived from a more general one. The goal of evaluation, 
using a Markov Model, is to estimate the probabilities of 
seeing a certain output sequence. In the first-order case, the 
probability of arriving in a state only depends on the most 
recent state before. The formula below sums up these 
observations, and it’s states using the fact that the 
probabilities of seeing a certain sequence as time goes from 
1 to T (left side), is the probability of seeing the initial 
state, p(s1), multiplied by the product of the conditional 
probabilities of ending up in st given st-1 (a transition 
probability). 
 
 
 
 
 
 
Assuming that we have the probability of s1 being our 
initial state; p(s1), we only need to model the conditional 
probabilities to the far right. We used two different 
methods for establishing these probabilities, to then be able 
to evaluate the probability of seeing the entire sequence. 
The easiest way of doing this is to just perform a count; a 
count which gives us the number of times a given output B 
is observed together with its input A, divided by the 
number of times we observed A. The formula for this is 
given below. 
 

 
The formula above illustrates what is called the Naïve first-
order Markov Model. To do better, we will include the 
addition of a 1 in the numerator, and the addition of the 
number of symbols available in the system, Nsymbols, to the 
denominator. By doing this, we add the notion of a uniform 
prior over the transition probabilities. The enhanced 
formula will therefore be as presented below. 

 



Testing and results 
The extensive work on the visualization part proved to be 
highly interesting, and the testing of our implemented 
framework for inference proved to be equally so. 
 
The settings for our experiments were as follows. Having 
implemented the two first-order Markov Models above into 
our framework, there were some interesting tests to run; for 
proving the accuracy of our system, but also to evaluate the 
effect of time and randomness on the inference process. 
 
For testing purposes, we ran three different Markov Models 
on the test data; the first-order naïve model, the first-order 
model with uniform prior and also the naïve one with a 
time dependency (that is, what minute in the week the 
action was taken was added as a parent). 
 
For the first setup of tests, we ran the models on a 
simplified schedule file, which held the same day schedule 
for every day of the week. Also, randomness was excluded 
from the system. By creating the simplest available setting 
for the models, we wanted to first establish that the models 
performed accurate predictions. Indeed, all three models 
got a perfect score of predicting where the person would 
move next. These results are verified in the graph below, 
where all three models can be seen converging towards the 
result that gave them, individually, the optimal probability 
setting for doing perfect inference. 
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In the second setting, we introduced the models to a more 
complex schedule, but still without random goal changes in 
the simulated world. This setting was then used in running 
all three models, over a simulated one and a two year time 
period. The distinction between the simpler and the more 
complex models now became very clear. The importance of 
including the additional information of departure time (in 
the naïve model) also became clear. The two first-order 

models both dropped to an accuracy of 61% correctly 
inferred transitions. The time dependant model however 
remained on a high accuracy of 92%, while being tested on 
about 3500 path predictions in the two year setting. 
 

Test Run Description Total 
Possible 
Correct 

Pred. 

Correct 
Pred. by 

Naïve 
Model 

Correct 
Pred. by 
Naïve w/ 
Uniform 

Prior 

Correct 
Pred. by 
Naïve w/ 

Time 
Model 

1. Uniform daily activity 
schedule; no randomness in 
simulation; ran for one 
simulated month. Used to 
verify correctness of 
learners. 

199  199 
(100%) 

199 
(100%) 

199 
(100%) 

2. Uniform daily activity 
schedule; 5% goal 
randomness 0.01% in-route 
goal randomness; ran for 
one simulated month 

212 140 
(66.0%) 

175 
(82.5%) 

166 
(78.3%) 

3. 5-day daily activity 
schedule; no randomness; 
ran for one simulated year 

1776 1082 
(60.9%) 

1078 
(60.7%) 

1640 
(92.3%) 

4. 5-day daily activity 
schedule; no randomness; 
run for two simulated years 

3551 2181 
(61.1%) 

2176 
(61.2%) 

3310 
(93.2%) 

5. 5-day daily activity 
schedule; 5% goal 
randomness 0.01% in-route 
goal randomness; ran for 
two simulated years  
 

3749 2066 
(55.1%) 

2044 
(54.5%) 

2936 
(78.3%) 

6. 5-day daily activity 
schedule; 30% goal 
randomness 0.01% in-route 
goal randomness; ran for 
two simulated years  

4542 1012 
(22.28%) 

1429 
(31.46%) 

1540 
(33.9%) 

7. 5-day daily activity 
schedule; 5% goal 
randomness 0.5% in-route 
goal randomness; ran for 
two simulated years 

4988 1157 
(23.9%) 

1537 
(30.81%) 

1926 
(38.6%) 

 
For our two measures of randomness: changing a goal 
randomly from a given start location and turning randomly 
in midroute, we introduced small values of 5% and 0.01%, 
respectively. This setting was now evaluated for all three 
Markovs, over a simulated one month period and then over 
two years. For the shorter time period, the uniform prior 
model dominated the other models, with 82% accuracy, 
compared to 66% and 78% for the naïve and the naïve with 
time dependency, respectively. Over the longer time period 
of two years, the time dependent one widely surpassed the 
less complex ones, with 93% compared to 61% for both. 
These results can be explained by the fact that over a short 
time period, the time dependent one have not seen enough 
examples of randomness, and will score less over a longer 
time period. 
 



However, when either one of the random values was 
increased by much (to 30% and 0.05%, independently), the 
performance of all three models drops sharply to 22% for 
the naïve model, 30% for the model with uniform prior 
and, on average, 36% for the naïve with time dependency.  
 

Inferencing Comparison
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Clearly, the results achieved through this testing (which 
was set up more as a verification of the visualization and 
inference framework), were not overly surprising. All three 
models were able to perfectly classify a repeated day 
schedule with no randomness, even in a short simulation 
time period of 1 simulated month. As the complexity of the 
schedules increased, the time-dependent first-order 
Markovian left the other two models far behind. This 
pattern was even more obvious when a small amount of 
randomness was included in the setting, and a longer time 
period given to learn the transition probabilities. 
Concluding, however, that all three systems did poorly 
when randomness was brought up to a more significant 
level, shows us the need for stronger models in such an 
unpredictable environment. 

Future work 
Tis section introduces the reader to some of the concepts 
that can be added to extend and further evaluate the 
performance of Simulöc Visualizer. 
 
To add an extra measure of reality to the simulation, there 
are a few things that could be extended. Given more time, 
another natural feature to introduce would be that of 
routing.  Routing in an environment such as the one 
Simulöc is working in basically means avoiding obstacles 
(at the simplest level). To extend the visual accuracy, the 
fact that the people walking around should be avoiding 
larger obstacles is of course obvious. An additional benefit 

of this extension is also an improvement of the walking 
time elapsed; making it more realistic. 
 
A limitation of the GPS system is its inability to record data 
information at all times. When losing the signal, e.g. when 
entering a building or tunnel, no data can be recorded. 
Also, data recorded just prior to and directly after entering 
and exiting the building cannot be fully trusted. These are 
just limitations and sources of error directly associated with 
user location and movement, and a full discussion on 
common errors is given in Arpin 2003. Though GPS 
systems are widely promoted as the ultimate navigation and 
vehicle-tracking tool, GPS systems are in fact fragile, prone 
to error, easily disabled, and best suited for navigation 
purposes only. Since a satellite is orbiting at a 20.000 km 
distance from the objects it is currently tracking, errors due 
to receiver noise, atmospheric issues and orbital 
miscalculations can and do commonly happen.  
 
To overcome the somewhat limited trustworthiness of the 
GPS system, an effort to introduce a compliment system to 
our current one must be made. The fact that the current 
simulation takes place on the University of Washington 
campus, introduces some interesting possibilities. Available 
on the UW campus, the Place Lab project provides an 
alternative way of collecting data for accurate positioning. 
Place Lab is a software alternative, providing device 
positioning for location-enhanced computing applications. 
The software provides positioning both indoors and out, 
which would make it suitable for an application like the 
Simulöc. 
 
The Place Lab approach is to allow commodity hardware 
clients like notebooks, PDAs and cell phones to locate 
themselves by listening for radio beacons such as 802.11 
access points, GSM cell phone towers, and fixed Bluetooth 
devices around us in the environment. These beacons all 
have at least semi-unique IDs, for example, a MAC 
address. Clients compute their own location by hearing one 
or more IDs, looking up the associated beacons’ positions 
in a locally cached map, and estimating their own position 
by triangulation.  
 
These usual approaches to solve the problem of lost signal 
when moving indoors, is by assigning it a state, say 
BUILDING (Liao et al. 2004), and treat this as a location. 
A more intelligent approach would be to make use of the 
Place Lab system for continuously tracking the user inside 
the building. This approach presents us with several 
advantages; 1) We have a compliment for verifying GPS 
data outside. 2) We have an opportunity to treat a 
BUILDING not only as a whole location, but also divide it 
further into sublocations. This way, users such as the 
cognitively challenged can use the continuous benefit of 
any location-aware application, both outdoors and indoors. 
3) We can make optimal use of the highest quality data 



available, and will not suffer from the loss of accurate data 
in moving from inside to outside and vice versa. 
 
Another point we want to stress as important future work, is 
the implementation and testing of additional inference 
techniques in our system. The framework created in 
Simulöc makes the efficient implementation and testing 
easy for any possible inference model. While we only 
implemented a few simple inference models, more 
advanced models exist and can be implemented and 
plugged in for simulation and visualization. 
 
In the current version of Simulöc, the user will be provided 
with an aid as to their navigation on campus. Buses are 
available in the simulation, but not included as an option 
for randomly changed goals. Given more time, we would 
like to extend the current functionality to include the bus 
stops in the simulation. This will give us the added 
functionality of being able to make recommendations for 
which bus stop to go to and which bus to take, given the 
Mybus.org times and the preferred user bus lines. These 
preferences can also be learned, using an inference model 
of the same type as for the persons’ schedules.  
 
The last two issues we have implemented, but want to 
extend, is the use of larger maps and more actual people to 
provide test results. In the current version of Simulöc, maps 
can easily be interchanged (as described earlier), but 
providing the user with an easy scrolling opportunity 
between satellite images displayed on the interface, would 
be optimal. Even though extensive interviewing was 
conducted on schedules, we would like to provide the user 
of Simulöc with a larger schedule database, with 
classification for testing persons of different behavior and 
movement pattern in the application. 

Related work 
The field of context-awareness in software agents, 
combined with the task of localization and tracking, has 
been a focus of interest in quite a few papers in recent 
years. The value of a localization aid, for everybody as well 
as those with special needs, is a topic found interesting by 
many (in academic environments, as well as industry). We 
present here a brief summary of some of the more 
important works; in terms of the impact it had on our 
project, but also the value they hold for future research and 
development in the field. 
 
The aspect of aid of the kind of products discussed in this 
paper, comes to a most important use in the case of helping 
cognitively disabled (Patterson et al. 2002). As an example 
of such individuals, the world’s ever-increasing number of 
Alzheimer’s patients provides a target group, where 
context-aware agents are certainly useful. The paper of 
(Patterson et al. 2002) stresses the importance of active 

agent-intervention in times of challenge or confusion for 
the patient, and has its focus on from the background 
identifying occurring abnormal (and potentially harmful 
and confusing) behavior. The balance of missing 
potentially dangerous activities, while not disturbing the 

user with unwanted warnings, is a task that requires solid 
inference from learning, and even more so while predicting 
future behavior as we do. Combining the positive aspects 
of awareness with that of prediction accurately could 
enhance the aid for cognitively disabled greatly. 
 
Many techniques have been suggested to accomplish the 
task of tracking and learning a person’s behavior, using 
his/her location at given times. The abundant source of 
information from GPS is used in a similar way to ours in 
(Liao et al. 2004). The setting is that of a hierarchical 
Markov model for learning the movement pattern of the 
user, and applying the filtered GPS data to an underlying 
graph of roads, intersections and transfer points. The 
system provides astonishingly accurate predictions of 
behavior (98% correct after training on 30 days of 
everyday movement). While the importance of such a 
system for future research is great, (Liao et al. 2004) also 
presents a way of detecting user errors, by tracking two 
models; one based on learning and the other one on 
potential, but probabilistically less likely, actions. When 
the user takes an “unexpected” action, the likelihood of the 
potential model is increased. While our model also includes 
leaning under the presence of seemingly random behavior, 
the tracker system suggested can in a more developed form 
hold great impact on a system such as ours. 
 
Turning to other applications of the context-aware product, 
the paper of (Starner and Ashbrook 2004), describes its 
usefulness in both single-user and multi-user contexts (but 
focuses on the latter). In moving from single-user 
applications, (such as e.g. reminders of various tasks and 

Figure 7. Simulöc visualization showing movement 
patterns after two simulated months with four people 



transmission optimization), to the multi-user domain, the 
potential use for location-based learners is huge. In joint 
interaction with both environment and other users, a vision 
on a society of greater social interaction and mutual 
agreeability is close at hand. The paper introduces an 
interesting notion of using the movement patterns to learn 
places, defined as all geographical points where the user 
stays a certain amount of time, and then using additional 
data for clustering correlated places into locations and 
sublocations. This way, no information is needed before 
(as our predefined buildings), and the system makes 
efficient use of all data available. While spending much 
time on this building of the inference base, this idea can be 
applied to previously unknown environments, and 
combined with the movement data of other (maybe local) 
users, to give a heuristic for the prediction algorithm in our 
system. Also, the movement pattern of others learned in our 
system, could be used as a solving base for problems in a 
highly scheduled environment (like ours on campus), such 
as quick adaptation to drastic schedule changes from 
semester to semester. 
 
The use of context-awareness in a mobile setting using cell 
phones is discussed in François et al. 2004. The use of 
HMMs in a similar way to ours is here the basis of an 
application for allowing for smooth handovers of mobile 
hosts (MHs) between access points (APs). The Hidden 
Markov Model is used for modeling and learning the 
predicted path a user is on. Thereby, earlier notification to 
neighboring APs can be sent out, notifying that a user will 
be accessing them soon. This adds another layer to the 
context-awareness, by allowing for a conditional use and 
transformation of information between internal states, 
rather than being output to an external viewer. For a system 
like ours, such an idea could be used in the sense of 
internal “communication” between locations, with the 
intention of e.g. preparing the potentially following 
location for the arrival of one or many individuals. 

Conclusion 
In conclusion, we’ve shown how the Simulöc simulation 
system can be used to investigate various location-based 
inferencing models. Simulöc, as a visualization system, is 
particularly useful for researchers to observe differences in 
their programmed inference models (as the predicted 
locations as well as the actual locations are drawn on the 
screen). We used three different Markov models to validate 
Simulöc framework, one of which – the naïve Markov 
model with time dependency – was shown to work better 
than the others. 

Contributions 
1. Jon Froehlich: Designed and wrote Simulöc including 
the tests to evaluate our three Markov inference models. 
Assisted with the paper (wrote abstract, edited paper). 
 
2. Jonas Klink: Primary author on most of the paper. 
Helped design Markov model algorithms for predicting 
location. Created Markov model diagrams and equations. 

External Code 
All code was written from scratch for this project except 
for:  

• The Vector2D class which was previously written 
by Jonas and then updated by Jon.  

• The four Polygon2D classes which are open 
sourced by John Reekie at the University of 
California. 
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