
An Evaluation Study of Machine Learning Techniques for Identifying Spam

Gaurav R. Bhaya and Harsha V. Madhyastha
Department of Computer Science and Engineering

University of Washington,
Seattle, WA 98195

Abstract

In this work, we investigate the use of two kinds of machine
learning techniques - Decision Trees and Naive Bayes - ap-
plied to the problem of spam classification. We first consider
building a decision tree for this purpose and then, investigate
building an ensemble of decision trees using boosting. Deci-
sion trees are seen to give fairly good classification accuracy
of around 92% and with the use of an ensemble, this accu-
racy further increases to around 95%. However, overfitting
with respect to the training data is also observed in both cases.
Our explorations with the Naive Bayes classifier show that it
yields extremely high classification accuracy of the order of
99%. Its performance was however found to further improve
by using a simpler binomial model assumption and incorpo-
rating one of the modifications to Naive Bayes suggested in
(Rennieet al. 2003).

1 Introduction
One of the most important real-world problems that com-
puter science faces today is putting an end to the ever-
increasing amount of spam mail. Being able to correctly
classify an email as spam is a challenge that several re-
searchers are looking to address. This problem is nothing
but an instance of text classification with two classes -spam
and non-spam. Several machine learning techniques have
been applied to solve this problem. In our work, we inves-
tigate two such approaches to build a spam classifier - De-
cision Trees and Naive Bayes. We investigate the working
of both these approaches on well-known corpora of labelled
spam/non-spam documents.

The first solutions to this problem includedRule-Based
approaches (Apache 2004; Cunninghamet al. 2003;
Cohen 1996) which were based upon identifying a set of
rules to classify an email asspamor non-spam. Even though
this process was automated a simple rule based classifi-
cation was not sufficient to classify emails because it in-
volved a rigid decision procedure. Some other similar tech-
niques (Orasan & Krishanmurthy 2000) included linguistic
analysis of spam emails from a corpus of collected emails.

Some the more popular approaches to Spam filtering in-
cluded applying popular machine learning algorithms such
as Naive Bayes and Decision Trees. Naive Bayes has been

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

successfully applied in many studies on email classifica-
tion (Lewis & Ringuette 1994; Mitchell 1997; Pantel & Lin
1998). More expressive techniques such as Bayesian classi-
fiers have also been applied to the problem of filtering junk
E-mail (Koller & Sahami 1997; Sahamiet al. 1998). (Ren-
nie et al. 2003) proposed various techniques to improve
the performance of a Naive Bayes classifier. We implement
some techniques proposed in this in our comparative study
on spam classification.

Memory based techniques represent another class of suc-
cessfully applied methods to anti-spam filtering (Sakkiset
al. 2003). These techniques do not build a model for spam
classification but store the training data and evaluate the test
instances based on their similarity with respect to training
data. While these models adapt well to changes in spam-
mers strategies (Fawcett 2003; Dalviet al. 2004) these tech-
niques are computationally expensive as it requires process-
ing of training data at the time of testing. (Androutsopoulos
et al. 2000) is a comparative study on memory-based sys-
tems and Naive Bayes approaches.

Techniques such as boosting have been shown to work
well in the arena of spam classification (Carreras & Marquez
2001). Boosting outperforms the induction of decision trees
and is very robust to over-fitting. While this technique is
expensive due to the increased complexity of base learners,
it allows boosting to obtain higher precisions as compared
to decision tree induction.

We first present our experience with use of decision trees
in Section 2. Then, in Section 3, we discuss our explorations
using an ensemble of decision trees. We follow that with a
discussion of our experience with the Naive Bayes classi-
fier in Section 4. Finally, we lay down our conclusions in
Section 5.

2 Using Decision Trees
Decision tree induction is one of the simplest and most
successful supervised learning algorithm. This section de-
scribes our implementation of decision tree induction for the
spam classification problem and enlists some techniques that
we used to boost the performance of a naive decision tree
learner.

At a high level, given the labeled training data classified
asspamandnot-spamour decision tree learner learns a bi-
nary decision tree which contains one classification attribute

at each node of the tree. The size of the decision tree is
influenced by the number of attributes in the data and the
size of training data itself. However, the order in which at-
tributes are evaluated in different subtrees are independent.
Furthermore, not all attributes may be used to classify the
given email asspamor not-spam. In other words, the depth
of leaves may not be the same. However, it is constrained by
the number of attributes. We assume that the attributes for
classification have been identified apriori using some other
techniques and their values are obtained by parsing emails.
The attributes used by our classifier correspond to word oc-
currences, number of capitalized characters in an email, the
sender and other attributes known to influence email classi-
fication as identified by (Formanet al.).

Once the set of attributes have been identified, the next
step is to build the decision tree itself. Many techniques
have been used to decide the order in which attributes must
be considered in a decision tree. The most commonly used
technique is based on entropy gain or the amount of infor-
mation provided by each attribute. Information theory mea-
sures information gain in terms of bits i.e., the number of
bits of information provided by knowing the value of a given
attribute. Mathematically, if the possible answersvi have
probabilitiesP (vi), then the information contentI of the
actual answer is given by:

I(P (v1), P (v2), .., P (vn)) =
n∑

i=1

−P (vi)logP (vi) (1)

The information content after classifying the current at-
tribute is the weighted average of the information conveyed
by each individual branch of the subtree. The information
gain is thus defined as the difference in the information con-
tent before and after classification on the given attribute.
Based on the entropy values of classification, an attribute
that provides the maximum information is chosen for classi-
fication.

While the above technique works well if the domain for
an attribute is discrete, in the case of the spam classification
problem, many of the attributes chosen have continuous val-
ues. In such cases, we need to choose an appropriate point in
order to split the data into multiple classes. We present some
simple heuristics to decide thepoint of splitfor an attribute
with a continuous domain.

• Mid-point Split: This is the simplest possible heuris-
tic. It divides the domain of an attribute equally in two
halves around the mid point of the domain and hence the
name. This heuristic ignores all information provided by
the training data and hence is likely to perform poorly.

• Absolute Error Split: Next in line to the Mid-point Split,
is a heuristic which makes use of the training data in some
form to decide a good point to classify data. The Absolute
Error based Split divides the data such that the absolute
error of classification based on the training data is mini-
mized. For each classified sub-domain the absolute error
is defined as the number of elements of the minority class
(of that sub-domain) that are present in that sub-domain.

• Mean of means Split: The first step involved in classi-
fication based on the Mean of means Split is the compu-
tation of the mean value of the attribute for each class of
data. The mean of individual mean values is then cho-
sen as the value classifying the domain into sub-domains.
While this heuristic captures the relative position of all
data in a particular class, it does not capture the spread of
data elements in a class. It may, thus, fail to find a point of
perfect classification (based on the given attribute) if it ex-
ists. However, it is a simple and efficient way to compute
agoodpoint of split.

• Information Gain: This heuristic considers all possible
positions of split such that the number of elements on each
side of the split point is different as compared to the pre-
vious point. It chooses the point which provides the max-
imum information gain. It can be proved that the point
of maximum entropy must lie between points which be-
long to different classes (rather than the same class). This
observation reduces the number of positions that need to
be considered in order to find the mostinformativesplit
point. This heuristic would find the optimal point of split
for a given attribute if it provides complete information.

Evaluation of Decision Trees
In order to evaluate the performance of decision tree learner
we implemented a decision tree algorithm in Perl. The pro-
gram generates a decision tree based on training data in stan-
dard XML format. This is then used by other scripts to test
its performance on other test data. In order to train and test
the learner, we used the data provided by Spambase (Forman
et al.) which is a repository of over 4000 labeled emails.
Using 57 attributes identified by Spambase to the decision
tree learner, our evaluations answer the following questions.
questions:

1. Can decision trees be used in spam classification?

2. What heuristics (discussed earlier) work well?

3. It is well known that over fitting of data or noisy data af-
fects the performance of decision tree significantly. Does
a decision tree learner for spam classification show any
signs of over-fitting?

4. How does the learners knowledge increase as more train-
ing data is provided to it?

Table 1 shows the performance of four different heuristics
discussed earlier on the given data sets. The performance
shown in the table is based on 3896 instances of training
data and 500 instances of test data. While the naive Mid-
point split never misclassified anon-spamemail as spam, a
careful observation reveals that this heuristic based on ma-
jority in a class never classified any email as spam. The num-
ber of false negatives are very high to consider this heuristic
for further study. While the performance of the remaining
heuristics is comparable, the Mean of means Split and Infor-
mation gain heuristics showed less than 1% error on training
data and less than 10% error on test data. Mean of means
Split classified emails with 91% accuracy with lesser num-
ber of false positives than other heuristics. Thus, the table
suggests that some heuristics such as Mean of means Split

 10

 20

 30

 40

 50

 60

 70

 1000 1500 2000 2500 3000 3500

E
rr

or
s

Size of training data

False Positives
False Negatives

Total Errors

Figure 1: Performance of Mean of mean Split heuristic for
different sizes of training data.

and Information gain work better than others. Furthermore,
the table shows that decision tree learning can in fact be ap-
plied to the spam classification problem to obtain up to 91%
accuracy.

Figure 1 shows the performance of Mean of means Split
heuristic as the size of training data is varied. As the size
of training data set (sample set) increases, the number of
errors on the test data reduces. A significant cause of this
reduction appears to be due to the reduction in the number
of false positives, while the number of errors due to false
negatives is relatively constant.

Figure 2 demonstrates that the decision tree learner over-
fits the training data, as a result of which the performance of
the learner degrades with the increase in the size of the tree.
The figure shows that both the heuristics achieve their max-
imal performance if the tree were pruned at the depth of 7,
i.e., all decisions were made on or before the 7th level of the
tree. This figure also explains the poorer performance of In-
formation gain heuristic as compared to the Mean of means
Split heuristic in Table 1. Pruning the tree at the right level,
Information Gain heuristic outperforms the Mean of means
heuristic and achieves an accuracy of about 92.8%.

3 Ensemble Learning
Ensemble learning is a common method used to boost the
performance of learning algorithms. The idea of ensemble
learning methods is to select a whole collection, or ensemble
of hypotheses (in this case decision trees) and combine them
to make a prediction. Ensemble learning assumes that the
errors made by different learners are independent and hence
a majority vote is better than any of the individual learners.
While this may not completely be true, ensemble learning
has been applied successfully in the past.

In the case of the spam classification problem, we use one
particular ensemble learning technique called asboosting, to

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 470

 5 10 15 20 25

of

 C
or

re
ct

 R
es

po
ns

es

Prune Depth

Mean of means Split
Information Gain

Figure 2: Effect of pruning the decision tree on the perfor-
mance of Mean of means Split and Information Gain heuris-
tics.

improve the quality of our classification. In boosting, each
decision tree learner is trained on a subset of data, sampled
from a weighted training set. As each learner in the ensem-
ble is trained, the weight of a data item is altered based on
the performance of the trained learners on that data item. For
example, if all the trained learners classify a given data item
incorrectly then its weight is increased while if all learners
classify a given data item correctly then its weight is de-
creased. In our implementation of an ensemble of decision
tree learners, the weight of a misclassified data point is dou-
bled. All weights are then normalized.

Evaluation of performance of the Ensemble
In our study we considered an ensemble of up to 9 decision
tree learners based on the Mean of means Split and Infor-
mation gain heuristics. Our experimental setup remains the
same as the one described in Section 2. We pose the follow-
ing questions to evaluate the performance of an ensemble:

1. How many learners need to be present in an ensemble?

2. How does the ensemble perform on training data and on
test data?

3. How does over-fitting affect the performance of an ensem-
ble?

Figure 3 shows the performance for various sizes of the
ensemble using the Mean of means Split heuristic on the
training data itself. Each learner in the ensemble is given
randomly selected items from the data set. The number
of items given to each learner is captured by the parameter
Sample size. Clearly as the sample size for each learner is in-
creased the performance of the individual learner improves
and hence the performance of the ensemble as a whole. Fig-
ure 4 shows a similar result on training data using the In-
formation Gain heuristic. It is worth mentioning that for

Heuristic Training Data Test Data
Errors False + False - Errors False + False -

Mid-point Split 1504 (38.6%) 0 1504 191 (38.2%) 0 191
Absolute Error Split 54 (1.38%) 4 50 61 (12.2%) 25 36
Mean of means Split 23 (0.59%) 1 22 45 (9%) 22 23

Information gain 26 (0.66%) 15 11 48 (9.6%) 25 23

Table 1: Comparison of heuristics for dividing a continuous attribute domain in a decision tree learning algorithm. The results
shown here are calculated over 3896 instances of training data and 500 instances of test data.

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(%

 c
or

re
ct

ly
 c

la
ss

ifi
ed

)

Learners

Decision trees with mean split

Sample size=1000
Sample size=2000
Sample size=3000
Sample size=3500

Figure 3: Performance on Mean of means Split ensemble on
training data.

a sample size of 1000 the sudden increase in performance
from 2 learners to 3 learners is owing to the increase in the
information available to the learners as a whole. This clearly
suggests that a sample size of 1000 is insufficient for training
a decision tree based learner.

Figures 5 and 6 show the performance of ensemble on
test data for Mean of means Split and Information Gain
heuristics respectively. While the performance of the en-
semble improves with the increase in the number of learners,
the figures show that five learners are sufficient to reach the
maximum performance of the ensemble. The performance
gain due to any additional learners in the ensemble is not
significant.

Figure 7 demonstrates the effect of over-fitting on the en-
semble. Like a signal learner suffers from over-fitting, an
ensemble of decision tree learners also suffers from over-
fitting. The performance of a decision tree ensemble is not
the best at the maximum depth of the decision tree. How-
ever, the figure suggests that the point of optimal perfor-
mance depends upon the sample size used while training the
ensemble. The figure shows that ignoring the effects of over-
fitting the ensemble achieves an accuracy of up to 94.8%.

Figures 8 and 9 show the number of votes casted by the
ensemble for the expected classification of the emails. The

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 2 3 4 5 6 7 8 9
A

cc
ur

ac
y

(%
 c

or
re

ct
ly

 c
la

ss
ifi

ed
)

Learners

Decision trees with Information Gain Split

Sample size=1000
Sample size=2000
Sample size=3000
Sample size=3500

Figure 4: Performance of Information Gain heuristic on
training data.

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(%

 c
or

re
ct

ly
 c

la
ss

ifi
ed

)

Learners

Decision trees with mean split

Sample size=1000
Sample size=2000
Sample size=3000
Sample size=3500

Figure 5: Performance of Mean of means Split heuristic on
test data.

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(%

 c
or

re
ct

ly
 c

la
ss

ifi
ed

)

Learners

Decision trees with Information Gain Split

Sample size=1000
Sample size=2000
Sample size=3000
Sample size=3500

Figure 6: Performance of Information Gain heuristic on test
data.

 450

 455

 460

 465

 470

 475

 4 6 8 10 12 14 16 18 20

of

 c
or

re
ct

 r
es

po
ns

es

Prune Depth for Decision Trees

Overfitting (Ensemble)

Sample size=3000
Sample size=3500

Figure 7: Effect of over-fitting on the ensemble.

Figure 8: Votes by Ensemble using Information Gain Split
on training data.

Figure 9: Votes by Ensemble using Information Gain Split
on training data.

figures show that both in case of training data and in case of
test data, most of the trees in the ensemble vote correctly. In-
terestingly, the probability thati trees in the ensemble voted
correctly is more than (or at least as much as) the probabil-
ity that only i − 1 trees voted correctly, both in case of test
and training data. As one might expect, these differences are
lower in case of test data than in case of training data.

4 Naive Bayes
The second learning approach we used for spam classifica-
tion is the Naive Bayes technique. Naive Bayes considers
every document to be a bag of words and classification is
based on the assumption that words assume a multinomial
distribution. For classification, there are assumed to be a
fixed number of classes,c ∈ {1, 2, . . . ,m} and the param-
eter vector for every classc is θc = {θc1, θc2, . . . , θcn},
wheren is the total number of words considered. The like-

Figure 10: Performance of standard Naive Bayes on the
Spambase dataset with different heuristics for estimating
document lengths

lihood of a documentd belonging to a classc is given by,

p(d|θc) =
(Σifi)!
Πifi!

Πi(θci)fi (2)

wherefi is the count of the number of occurrences of
word i in documentd. Given a prior distribution over the
set of classes,p(θc), the classification rule is

l(d) = argmaxc[logp(θc) + Σifilogθci] (3)

However, before this classification can be applied, the pa-
rameters of the modelθci(i ∈ [1, n]) and the prior probabil-
itiesp(θc) need to be determined. Given a set of documents
to train on, these parameters are easily computed as the fol-
lows. The estimate forθci is simply the number of times
word i appears in the documents in classc (Nci), divided by
the total number of word occurrences in classc (Nc).

θci =
Nci + αi

Nc + α
(4)

whereαi is a smoothing parameter andα is the sum of all
values ofαi. In our work, we considerαi = 1 for all words.

It is clear that the Naive Bayes approach is extremely sim-
ple, both in building the model given a set of training docu-
ments and in classifying a given document once the model is
built. It is due to this simplicity that even though the multi-
nomail distribution assumption is theoretically way off the
mark, it is an extremely popular technique chosen to im-
plement. In fact, surprisingly, Naive Bayes has also been
known to work pretty well for spam classification inspite of
its theoretical frailties. In this work, we study the perfor-
mance of Naive Bayes in spam classifation and investigate
approaches to improve its performance.

Evaluation on Spambase data
We first studied the performance of Naive Bayes on the
Spambase database (Formanet al.). In this dataset, 48

Figure 11: Distribution of number of errors in classification
with number of classifiers in the ensemble

words have been pre-chosen and for each document, the
parameter specified for wordi is the fraction of words in
that document which wordi constitutes. However, for
both building the model as well as for classification, Naive
Bayes requires the actual count of the number of times each
word occurs in every document. Hence, we employed three
heuristics for estimating the length of each document.

• Constant length: Assume every document is of the same
length. Even with this assumption, an actual value for this
constant length needs to be chosen. However, in our stud-
ies, we found that the performance does not vary much
with the choice of this constant length.

• Min across documents: For each word, determine the
document in which it constitutes the least non-zero frac-
tion of words and assume that in that particular document,
this word occurred exactly once. Compute the length of
as many documents as possible using this heuristic, and
then assign the length of all remaining documents to be
the average length of the ones already assigned.

• Min across attributes: For each document, determine
the word which constitutes the least non-zero fraction of
the document (among the chosen words). Assume that
this word occurs exactly once in the document and com-
pute the length of the document accordingly. For all those
documents, where none of the chosen words occur, as-
sign the length to be the average length of those already
assigned.

Using each of these heuristics for estimating the length
of every document, we first built the Bayesian model based
on the training data set which had approximately 4000 doc-
uments. We then considered a test dataset of 500 docu-
ments for classification and determined the accuracy with
which the Naive Bayes model classifies these documents.
Figure 10 shows the accuracy obtained with each of the doc-
ument length estimation heuristics. Though the Naive Bayes
model is seen to predict with almost 90% accuracy, a much

Figure 12: Distribution of classification accuracy on the
Spambase dataset with different modifications to Naive
Bayes

better result was expected based on the results obtained in
previous studies that used the Naive Bayes classifier.

Drawing inspiration from the success of our use of an en-
semble of classifiers in the decision tree domain, we investi-
gated building an ensemble of Naive Bayes classifiers using
the same approach as before. In the case of decision trees,
we observed that the number of errors in classification re-
duced with the addition of more classifiers into the ensem-
bler. However, as shown in Figure 11, the number of errors
does not drop even after addition of as many as 10 classifiers
into the ensemble. So, ensemble construction using boosting
did not help in improving the classification accuracy.

We then decided to implement some of the modifications
proposed in (Rennieet al. 2003), which were intended to
help correct the flawed assumptions that the Naive Bayes
classifier makes without sacrificing on the simplicity of its
implementation. We briefly three of these modifications that
we implemented.

• Weighted: One of problems that Naive Bayes has is that
it does not consider dependencies between words. The
modification suggested to take this into account is that,
during the classification phase, instead of usinglog(θci)
as the weight associated with wordi, use log(θci)

Σk|log(θck)| in-
stead.

• Term Frequency: In most real-world documents, the dis-
tribution of word counts is seen to more closely follow a
power-law distribution rather than a multinomial distribu-
tion. To account for this, a simple transform from statis-
tics is introduced wherein instead of using the count of
word i, fi, we instead uselog(1 + fi).

• Document Frequency: It would be useful to “down”-
weight words that commonly occur in many documents.
For this, the count of wordi is transformed fromfi to
fi · Σj1

Σjδij
, whereδij is 1 if word i occurs in documentj.

Figure 13: Classification accuracy obtained with the normal
Naive Bayes classifier by cross-validation on the Lingspam
corpus

We implemented all the 3 modifications to Naive Bayes
outlined above and then repeated the study we performed
earlier. Figure 12 plots the classification accuracy in each of
these cases. It can be observed that none of the modifications
helped to significantly increase the classification accuracy.
We are still nowhere near the 99% accuracy we hoped to
obtain based on empirical studies with Naive Bayes.

Evaluation on Lingspam corpus

In the hope of getting better results with the Naive Bayes
classifier, we then decided to investigate its performance on
the Lingspam corpus (Trudgian). The Lingspam corpus
consists of 10 sets of documents, each of which contains
approximately 290 documents. We performed all our ex-
periments on this corpus using the all-but-one cross valida-
tion technique,i.e., build the model using all but one of the
parts and then test the model on the part that was excluded.
Figure 13 shows the classification accuracy produced the
the normal Naive Bayes classifier for each of the exempted
parts of the Lingspam corpus. We see that now the accuracy
shoots up close to the 99% range and in fact, even 100%
accuracy is observed in a couple of cases.

Having finally achieved the order of accuracy we were
looking for with the Naive Bayes classifier, we wanted to
determine if the count of number of times each word occurs
in a document is important, or does the mere knowledge of
its presence or absence suffice. We built a modified Naive
Bayes classifier which discretizesfi in Equation (3) to1 or
0 depending on whether wordi is present or absent. Fig-
ure 14 compares the classification accuracy of this classifier
with that obtained with the normal multinomial Naive Bayes
classifier. This shows that the binomial model works just as
well and in fact, even better than the multinomial model in a
few cases.

We then tried out each of the modifications suggested by
(Rennieet al. 2003) that we outlined previously. Figure 15

Figure 14: Classification accuracy obtained by cross-
validation on the Lingspam corpus using a Naive Bayes
classifier which takes into account only presence/absence of
each word

Figure 15: Classification accuracy obtained by cross-
validation on the Lingspam corpus using a Naive Bayes clas-
sifier with theWeightedmodification

Figure 16: Classification accuracy obtained by cross-
validation on the Lingspam corpus using a Naive Bayes clas-
sifier with theDocument Frequencymodification

shows that theWeighted modification decreases the clas-
sification accuracy significantly. On the other hand, Fig-
ure 16 shows that theDocument Frequencymodification
improves the accuracy in all cases. This indicates that the
Document Frequencymodification is more helpful than the
Weightedmodification. However, we are uncertain whether
this inference can be extended to all documents in general
or this happens to show up only in the particular corpus of
documents we considered.

Figure 17 finally presents a summary of all the variations
of Naive Bayes that we investigated. Naive Bayes with the
binomial model assumption and with theDocument Fre-
quencymodification seems to be the best algorithm for pro-
ducing a classifier which minimizes errors in classification.

5 Conclusions
In this paper, we presented the results of our study with two
kinds of machine learning techniques - Decision Trees and
Naive Bayes - for the purpose of spam classification. De-
cision trees yielded a fairly high classification accuracy of
the order of 92%, but we also observed over-fitting of the
model with respect to the training data. We also investigated
building of an ensemble of decision tree classifiers, employ-
ing the boosting technique, with which the classification ac-
curacy increased to around 95%. However, the problem of
over-fitting persisted. Finally, we explored the use of the
Naive Bayes classifier, with which we obtained classifica-
tion accuracies of the order of 99%. We were able to further
improve this accuracy by using a simpler binomial model
assumption and by incorporating theDocument Frequency
modification suggested in (Rennieet al. 2003).

References
[Androutsopouloset al.2000] Androutsopoulos, I.;
Paliouras, G.; Karkaletsis, V.; Sakkis, G.; Spyropoulos,
C.; and Stamatopoulos, P. 2000. Learning to filter spam

Figure 17: Distribution of classification accuracy on the
Lingspam dataset with different modifications to Naive
Bayes

e-mail: A comparison of a naive bayesian and a memory-
based approach. InWorkshop on Machine Learning and
Textual Information Access, 4th European Conference
on Principles and Practice of Knowledge Discovery in
Databases (PKDD).

[Apache 2004]Apache. 2004. Spamassassin.
http://spamassassin.apache.org/.

[Carreras & Marquez 2001]Carreras, X., and Marquez, L.
2001. Boosting trees for anti-spam e-mail filtering. InPro-
ceedings of RANLP2001, 58–64.

[Cohen 1996]Cohen, W. W. 1996. Learning rules that clas-
sify e-mail. InProceedings of the 1996 AAAI Spring Sym-
posium on Machine Learning in Information Access.

[Cunninghamet al.2003] Cunningham, P.; Nowlan, N.;
Delany, S.; and Haahr, M. 2003. A case-based approach to
spam filtering that can track concept drift.

[Dalvi et al.2004] Dalvi, N.; Domingos, P.; Mausam;
Sanghai, S.; and Verma, D. 2004. Adversarial classifica-
tion. In Proceedings of the Tenth ACM SIGKDD, 99–108.

[Fawcett 2003]Fawcett, T. 2003. In vivo, spam filtering:
A challenge problem for kdd. InSIGKDD Explorations,
volume 5(2), 140–148.

[Formanet al.] Forman, G.; Hopkins, M.;
Reeber, E.; and Suermondt, J. Spambase
database. ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/spambase/.

[Koller & Sahami 1997]Koller, D., and Sahami, M. 1997.
Hierarchically classifying documents using very few
words. InMachine Learning: Proceedings of the Four-
teenth International Conference, 170–178.

[Lewis & Ringuette 1994]Lewis, D. D., and Ringuette, M.
1994. Comparison of two learning algorithms for text cat-
egorization. InProceedings of SDAIR, 81–93.

[Mitchell 1997] Mitchell, T. M. 1997. Machine Learning.
McGraw Hill.

[Orasan & Krishanmurthy 2000]Orasan, C., and Krishan-
murthy, R. 2000. A corpus-based investigation of junk
emails. InProceedings ACIDCA.

[Pantel & Lin 1998] Pantel, P., and Lin, D. 1998. Spam-
cop: (a) spam classification and organization program. In
Learning for Text Categorization: Papers from the 1998
Workshop. Madison, Wisconsin: AAAI Technical Report
WS-98-05.

[Rennieet al.2003] Rennie, J. D.; Shih, L.; Teevan, J.; and
Karger, D. R. 2003. Tackling the poor assumptions of naive
bayes text classifiers. InProceedings of ICML, 616–623.

[Sahamiet al.1998] Sahami, M.; Dumais, S.; Heckerman,
D.; and Horvitz, E. 1998. A bayseian approach to filtering
junk e-mail. InProceedings of the AAAI-98 Workshop on
Learning for Text Categorization.

[Sakkiset al.2003] Sakkis, G.; Androutsopoulos, I.;
Paliouras, G.; Karkaletsis, V.; Spyropoulos, C.; and
Stamatopoulos, P. 2003. A memory-based approach
to anti-spam filtering for mailing lists. InInformation
Retrieval, volume 6, 49–73.

[Trudgian] Trudgian, D. C. Lingspam corpus.
http://www.dcs.ex.ac.uk/corpora/.

	Introduction
	Using Decision Trees
	Evaluation of Decision Trees

	Ensemble Learning
	Evaluation of performance of the Ensemble

	Naive Bayes
	Evaluation on Spambase data
	Evaluation on Lingspam corpus

	Conclusions

