
Probabilistic Audio Resynthesis

Craig Prince, Kevin Wampler and Katarzyna Wilamowska
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{cmprince, wampler, kasiaw}@cs.washington.edu

Abstract

We consider the problem of synthesizing an audio signal
given an incomplete set of features associated with the note
to be generated. This is achieved through a system which
learns a joint probability distribution over various signal met-
rics from waveforms and uses this as a prior for generating
new waveforms. We experiment with two methods for resyn-
thesizing a waveform given this joint distribution: a greedy
approach, and an approach using particle filters. We found
that, in general, our approach is able to reproduce the wave-
form for both audio it has and has not seen previously; how-
ever, because of noise introduced through the sampling pro-
cess the resynthesized audio has a distinctly electronic timbre.

Introduction
Most current techniques for automatic synthesis of music
rely on either recording and replaying of musical notes from
real instruments or on hand-built waveforms representing
the instrument being played. Collecting/building this data
is a costly and time-consuming process. Instead, we would
like to be able to create a data-driven audio synthesis model
for learning exactly what an instrument “sounds” like.

With such a model it would then be possible to recreate
any tone and variation that such an instrument was capable
of producing. It would even be possible to do things atypical
of current synthesizers, such as create new instruments that
are a combination of other instruments or to add features to
one instrument that are part of another.

With this broader goal in mind, in this work we aim to
simply to show that we can resynthesize waveforms with
high quality given a set of feature signals corresponding to
the waveform. We would do this after having trained on a
different set of waveforms and their corresponding feature
signals.

We develop a novel approach to audio resynthesis which
uses a set of input feature signals to generate a joint prob-
ability distribution over all audio signals. We also test sev-
eral different training sets for building this distribution to
determine which settings are optimal for audio resynthesis.
Thirdly, we test two different methods of audio resynthesis

Copyright c© 2004, Association for Awesome Audio Inference
(www.aaai.org). However bad our programs my be, they still sing
better than we do.

– one a greedy approach, and one using particle filters – to
determine which is best for audio resynthesis in our model.

We begin with a discussion of related work in the field of
audio synthesis. The next two sections then continue with a
discussion of how we build our kernel model from a set of
training signals and how we can use it to build joint proba-
bility distributions – used for inference. This is followed by
a discussion of how we finally resynthesize a new waveform
from a set of input signals. The next section outlines the
experiments we conducted to validate our method and dis-
cusses our results. Finally, we end with a section discussing
future work and conclusions.

Related Work

Using computers for the creation of music has long been a
goal of computer science. One of the first and more success-
ful attempts at computer synthesis of music was the Musi-
cal Instrument Digital Interface (MIDI) (Int 1983). MIDI
was designed to provide a digital specification of musical
sound. It includes parameters such as instrument, pitch, vol-
ume, note, etc. Each of these can be independently adjusted
to produce a tone faithful to the actual tone produced by a
real instrument. Most MIDI synthesizers today work by tak-
ing a set of known instrument tones and performing digital
signal transformations to produce the correct output. Un-
fortunately these synthesizers are limited in that they do no
learning – simply producing using digital signal processing
algorithms to manipulate a single waveform.

Our work most closely resembles the previous work in
the field of audio analogies. Audio analogies are described
in (Roads 1985) and (Levitt 1983). Namely given some set
of signals A and some audio A′, the system tries to learn the
correspondence between A and A′. Then when presented
with a new set of features B, the goal is to generate some
new audio B′ in the same ”style” as A′. Our work applies
newer AI techniques – e.g. particle filters and metric spaces
– to try to solve this problem.

More recent work leverages progress made in image
analogies and applies it to audio (Simon et al.). However,
this work is concerned mostly with recomposition of MIDI
segments to capture musical style as opposed to individual
waveforms themselves and is thus not directly applicable.

Audio Representation
In order to resynthesize an instrument, it is necessary to
build a probabilistic model of the behavior of the instrument.
In particular, we would like a model which we can train with
a correlated version of a score and an audio rendition of it,
and then use this model to take new score and compute a cor-
responding audio version. It is thus necessary to define not
only the features of the audio to store, but also which fea-
tures of the score should be considered. For the time being
we shall look only at the general form these features must
take, but shall shortly see precisely what features we asso-
ciate with scores and audio.

It is clear that both the features of the score and the fea-
tures of the audio are dependent upon time. At any particu-
lar time, a note in the score has some frequency, amplitude,
etc., and likewise an audio stream has values which vary
over time. To account for this structure we represent both
the score and the audio as signals. We define a signal as a
function

s : R → M (1)

such that at any time t, s(t) is the value of the signal s at
time t. We further allow that a signal may not be defined
at some times, and that signals can depend on other signals
provided this dependency is acyclic.

There is a rather serious question as to what restrictions
should be placed on the values that a signal can take. Our use
of signals to represent both the features of the score as well
as the features of the audio necessitate a general definition.
It is still necessary, however, to force the values that signals
can take to have enough structure to allow the resynthesis
of audio given a score. It turns out to be sufficient for our
purposes to require that the range of each signal be a metric
space. That is, for each signal we define a function

dist : M × M → R
+ (2)

which serves a measure of similarity between two values
of a signal. Thus for a signal s and times t1 and t2,
dist (s(t1), s(t2)) gives a positive real number indicating
how similar the values of s at t1 and t2 are. As M is a metric
space we require dist to satisfy the following properties.

1. dist (a, b) ≥ 0

2. dist (x, y) = 0 ⇔ x = y

3. dist (x, y) = dist (y, x)

4. dist (x, z) ≤ dist (x, y) + dist (y, z)

Essentially these properties impose enough structure on the
values that signals can take to allow us to define consistent
probability distributions over a set of signals.

A score will be represented by some set of signals. For
notational convenience we denote this set by S and each in-
dividual signal of the score as Si:

S =df {S1, . . . ,Sn} (3)

Individual values which these signals may take are denoted
by s or si for values of all signals or of an individual signal
respectively. We similarly denote the audio signal by A and
values which it may take as a. We restrict our attention to the

a1

a2 a3

t1 t2 t3

Figure 1: The amplitude of an audio wave taken at dif-
ferent times. The set of all such samples forms the
audio signal used in our model.

resynthesis of a single audio signal, as the interdependence
of multiple audio signals (such as exist in stereo recordings)
complicates the algorithms involved.

The task of audio resynthesis can now be stated as the pro-
cess of, given a collection of signal-audio pairings, taking a
set of signals, s, representing an input score and generating
the audio signal, a, such that the sequence of values taken
by {s, a} occurs with high probability in the training data.
That is, compute the audio which based on the training data
is likely based on the input score.

For simplicity we have chosen a somewhat minimal set of
signals to represent a score and a somewhat simplistic au-
dio representation. We assume that each score consists of a
single note and that the waveforms generated by the instru-
ments in the audio rendition of this score are approximately
homogeneous. That is, there are no large-scale temporal fea-
tures to the note (such as attack, decay, vibrato, etc.). We
also model the audio signal as simply an amplitude of the
audio waveform at a given time (Figure 1). We can then give
a reasonably full representation of a score by the signals:

frequency the frequency (in hertz) of the note being played

phase the phase of the fundamental frequency of the note
being played

lag the audio signal some fixed multiple of the phase in the
past

The frequency signal allows the timbre of an instrument
to depend on the note being played. The lag signal is an
attempt to capture some simple aspects of the evolution of
an audio signal over time. The phase signal is critical, even
given the frequency signal, and is intended to capture the pe-
riodic nature of the audio waveform. Without it, even though
the lag signal could induce variation over time, the resulting
audio would likely be non-periodic, and thus sound essen-
tially like static. This representation is essentially a metric-
space analog with continuous time of the dynamic Bayes net
illustrated in Figure 2.

Computing Probabilities
In order to be able to actually compute a likely audio given
a set of signals, it is necessary to be able to represent infor-
mation about the probabilities of the audio and signals. This
matter is somewhat complicated by the possibility that some
of the signals will not be defined at certain times. This possi-
bility is in fact more than a mere theoretical musing, the lag

audio

lag

frequency

phase

audio

lag

frequency

phase

Figure 2: A representation of our signal dependencies
as a dynamic Bayes net. Note that this is somewhat
misleading, as time is continuous in our model.

signal for example does not have a value before some frac-
tion (which is equal to the amount of the lag) of the period
of a note has been synthesized.

We build a model in which it is possible to sample the
joint probability distribution P (X) for any X ⊆ {S ∪ A}.
This allows us to sample joint probabilities at points defined
by assignments of any subset of our signals (typically all
the signals which are defined at a given time). Furthermore
since P (X|Y) = P(X,Y)

P(Y) , we can use this model to sample
the conditional probabilities for any set of signals.

To achieve this flexibility of sampling the joint probabil-
ity distribution for any set of signal values and because the
independence of the signals from each other is not known
beforehand we have chosen a non-parametric representation
to compute these joint probabilities. This representation is
a generalization of a kernel model which works in metric
spaces and allows sampling along an arbitrary hyperplane
defined by assignments to some subset of the full set of axes
in the model (as opposed to only allowing sampling at a
point defined by assignments to all axes). The model also al-
lows kernel functions to be added for arbitrary axis-aligned
hyperplanes, although we do not ever make use of this abil-
ity.

The techniques to implement these requirements are sur-
prisingly simple. We define the kernel space as the space of
joint probability distributions of values of the signals and the
audio.

K =df range(A) × range(S1) × · · · × range(Sn) (4)

We further define points in this kernel space as assignments
of values to some subset of the signals:

k = 〈si, . . . , sj〉where (5)

si ∈ range(Si), . . . , sj ∈ range(Sj)and (6)

{Si, . . . ,Sj} ⊆ S ∪A (7)

Note that due to the requirement that the values of each
signal lie in a metric space the distance between two points
in the kernel space can be computed along any axis. We
can leverage this to create a general definition of a kernel

function, fk, for a point k in the kernel space as a function 1

mapping distances from k along some subset of the axes of
K into a real number:

fk : R
+m

→ R
+ (8)

The strength of a kernel at a point p is calculated by com-
puting the distance of k from p along each of the axes they
have in common and then evaluating the kernel function for
these distances.

The kernel space will consist of many of these kernel
functions and the strength of the kernel model at a point is
defined to be the sum of the strengths of all of the kernel
functions at that point. Provided that the functions are well
chosen this kernel space will provide a reasonable estimate
for the probability density of the joint distribution for any
subset of assignments to S ∪ A (particularly around dense
portions of the kernel space).

For the actual kernel functions used in our model we have
chosen multidimensional axis-oriented Gaussian functions.
Each such kernel is associated with a weight w, a point µ in
K as a mean and a variance in R

+ associated with the range
of each signal in this mean. Let us denote these variances by
σ1, . . . , σm and the distances from µ to a point at which the
strength of the kernel is being evaluated, p, by d1, . . . , dm.
The strength of the kernel at p is then expressed as:

w

2π
∏m

i=1 σi

· e

P

m

i=1

d
2

i

2σ2

i (9)

It is useful to note that such a function will always have a
single maximum at µ and the integral of its strength along
any set of axes will always be w.

As a final note, we mention that given the loose struc-
ture of the kernel space it can be a non-trivial problem to
find points to sample it at. For signals which are known
to take values from the real numbers, for example, this is
straightforward, but in general this is not always possible.
Note however that at the very least it is possible to sam-
ple the space at points generated from combinations of the
coordinates of the points used to generate the kernel space
itself. In most cases, however, it is possible to compute con-
vex combinations of points in the kernel space. In this case
we can represent new sampling points by convex combina-
tions of preexisting points in the kernel space. This limits the
possible points that can be expressed to the convex hull of
the set of sample points, but in general this is a reasonable
restriction as the single maximum of the kernel functions
ensures that all maxima in the probability distribution will
occur within this hull.

Resynthesizing
After constructing the kernel space from the training signals,
the next step is to recreate a likely output signal given only
a set of input signals describing this output signal. We call
this process resynthesis. One common scenario for resyn-
thesis is to recreate some output waveform given a set of

1Note that this is actually a template for many functions, one for
each possible subset of the axes of K rather than a single function.

signals describing the features of this waveform; however,
our approach will work for regenerating any missing signal
given some set of other related signals. Although our goal
can be any signal, for convenience throughout this section
we will refer to the signal being reconstructed as the audio
or waveform.

We have implemented two different algorithms for gen-
erating an output waveform from signals. The first is a
greedy approach which always chooses the“best” value for
each time step. The second approach uses particle filters to
take into account the previously generated waveform during
resynthesis.

Greedy Resynthesis
Our first method for resynthesis is to use a greedy algorithm
to give a good approximation of the waveform we are trying
to construct. The basic idea of this approach is to select the
next value of our waveform by taking a weighted average
of all the possible candidate values of the waveform (though
could be a discrete or continuous space). In this way, our
greedy approach is similar to the Bayesian estimator in that
it finds the value that gives equal weight to both sides of the
probability distribution of candidate values. The probability
estimate is calculated by sampling the kernel space proba-
bility distribution as described above.

The value calculated by weighted averaging becomes the
value of the waveform at this time step. For each new time
step, we simply calculate the new waveform value as de-
scribed above.

As one might imagine, this approach seems somewhat
flawed by taking a weighted averaging across all samples
as this can overly smooth the resulting audio. We believe a
better approach would be to find the most likely sequence of
waveform values for a sequence of input signals instead of
averaging.

Resynthesis Using Particle Filters
In the greedy resynthesis method above our approach to re-
construction took a weighted average over the distribution to
calculate new waveform values. However, this can introduce
smoothing, to see how this affected the results we also im-
plemented a different algorithm for resynthesizing the out-
put waveform using particle filters. This approach allows us
to approximate the best sequence of output audio amplitudes
given a set of input signals.

The optimal approach to generating the samples of a
waveform would be to use a Viterbi-style algorithm because
it gives the optimal sequence of ”states” (waveform am-
plitudes) given a sequence of observations (input signals);
however, the Viterbi algorithm only works over a discrete set
of states yet we are interested in finding the optimal values
over continuous metric spaces. Using particle filters allows
us to get a good stochastic approximation to Viterbi for a
continuous space.

Particle Filter Implementation Our particle filter imple-
mentation takes a very standard approach as described by
Russell and Norvig (Russell & Norvig 2003). Each particle

represents a belief in a certain audio waveform amplitude at
a given time. We then update each particle’s position based
on the probability distribution:

P (Xt+1|Xt) (10)

Where Xt+1 is the new waveform amplitude and Xt is the
current waveform amplitude. This distribution is exactly the
transition probability function for each particle. Notice that
because we are in a continuous space, this probability dis-
tribution is different for every particle and must be recalcu-
lated each time step. We are able to get these probabilities by
sampling the Kernel space produced above (see Computing
Probabilities above).

After updating the particle’s “position” we calculate the
likelihood of each particle based on the probability that the
given set of signals would support that particle’s current
value:

P (Xt+1|ObsSignals) (11)

Where Xt+1 is our new amplitude and ObsSignals are the
input signals at t + 1, i.e. our observations. Note that this
is somewhat contrary to the general particle filtering algo-
rithm, which reverses the conditional probability so that it
is:

P (ObsSignals|Xt+1) (12)

Because we are unable to precisely calculate this quantity,
we make the assumption that P (ObsSignals) is uniform and
thus the conditional probabilities in equations 11 and 12 are
proportional. Now, given the weighted particles we take the
value of the particle with the highest weight and use it as the
value for the resynthesized waveform at time t + 1.

Once we’ve weighted the particles we then need
to remove low probability particles and replicate high-
probability particles. This is accomplished by resampling
the particles. We draw a new set of particles from the ex-
isting set, but use the normalized weights as the probabili-
ties by which we draw each particle. Note that particles are
drawn with replacement so that the higher-weighted parti-
cles will be drawn more often. We perform this sampling
after each time step, keeping the total number of particles
constant and resetting all weights to zero.

We generate probability distributions by uniformly sam-
pling the kernel space over a given multi-dimensional hyper-
plane. We then linearly interpolate these samples to gener-
ate a smooth, complete probability density function (PDF).
Given a PDF we are then able to directly draw samples from
this distribution with the probabilities defined in the PDF.
We take a shortcut when drawing samples so that instead
of transforming the PDF into a cumulative density function
(CDF) and taking it’s inverse, we can instead calculate the
value of a sample directly from the PDF. This is simply a
convenience and does not affect our results.

Results
Testing Methodology
The problem of comparing waves is difficult since ideally
the comparisons would be qualitative instead of quantitative
in nature. In our attempt to generate some methods of com-
parisons between waves we relied on two different distance

Euclidean distance comparing A4

0

1

2

3

4

5

6

7

8

 A5 C4 D4 E4 F4 G4 A4 B4 C5 random

Musical Note

D
eg

re
e

o
f

d
if

fe
re

n
ce

Figure 3: Euclidean distance: difference values between
waves created by notes A4, the C4 → C5 octave, A5, and a
randomly generated wave.

measures: Euclidean distance and Pearson’s correlation co-
efficient. Initially each wave represented in a WAV file is
translated to an array of sampling values. These arrays are
then used in the comparison process. Our experiments in-
volved determining:

1. how close we could replicate a wave that had already been
learned

2. whether we could infer new/untrained waves based on
learned waves

3. whether learning more samples allowed us to create a
more likely wave

In the following section we will answer these questions
and explain some of the calculations necessary to determine
wave distance/correlation.
Euclidean distance The Euclidean distance between two
waves w1 and w2 is calculated as follows.

de(w1, w2) = avg

√

√

√

√

n
∑

i=1

(w1i − w2i)2 (13)

where, the average distance value de is calculated over the
possible horizontal shift between the two waves. The closer
the difference value is to zero, the more identical the waves.
Figure 3 shows a comparison between note A4, the C4 →
C5, A5 and a randomly generated wave. Obviously, A4i s
most similar to note A4, while least similar to the randomly
generated note.

Pearson’s correlation coefficient The Pearson’s correla-
tion coefficient between two waves w1 and w2 is calculated

PCC comparing A4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 A5 C4 D4 E4 F4 G4 A4 B4 C5 random

Musical Note

D
eg

re
e

o
f

si
m

ila
ri

ty

Figure 4: Pearson’s correlation coefficient: similarity values
between waves created by notes A4, the C4 → C5 octave,
A5, and a randomly generated wave.

as follows.

a =

n
∑

i=1

w1i (14)

b =

n
∑

i=1

w2i (15)

c =
n

∑

i=1

(w1iw2i) (16)

d =

n
∑

i=1

w1i
2 (17)

e =
n

∑

i=1

w1i
2 (18)

dpcc(w1, w2) =
c − (a)(b)

n
√

(d − a2
n

)(e − b2
n

)
(19)

With this method of measurement, the higher values corre-
spond to better matches between waves. In Figure 4, outside
of note A4, no matches are visible. By these two initial ex-
periments with wave files not produced by our system, we
are convinced that the measurement techniques chosen for
our wave comparison purposes will be sufficient.

Inferring learned and unlearned notes
If we were to store the training data samples in a look-up
table and then attempt to resynthesize a wave with identical
frequency, the values returned would be just the memorized
value of the initial training wave. However, our system, us-
ing machine learning techniques, infers the new wave based
on all the values it has trained on, with added weight to sam-
ples with similar frequencies. For example the note C3 was

Sheet2 Chart 1

Page 1

C3 reconstruction

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 2 3 4 5 6 7 8 9 10 11

training sample

E
D

0.67

0.672

0.674

0.676

0.678

0.68

0.682

0.684

0.686

0.688

0.69

P
C

C Euclidean

PCC

Figure 5: Reconstruction of note C3, based on training sam-
ple size. C3 is always included in the training set.

used in all the training samples and in Figure 5 we can see
that although known at the beginning the distance between
the original wave and the generated wave decreases as the
sample size increases. In comparison, note F3 did not en-
ter the training sample until a sample size of 6, and we can
observe that the distances are much larger, Figure 6. The
distances for either note are still quite informative as to our
success to resynthesize both a training and non-training sam-
ple note.

Training sample size
As can already be deduced from Figure 5 and 6, as the train-
ing sample size increases, the distance between two com-
pared waves decreases. In order to obtain a more general
view, the averages over all training samples were calculated
and presented in Figure 7. As the sample size increases, the
Euclidean distance between two waves shrinks and the Pear-
son’s correlation coefficient grows.

Different Methods of Audio Resynthesis
As mentioned we tested both a greedy resynthesis method
and an approach based on particle filters. Due to the pro-
hibitive computational time associated with the particle fil-
tering approach we have not been able to generate a large set
of results for it. Our preliminary results indicate that it gives
a similar result to the greedy method, but with a low number
of particles introduces a significant amount of noise. This
can be combatted with the use of more particles, though at
the cost of computational time.

Conclusion and Future Work
As is illustrated by the testing data and a qualitative side-
by-side comparison of a audio signal and a resynthesized
version of it (Figure 8), the method described in this paper
is an effective way of reproducing the wavefrom of an audio

Sheet2 Chart 2

Page 1

F3 reconstruction

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11

training sample

E
D

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

P
C

C Euclidean

PCC

Figure 6: Reconstruction of note F3, based on training sam-
ple size. F3 is not in the training set until training sample
sizes 6 and above.

GAR

Page 1

Audio Resynthesis

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11

Training sample size

E
D Euclidean

PCC

Figure 7: Average distances and correlation coefficients for
all notes based on unchanging set of training samples in any
given size.

Figure 8: Original violin waveform (top) and a resynthe-
sized version (bottom).

signal. Furthermore, because of the general nature of the al-
gorithms employed these methods can likely be applied to
a wide range of other phenomenon beyond audio resynthe-
sis. Despite these successes, the method still falls short of
effective audio resythesis as the actual tones generated have
a distinctly electronic timbre. We speculate that this is due
to a small amount of high frequency noise added by a slight
jittering created by the sampling of the kernel model used to
resynthesize the signal.

As audio synthesis in general is an extremely complex
problem, there is a great deal of work which remains to be
done along the lines of resynthesis. This work lies in both
the quality of the resynthesis and in data acquisition. With
regard to the former of these issues it would likely be very
useful to represent an audio signal as a series of very short
audio clips (similar to granular synthesis) instead of single
samples. This would help to reduce the effect of jitter in-
troduced by the approximate nature of the resynthesis, as
well as to better express longer term evolution of an instru-
ment and possibly greatly improve the speed of resynthesis
by computing the audio samples more sparsely. In addition
it may be fruitful to represent these samples in a basis other
than the waveshape which has a more direct correspondence
with the perception of the sound, such as a frequency spec-
trum. Note that since we only require that the values of sig-
nals lie in a metric space this extension should work well
with the model presented in this paper.

With respect to data acquisition there is a great deal of
work that can be done. Most obvious is that scores are
currently limited to single notes. Ideally a score would be
any combination of potentially multiple instruments playing
multiple notes at different times. The learning of the sounds
of individual instruments from such a combination is a very
tricky task, but given that we have an explicit probabilistic
model it may be possible to use an EM type algorithm to
infer sound of the individual notes.

References
[1] The International MIDI Association (IMA), Sun Valley,

California. 1983. Musical Instrmument Digital Interface
(MIDI) Specification 1.0.

[2] Levitt, D. 1983. Learning music by imitating. Unpub-
lished manuscript.

[3] Roads, C. 1985. Research in music and artificial intel-
ligence, volume 17. ACM Press.

[4] Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 2nd edition edition.

[5] Simon, I.; Basu, S.; Agarwala, M.; and Salesin, D. Au-
dio analogies. Unpublished manuscript, University of
Washington.

Appendix A
Work done by Craig Prince

• particle filter resynthesis

Work done by Kevin Wampler

• conceptual framework

• code for audio I/O, kernel model, and greedy resynthesis

Work done by Kasia Wilamowska

• generation of test tones

• testing of algorithms

Work done by all authors

• suffering through a very long Sunday night/Monday
morning

