
Identifier Labeling Using Graphical Models

Brian Ferris and Stephen Friedman

Dept of Computer Science and Engineering
University of Washington

Seattle, WA-98195
{bdferris, sfriedma}@cs.washington.edu

Abstract

In this paper, we apply Bayesian Networks to
the labeling of arbitrary string identifiers from
search results over a music database. We find
that our models perform with a 58% labeling ac-
curacy, with errors primarily occurring when la-
beling string data not been seen during training.
We also present a method for searching potential
labelings which attempts to address the exponen-
tial blow up of the labeling permutation space.

Motivation
In using many search engines, one’s query may have

several concepts associated with it. Consider the ex-
ample of searching for a song on a music search engine.
A search for a single keyword could return results of
songs matching the keyword in the song name, the al-
bum name, the artist’s name, or combinations thereof;
all of these songs could be unique. As an example,
consider three bands that all covered the same song;
searching for the song title would turn results across
all the bands. Additionally, there may be many en-
tities in the search space which appear to be unique
do to a corrupted portion of the search string, but in
fact refer to the same real-world object. As an exam-
ple, consider searching for ”Abbey Road” and getting
back matches for ”The Beatles”, ”The Beetles”, and
”Beatles,” where each record is a deviation on the same
underlying record. These combinations of distinct re-
sults combined with misspellings across the same result
cannot easily be teased into reasonable groupings that
represent the underlying categorization. Our problem
is fundamentally one of identifying these groupings in
an automated way.

Problem Statement
One of the first steps in this process is organizing the

data into a structured way. Given some noisy text iden-
tifier of a record, we want to be able to extract relevant
pieces of that identifier for use in our classification of
the record. Put another way, we want to label the por-
tions of the identifier with the type of information they
provide us. The particular example we will be applying

our methods to is the task of labeling the artist, album,
title and other information about a song file given its
filename. Labeling the parts of the identifier in this
way allows us to use that information to categorize the
record appropriately.

Background

Bayesian Networks
While a complete description of Bayesian Networks

is beyond the scope of this paper, we will describe the
key ideas here. A graphical model is a way to describe
a factored joint probability over a set of random vari-
ables. The nodes of the graph represent the random
variables, and arcs between nodes specify the factoriza-
tion of the joint proabability over these variables. A
Bayesian Network is defined as a graphical model that
is directed and acyclic where a directed arc between two
nodes reflects the conditional dependence of the desti-
nation node on the source node. Therefore, each node
has an associated conditional probability table (CPD)
which holds the probability distribution over its domain
for each value combination of its parents.

Näıve Bayes Näıve Bayes is a particular type of
Bayes Network where there is one root node and all
other nodes are leaves of that root. Thus there is ex-
actly one edge leading from the root node to each of
the other nodes in the graph. The root node is a hid-
den variable, and all of the leaves are observable. This
structure makes the assumption that the nodes are in-
dependent given the root. For a more intuitive idea of
what this means, consider the root to be your location,
and the leaves are the items you have access to. Given
your location as the office, there is some probablility
that you have access to your computer which is inde-
pendent of whether or not you have access to your chair.
For example, your computer could have crashed, so you
can’t use it, but this has no effect on where your chair
is, assuming you are a reasonable person and didn’t
throw it out of the room in frustration. This model is
nice because it is fairly efficient and can model many
typcial situations. It is efficient because the root node
has a domain of n values and the leaves have domains
of li values, making the root node CPD only a 1 by n



table and and the leaf-node tables only n by li. If we
were to say that one of the leaf nodes i was dependent
on both the root and leaf j, the CPD would suddenly
grow to a n by li by lj table.

Learning in Bayesian Networks Learning is ac-
complished in Bayesian Networks by taking a prior dis-
tribution and a set of observations, each consisting of
a set of values for some observable nodes, and updat-
ing the CPD tables so that the joint distribution more
accuratly models the distribution of the set of observa-
tions. There are several methods for doing this, and the
one we used is known as Expectation Maximization, or
the EM algorithm. We chose this because it can han-
dle hidden variables, thus it can be applied to Näıve
Bayesian Networks.

Inference in Bayesian Networks Once we have
trained our Bayesian Network, we need to have a way to
make use of it by answering queries using inference. Our
queries of a Bayesian network take the following form:
given a set of observed values of some nodes, what is
the probability that observation would occur. Thus,
basic inference in a Bayesian Network is the probabil-
ity distribution obtained by marginalizing the full joint
distribution over the values of the unobserved variables,
then finding the probability entry corresponding to the
value of the observed values. This can be potentially
computationally expensive, but it is exact, and is how
the näıve inference engine we used worked.

There are other approximate algorithms that work
much faster, and they are based on the idea of sampling
from the probability distributions. For each node with
no parents, a sample value is generated based on the
probability distribution for that node. These samples
are used to reduce the CPD’s of children, and once they
have been reduced to a single distribution, a sample can
be generated from that distribution. Any nodes whose
values are given in the query are simply set to those
values. This is repeated for a given number of samples,
and the probability distribution is approximated by the
distribution of values obtained by the sampling. Thus,
the more samples you take, the closer your approxi-
mation becomes to the actual probability entry in the
full joint distribution. For a more in depth treatment
of Bayesian Networks, the reader is directed to AI: A
Modern Approach, 2nd Ed. (Russell & Norvig 2003)

Bigram

Because we are dealing with noisy data, we wanted
a fairly robust way to deal with misspellings and other
small mistakes. A brief survey of the methods used in
spell checking indicates that computing the character-
based bigram across two words is a suitable method for
dealing with misspelings. The similarity is computed
by counting the number of times an ordered number
of characters from one string occurs in a second string.
This count is then normalized based on the length of
the longest string. This prevents the similarity mea-

sure of a short string to a long string from dominating
the similarity between two short strings. For a more
complete description, including a comparison of bigram
performance with unigram and trigram performance,
the reader is directed to Word Discrimination Based on
Bigram Co-occurrences (El-Nasan & Nagy 2001).

Approach
Bayesian Networks

In our investigation, we compared three different
Bayes Network topographies. The first was a simple
network which modeled the heirarchical organization of
Artist, Album and Title. This reflects the fact that
there is a set of albums that an artist has, and given an
album, there is a set of song titles one expects to see
on that album. This model is depicted in Figure 1 and
will be referred to as the Simple Model.

Figure 1: Simple Model Bayesian Network

Looking at the sample data we had, we noticed that
there was very little album data contained in the file-
name identifier. There was, however, a lot of entries
that included track numbers. The filenames would also
contain some commentary useful for distinguishing sim-
ilar songs, such as remixes or covers. Thus in our sec-
ond model we attempted to optimize the structure for
the data we had, and that model can be seen in Fig-
ure 2. We will refer to this model as our Optimized
Model.Here you can see we removed the node for Al-
bum, directly tied the Title to the Artist, and added
the auxiliary information of Track Number and Other.
Other is a catch all label for commentary data contained
in the identifier such as ”live,” ”remix,” and other extra
info.

The final model we used was a Näıve Bayes model.
Here, the hidden variable is called ID, which is a unique
number assigned to each unique recording. Each of the
possible fields is treated as a feature of the recording ID.
This model can be seen in Figure 3 and will be referred
to as the Näıve Model.

Labeling Inference
Once we had trained the appropriate Bayes Net, we

needed to use it to perform our labeling task. First,
we split the identifier field on non-alphanumeric char-
acters into tokens. We can then assign a labeling to
these tokens. For each possible labeling permutation,
we can look up the probability of this labeling in the
joint probablility table for the model. The permuta-
tion with the highest probability is deemed to be the
appropriate labeling.



Figure 2: Optimized Model Bayesian Network

Figure 3: Näıve Model Bayesian Network

BEAM Tree Search When looking for the best la-
beling among all permutations, a very large search tree
is generated. In this search, there are many low proba-
bility sub-trees that are explored, where we only want to
find the highest probability assignment. In an attempt
to optimize this search, we applied a BEAM search. In
BEAM search, the top n nodes at are kept and fur-
ther explored. Because we had an inherent ranking in
the probablility of a partial labeling, we were able to
easily apply BEAM search to our search for the best
labeling sequence. Inherent in our use of BEAM is the
assumption that the partial labeling of the most prob-
able labeling is also highly probable.

Näıve Inference One method of determining the
probability of a labeling is Näıve Inference. Here, we
compute the full joint probability distribution marginal-
ized over the nodes that were not observed. We then
look up the probability of the assignment of values
to the remaining variables in this table to ascertain
the probability of a particular labeling. While this is
the complete and correct way to perform inference, it
quickly becomes computationally expensive as the full
table has entries for the full cross product of the random
variable domains.

Gibbs Sampling Anticipating wanting to scale our
solution up to larger databases in the future, we ran
some experiments using a sampling based approximage
inference method. The method we chose to try was the
Gibbs Sampling method. The choice of this method is
primarily because it was the method implemented in
the toolkit we were using.

Robust Input-Handling
The astute reader will notice that ours is a very fragile

system. If we have not seen a particular misspelling of a
name in our training data, we will not be able to identify
it, since it it can not be paired with a value in our
domain. In the Baysian network, since it is a generative
model, to properly capture all possible mispellings, we
would have had to have nodes with a domain of all
possible mispellings, or possibly all possible text strings.
Clearly this is unrealistic, and thus we need a better
solution.

Instead of having an exact match, we wanted to
have an unknown string assume the value of the closest
known domain value. To do this, we needed to have
a measure of the similarity between two strings. One
popular solution in spell checking is a bigram model,
which we wish to apply here. Thus, when taking an ob-
servation to perform inference, if we don’t get an exact
match, we compute the bigrams across all given values
in the node’s domain and pick the closest match.

Learning
We take a supervised approach to learning the pa-

rameters of our Bayes Net: the conditional probability
tables specifically. To do this, we take hand labeled



training data and use it as evidence in an expectation-
maximization (EM) learning algorithm. The resulting
domain of each node in network is composed of values
seen during training.

Toolkit
In order to allow us the latitude of experimenting

with several techniques in the short time alloted, we
turned to pre-existing toolkits for working with graph-
ical models. After looking at several toolkits freely
available on the Internet, we chose to work with the In-
tel’s Open Source Probabalistic Networks Library (Intel
2004) wich is a C++ library based on Kevin Murphy’s
Bayes Net Toolkit for Matlab (Murphy 2004).

Overview
These experiments will give us the ability to evalu-

ate several models, a couple of different inference algo-
rithms, and response to strict and more forgiving input
methods.

Experimental Results
We obtained our training / test data set by instru-

menting a P2P search client to save its search results.
Specifically, we modified the open-source Limewire
client (REF), which operates on the Gnutella P2P net-
work. Our primary data set was a collection of 463
records returned for the query ”Beatles” on Dec. 10,
2004 over the course of a five minute search. We then
hand-labeled the components of the identifier string for
each record. The tokens of the identifier were given the
following labels: Artist, Album, Title, Track Number,
and Other. The ”other” label was used for labeling
extra information such as ”live” or ”rare” that occa-
sionally appeared in the id. Once labeled, the records
in total uniquely identified 70 distinguishable songs.

Label Percentage
Title 100

Artist 92.0
Album 2.6

Track # 16.0
Other 22.4

Track # or Other 30.2

Table 1: Statistical frequencies of labels over identifier
set

The statistics captured in Table 1 should the rela-
tive frequencies of various labels across the search re-
sults. For example, every identifier mentioned a song
title, and a large portion also mentioned an artist. The
album, track number, and other labels were less fre-
quently represented. We have included the number of
occurrences of ”Track #” OR ”Other” for use in a sub-
sequent discussion.

From the relatively frequencies of labels, the moti-
vation for our migration from the Simple model to the

Optimized model is clear. There is little point including
the ”Album” field since it occurs so infrequently in the
label data.

Model Comparison
To compare our models, we ran 100 experiment it-

erations on record data split randomly into 3
4 training

data and 1
4 test data. For each iteration, we trained

the model and then tested the accuracy of the results.
Accuracy is measured as the percentage of correctly la-
beled records out of the total number of records. We
performed the iterations for each of the three models.
Note that our choice of a 3:1 ratio will be further ratio-
nalized in the next section.

Model Simple Optimized Näıve
Mean 54.1% 58.4% 58.3%

StdDev 4.5 3.8 4.28
ConfInt 1.3 1.1 1.3

Table 2: Statistical comparison of three models at 3:1
train-test ratio

Table 2 shows the accuracy statistics for each of the
three models. The most important observation to be
made is that the three models perform almost iden-
tically. The Optimized and Näıve models are statis-
tically equivalent (Student T=2.92 for 95% confidence
and DF=2). The Simple model does perform worse but
not dramatically so.

Train to Test Ratios
In order to evaluate the performance of our model in

a variety of testing and training environments, we per-
formed a set of experiments comparing model accuracy
over various test/train ratios. Given a labeled data set,
we randomly partitioned the data into two sets: one
to train the model and one to test it. We varied the
ratio of test to training data from 0.1 to 0.9 incremen-
tally and evaluated the accuracy of the model with each
training / test set.

Unsurprisingly, each model showed a general trend
of increasing accuracy with larger training to test ra-
tio. That is to say, with much more training than test
data, the models generally performed better. Specifi-
cally, in Figure 4, we see a general trend of increasing
performance. The graph demonstrates the performance
of the model in a variety of training rich and train-
ing poor situations. Note that the performance of the
model plateaus in the 0.5 range (LOG scale), which
corresponds roughly to a 3:1 ratio of training to test
data. This result was the basis of our decision to per-
form further training and evaluation using a 3:1 ratio
in subsequent tests.

We compare both the Simple and Näıve models in
Figure 5. The data set of each model is reduced to a
polyfit trend-line in the graph to facilitate the differenti-
ation of the two models. Each model exhibited a spread



Figure 4: Simple Model and Polyfit Trend Line with
Increasing Test/Training Ratio

of accuracies as the train-test ratio approached 3:1 (0.5
in logscale), so we chose a trend-line to compare the
relative behavior of the two models. The trend-line is
not a tight fit for either data series, but it does demon-
strate the slight advantage the Näıve model holds over
the Simple model. Note that we did not include the
Optimized model because of the time complexity of its
evaluation. Specifically for low train-test ratios, there
are a large number of test records to be evaluated by
the model. The poor runtime performance of the Opti-
mized model made evaluation difficult as result.

Beam search
We ran a number of our tests using the full label space

search and the beam search to evaluate both the accu-
racy and runtime of the beam search in comparison to
the default. We evaluated the Simple model using the
same incremented train-test ratio strategy evaluated in
the previous section.

Figure 6 demonstrates the relative accuracy of beam
search with a number of beam widths (10, 20, 30, 100)
against full search. Note first that the general accu-
racy of beam search follows the same characteristic peak
around the 3:1 train-test ratio that full search does.
Also, note that the accuracy of the beam-search in-
creases with increasing beam width. In fact, the beam
search of width 100 appears to perform on average bet-
ter than the full space search.

Figure 7 demonstrates the relative runtimes of beam
search versus full search. We had hoped that beam
search would perform faster than the full space search,
but that does not appear to be the case. Notice that

Figure 5: Comparison of Simple and Näıve Model
(Polyfit) with Increasing Test/Training Ratio

Figure 6: Comparison of accuracy versus train-test ra-
tio using both full search and beam search with variable
beam width (b)



Figure 7: Comparison of runtime versus train-test ra-
tio using both full search and beam search with variable
beam width (b)

the full space search has a lower average runtime than
an equivalent beam search of any width. Also notice
that increasing beam width results in longer runtime,
with the b = 100 beam being the longest running.

Bigram Usage

Our use of Bigram matching for allowing label match-
ing for novel mispellings reduced the accuracy of our
labeler to zero in all cases. We were surprised by this
result, since we assumed Bigram would allow us to work
past the inflexibility of our model to match new and
novel misspellings. The reality is somewhat disappoint-
ing. Examination of our labeler traces revealed that the
flaw was in our decision to take the best bigram match
for a string not in our training domain, regardless of
how low the probability for the match.

Consider the string ”The Beatles - Help!” The cor-
rect labeling is clearly ”Artist: The Beatles” and ”Title:
Help!” Indeed, our labeler would consider such a com-
bination and score it with some non-zero probability.
However, it would also consider the labeling ”Artist:
The Beatles Help!” Such an artist domain value clearly
does not exist, so a Bigram match would be performed,
yielding ”The Beatles” as a best replacement. Now our
labeler is simply calculating the P(Artist=”The Beat-
les”), which is very high considering our training data
is composed almost entirely of songs by the Beatles. As
such, the labeler finds that ”Artist: The Beatles Help!”
is the best labeling, which is incorrect.

Inference method - Gibbs vs. Näıve
In an effort to reduce the runtime complexity of our

labeling algorithm, we attempted to move away from
the complete naive inference algorithm and make use
of a stochastic inference algorithm. Our toolkit specif-
ically implemented Gibbs Sampling. We evaluated our
labeling algorithm using both naive inference and Gibbs
Sampling inference and found an order of magnitude
decrease in accuracy when using the Gibbs Sampling
method. We feel that increasing the number of samples
used by the Gibbs method should improve its accuracy,
but we had trouble adjusting the sample size using the
toolkit API.

Conclusions

The most startling result of our experiments was the
lack of differentiation in any of our label models. The
Optimized and Näıve models were statistically indis-
tinguishable and the the Simple model was only a few
percentage points off. More importantly, none of our
models performed particularly well, where well is de-
fined as approaching 90-100%. What is the explanation
for these poor performance statistics? Upon examina-
tion of our labeling approach, it becomes clear that our
implementation is not all that different than a straight
table lookup. Examination of the joint-probability ta-
bles for all of our models revealed that the probability
matrices were quite sparse. That is to say, probabili-
ties typically approached 1 for one labeling combination
and zero for all others. In essence, our probability ta-
bles are effectively straight string to label lookup tables.
Because our record set was relatively small, the domain
for each label had few distinct values and there was
little chance for a mismatch of any probability.

Considering this observation, the next question is
why each model performed dramatically less than a
straight table lookup, which we theorize would ap-
proach 100% accuracy. The answer lies in the motiva-
tion for the use of Bigram matching. Our model is very
inflexible to domain values that it has not previously
observed. Thus, any token from a song identifier that
has not been seen in the training data cannot be labeled
using our model. We later examined the number of such
cases in a 75% training, 25% test data experiment, and
found that a full 36% of test records fell into the cate-
gory of ”previously-unseen domain values”. Thus, our
models will fail to characterize 36% of all test records
on average. We can now start to see that the combined
58% accuracy of our models plus the 36% of all test
records that it cannot classify in any case accounts for
almost 100% of the total test set.

The revelation concerning both the lookup-table-like
performance of our models and the large quantity of
records with unseen domain values was a large moti-
vator for our exploration of the Bigram matching al-
gorithm. Unfortunately, as elaborated in the results
section, our application of Bigram failed to address the
unseen domain value problem. We believe that Bigram



is still appropriate, but our failure lies primarily in using
Bigram to pick a single replacement value as opposed
to using Bigram to generate a probability distribution
over possible values. In essence, Bigram could be con-
sidered a sensor model of sorts in the way that it assigns
relative similarity measures between a given string and
a dictionary set.

The failure of our Beam search to optimize the label-
ing runtime is now clear in hindsight. When comparing
the full-search method over a variety of data models,
it was not the label permutations that were computa-
tionally expensive, but instead the calculation of the
joint probability distribution for a given model. With
the full-search, this calculation is only performed for
leaf nodes. However, in our beam search, the probabil-
ity calculation is performed repeatedly for each partial-
labeling depth. The benefits of reducing the factor-
ization space are thus completed overshadowed by the
increased cost of probability calculation.

Suggestions for Future Research

While we did obtain some results, they were far from
ideal. There are several candidates for improvement
and further research that were not explored due to time
constraints. One topic open for study is the choice of
the Bigram-based input reconciliation. Being able to
integrate new and novel values using a Bigram similar-
ity distribution over existing domain values still seems a
novel idea. Perhaps there are better methods of choos-
ing the closest domain value from arbitrary text. In the
process of looking for ways of making medicinal names
less confusing, Grzegorz Kondrak and Bonnie Dorr de-
veloped a similarity measure that may be useful here
that known as BI-SIM.(Kondrak & Dorr 2004) Because
this was developed to identify the perceived similarity
or confusability between too names, we feel it would be
useful for identifying the term that someone intended if
they were confused.

It is important to note that our experiments with la-
beling of MP3 search results was motivated by our ulti-
mate goal of identifying results that referred to the same
underlying song, allowing for unification of the data set
displayed to the end user. In addition to the actual
file identifier which we have been attempting to parse
and label, many MP3 files contain additional structured
meta-data in the form of an ID3 tag, which potentially
identifies the artist, album, title, and other attributes
of a given song. While this seems an ideal source for
identification data, our collection of search results indi-
cates that ID3 were incomplete in the majority of cases.
So while ID3 tag information is not a replacement for
the file identifier, it is an obvious supplement for use in
song identification. Additionally, unsupervised learning
may be possible using this labeled ID3 tag information.

Much of our work for this project was inspired by
recent research in unifying the record space of the Cite-
seer online citation database. Specific research by Laf-
ferty, et. al. (Lafferty, McCallum, & Pereira 2001) used

conditional random fields (CRFs) to accurately label
arbitrary citation strings. We feel this is an obvious
choice for further exploration. Unfortunately, our ex-
isting graphical model toolkit does not directly support
CRFs so more work is required for an implementation
in this area.

Acknowledgements
1. The Intel Open Source Probabilistic Networks Li-

brary (Intel 2004) move the complete implementation
of a simple graphical model out of the realm of ”ex-
ceedingly difficult in the given period of time” and
into the realm of ”maybe we can even try two mod-
els...”

2. Kevin Murphy’s list of graphical model toolkits was
useful for evaluating the available options and fea-
tures of existing toolkits.

3. We had a number of technical conversations Jayant
Madhavan regarding graphical models and their ap-
plication to this project.

References
El-Nasan, A., S. V., and Nagy, G. 2001. Word discrim-
ination based on bigram co-occurrences. Document
Analysis and Recognition. Proceedings. Sixth Interna-
tional Conference on.
Intel. 2004. Intel’s open-source proba-
balistic networks library. C++ Library.
”http://www.intel.com/research/mrl/pnl/”.
Kondrak, G., and Dorr, B. J. 2004. Identification of
confusable drug names: A new approach and evalua-
tion methodology. Proceedings of COLING.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. 18th
International Conf. on Machine Learning, 282–289.
Morgan Kaufmann, San Francisco, CA.
Murphy, K. 2004. Bayes net toolkit for mat-
lab. Matlab Software. ”http://www.cs.ubc.ca/ mur-
phyk/Software/BNT/bnt.html”.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 2nd edition edition.

Appendix A - Contributions
Brian Ferris wrote the results and conclusion section

of the paper, while Stephen Friedman wrote the back-
ground and approach section. Stephen did the initial
work on learning using the toolkit and Bigram imple-
mentation, while the label matching system and the
inference performed within was written by Brian. Both
spent much time hashing out various model, implemen-
tation, and project issues. Much was learned by all.


