
Selected Regression Algorithms Applied to Spatial Computation

Anna Cavender, Martha Mercaldi

December 13, 2004

Abstract: For this project, we have formulated an archi-
tecture problem as a machine learning problem. The prob-
lem, stemming from the WaveScalar project, is to map opera-
tions in a dataflow graph onto a grid of processing elements
(where they are executed). An unsolved and widely appli-
cable problem in computer architecture involves finding a
mapping that performs best when executed. A function that
evaluates a mapping could be used as a heuristic to opti-
mize application layout. This is an apt problem for machine
learning as analytical models previously developed to pre-
dict performance leave room for improvement (because the
exact performance characteristics of this new processor de-
sign are unknown).

We study five separate machine learning algorithms to
model our simulation data. We observed four features of
each mapping: operand latency, operand bandwidth, dis-
tributed data cache miss rate, and contention of process-
ing elements. These four properties became our independent
variables used as bases for the learning algorithms that at-
tempted to predict our dependent variable: IPC (instructions
per cycle).

We found that all five regression learning algorithms: Re-
gression Trees, Cascade Correlation, Multivariate Adap-
tive Regression Splines (MARS), Multiple Regression, and
Weighted Contribution, gave very similar correlations of
predicted to actual IPC. Since a broad range of regression
algorithms were used, this similarity indicates a limiting fac-
tor that is not part of any regression algorithm, but rather
stems from the application.

1 Introduction

For the past several years technlogical innovation has pro-
vided processor designers with an enormous quantity of raw
computational resources. Computer architects are exploring
how to convert this opportunity into improvements in appli-
cation performance. Despite differences in overall approach,
raw technology, and execution models, five recently pro-
posed architectures: nanoFabrics [1], TRIPS [2], RAW [3],
SmartMemories [4], and WaveScalar [5] share the common
trait of mapping large portions, sometimes even all, of an
application onto a distributed collection of processing ele-
ments. Once mapped, the application executes “in place”,
explicitly communicating between these computational ele-
ments. Researchers call this form of computation distributed
Instruction Level Parallelism (ILP) [2, 3, 5] or spatial com-

puting [1].
Each of these systems must be programmed to accommo-

date and to take advantage of the distributed nature of the
architecture. Our own research shows that performance can
vary by as much as a factor of ten depending upon the ap-
plication mapping used. How do developers, compiler writ-
ers, or micro-architects tune the layout of an application so
that it executes quickly? To begin developing algorithms that
construct or optimize layouts, one needs an accurate model
of how these systems behave. Such a model provides the re-
searcher with a foundation for understanding his system, and
can also serve as an objective function for any optimization
algorithm.

We focus on a particular architecture, WaveScalar, from
this class of systems. The model comprises four com-
ponents: inter-instruction operand latency, bandwidth con-
straints between producer and consumer instructions, inter-
actions between instructions and the distributed data cache
system, and resource contention for processing elements.
Section 2 describes the WaveCache architecture and these
four model components in more detail. This problem is well-
suited to machine learning techniques, because these spatial
computing architectures are relatively new and unstudied.
While designers are able to identify factors (features) which
should influence overall performance it is not known how
they interact with each other.

2 Background

2.1 WaveCache Architecture

Instruction set architecture: WaveScalar is a dataflow ar-
chitecture. Like all dataflow architectures (e.g. [6, 7, 8, 9,
10, 11, 12, 13]), its binary is a program’s dataflow graph.
Each node in the graph is a single instruction which com-
putes a value and sends it to the instructions that consume
it. Instructions execute after all input operand values have
arrived, according to a principle known as thedataflow fir-
ing rule [6, 7]. Unlike other dataflow architectures, however,
WaveScalar provides a program with a correct global order-
ing of all its memory operations. The details of this mecha-
nism were previously introduced in [5].

Microarchitecture: Each static instruction in a program
binary executes in a separate processing element (PE).
Clearly, building a PE for each static instruction is both im-

L2 L2 L2

L2 L2 L2

L2
L2

L2

L2
L2

L2

SB

D$

Switch

Cluster

Domain

PE

Figure 1:The WaveCache and cluster:A 3x3 WaveCache
with nine clusters, and details of one cluster.

possible and wasteful, so, in practice, we dynamically bind
multiple instructions to a fixed-number of PEs, and swap
them in and out when more room is needed. We say that
the PEscachethe working set of the application. Hence, the
microarchitecture that executes WaveScalar binaries, essen-
tially a grid of simple processing elements, is called aWave-
Cache. Figure 10 illustrates how a WaveScalar program can
be mapped into a WaveCache.

To reduce communication costs within the grid, PEs are
organized hierarchically, as depicted in Figure 1. PEs are
first grouped into domains; within a domain, instructions ex-
ecute and send their results to a consuming PE within a sin-
gle cycle.

Four domains are then grouped into a cluster, which also
contains wave-ordered memory hardware and a traditional
L1 data cache. A single cluster, combined with an L2
cache and traditional main memory is sufficient to run any
WaveScalar program. To build larger machines, multiple
clusters are connected by an on-chip network and cache co-
herence is maintained by a simple, directory-based protocol
that supports a single cache owner with no sharing. The co-
herence directory and the L2 cache are distributed around the
edge of the grid of clusters.

2.2 Features

We have selected four features to present to the learning
algorithms. We briefly present them now. More detailed
descriptions and evaluations of the chosen features can be
found in Appendix D.

Operand Latency An estimate of how many network hops
are required for each operand to travel the network from
producer to consumer. Each trip is weighted by the

number of times it is made during program execution
(according to the profile)

Operand Bandwidth Indicates the quality of bandwidth
usage. It is calculated based on the expected load at
each network link.

Distributed Data Cache Behavior Estimated L1 miss rate
of the distributed data cache.

Processing Element ContentionRough estimate of the
number of expected WaveCache misses. The Wave-
Cache is designed to cache the working set of an ap-
plication. A miss occurs when program execution re-
quires an instruction which is not currently resident in
the WaveCache and it must be fetched from memory.

3 Methodology

In this section we present our methodology for evaluating
several machine learning algorithms when applied to the
problem described in Section 2.

The data on which we train and evaluate each regression
technique was gathered using six benchmarks (from a variety
of suites including Spec2000 [14] and Splash2 [15]). Each
application was mapped onto the WaveCache in eight differ-
ent ways. The layout algorithms are described in more detail
in the Appendix B. This resulted in fourty-eight datapoints.
For each datapoint the four feature values were calculated.
Each of these feature metrics, described in more detail in the
Appendix D, has been demonstrated to correlate with the ac-
tual value of the performance component they were designed
to model. The application was then simulated on a detailed
cycle-by-cycle simulator of the WaveCache architecture to
measure its performance in IPC (Instructions Per Cycle).1

Each of five regression techniques is described in Sec-
tion 4 were applied to these data. For each regression tech-
nique we cross-validated our model, separating our 48 data
points into training and test sets. In each case the test set
consisted of the data for one of the six benchmark programs.
For example we would learn a model on five of the six bench-
marks and then evaluate it on the sixth. We chose to divide
the data in this way to simulate how the model would per-
form on a benchmark it has never seen before. We learned
six models using each regression technique, each one with a
different benchmark “knocked out”, on which the model was
evaluated.

To evaluate the quality of a model we used the standard
statistical correlation metric computed between a model’s
predicted application performance and actual simulated ap-
plication performance. We chose this over other possible

1This data was originally gathered for a conference submission earlier
this quarter. Feature selection, feature evaluation and all simulation was
performed prior to this course project. For more details see Appendix A

measures (such as average absolute error) because of the in-
tended use for these models. The ultimate purpose is to com-
pare two potential layouts and choose the best of the two
(for example this is done at each step while hill climbing
or during simulated annealing). For this purpose it is more
important that the relationship between the predicted and ac-
tual values be conserved, as opposed to the precision of the
estimates. For this reason we use correlation as our evalua-
tion function where1 is perfect linear correlation and0 is no
correlation.

Evaluation and discussion of the results follows in Sec-
tion 5.

4 Regression Algorithms

All regression learning algorithms build models that repre-
sent some set of training data and then use these models to
predict values for future observations.

4.1 Regression Trees

Regression tree algorithms build decision tree models based
on training data that can be used to predict the outcome of
test data. Data is divided at each level in the tree so that each
node represents a range of values learned from the indepen-
dent variables in the training data. A path from the root to a
leaf represents a series of tests on features of the data ending
in a leaf node that represents a value for a particular out-
come (dependent variable). Thus outcomes are predicted by
starting at the root node and following branches left or right
based on feature variables. Since both our feature values
(Bandwidth, Contention, Data, and Latency) and our return
value (IPC) are continuous rather than discrete, we used a
variance splitting method which splits the data at each node
so as to minimize the sum of the squared errors in the child
nodes.

To test regression trees on our data, we used DTREG v3.5
[16]. This program allows the generation of Single Tree,
Tree Boost, and Decision Tree Forest Models. The Single
Tree model is as described above.

The Tree Boost Model builds several trees in a series. The
first tree in the series is fitted to the data. It then feeds its
residuals (error values) into the next tree in an attempt to
resolve them. This is repeated so that a chain of successive
trees are generated. Then, predicted outcomes are created by
adding the weighted sum of each of the trees.

The Decision Tree Forest Model builds several indepen-
dent trees: each one uses a subset of observations from the
training data. To predict the outcome of test data, the average
outcome from each of the trees in the forest is returned.

4.2 Cascade Correlation

Cascade Correlation is a learning algorithm that can be used
on various neural networks to train the network to optimize
its outcome. A neural network consists of layers of process-
ing elements (nodes). The nodes in the first layer are fed the
input variables and the node(s) in the last layer output the
value of the outcome. All other layers are called hidden lay-
ers. The connections between nodes are weighted and these
weights are adjusted until the outcome best matches the de-
sired outcome from the training set. After the best possible
weights are found, a new node is added. The cascade corre-
lation algorithm adds only one hidden node at a time and that
node is chosen from several candidate nodes that are linked
to the input nodes and to all other hidden nodes in the net-
work. Weights are optimized for these candidate nodes and
then the best one is chosen to be incorporated into the net-
work. This process repeats until the best possible network
with the best possible weights is found.

Instead of waiting for this ideal situation, we limited the
number of iterations to 100. Trail and error indicated that this
was a good number as overfitting seemed to occur shortly
after that.

We used the ThinksPro v1.05 [17] program to test Cascade
Correlation using the Cascade architecture.

4.3 Multivariate Adaptive Regression Splines
(MARS)

MARS builds a model of training data by fitting together sev-
eral piecewise linear regressions so as to best match the data.
This simulates a non-linear regression without the time and
computational expense of non-linear regression algorithms,
such as neural nets. The intervals are found by evaluating
the significance of each feature (independent variable) one
by one and building basis functions. Then the algorithm
chooses best possible linear interactions between variables.

Training of our data in MARS was done with MARS v2.0
by Salford Systems [18].

4.4 Multiple Regression

Multiple Regression [19] finds the relationship between the
outcome (dependent variable) and several features (indepen-
dent variables) in the training set by defining a plane in n-
space (where n is the number of features) that best fits the
data points. Outcome predictions are then estimated by com-
paring features in the test set to the plane. The plane is found
by testing the influence of each variable in turn. The influ-
ence of a variable v is determined by comparing the square
of the correlation coefficient of all variables except v with the
square of the correlation coefficient of all variables. The big-
ger the difference, the more significant v is. For this project,

we used Huberts method for the influence function with Hu-
bert Constant = 1.345.

In addition to testing the influence of each individual
variable, curvilinear and interactive relationships are also
found. Curvilinear relationships include the relationship of
each variable to itself by creating a new variable that is the
square or cube of the variable being tested. In 2-way curvi-
linear relationships, individual variables are compared with
the squares of those variables. In 3-way curvilinear relation-
ships, individual variables are compared with the square and
the cube of those variables. An n-way curvilinear relation-
ship compares all variables with all n powers of each vari-
able. Interactive relationships are similar to curvilinear ex-
cept that instead of multiplying the values of variables with
the same variable, variables are multiplied by all other vari-
ables in the data set. An n-way interaction compares all n
combinations of variables in the data set.

This process estimates the coefficients (weights) of each
variable and thus defines the plane of the model.

Multiple Regression was performed using the NCSS
(Number Cruncher Statistical System) Trial Version from
NCSS [20].

4.5 Weighted Contributions

This model simply combines features linearly with each fea-
ture value weighted by itscontribution. Contribution is the
importance of a feature to measured performance.2 Higher
contribution values suggest that the feature is an important
factor in performance. Low contribution values suggest the
component has no real bearing on performance.

5 Experimental Results

We used cross-validation to test the accuracy of each learn-
ing algorithm. Each learning algorithm was tested on five
of the six different benchmarks and the resulting model was
used to estimate the remaining benchmark for a total of six
different tests per algorithm. Upon evaluation each regres-
sion method produced an estimate that had a correlation co-
efficient of .83-.87 with actual measured IPC. Because such
a broad range of regression techniques are all so consistent
with one another, we believe that what limits the perfor-
mance of these techniques is probably not the techniques
themselves, but rather the problem domain. It is possible
that given this set of benchmarks and these four features, one
cannot improve on .87 correlation.

5.1 Regression Trees

We created three different tree models of our data: Simple
Trees, TreeBoost, and Decision Tree Forest. The Simple

2These values had been calculated previously, as stated in Appendix A.

Figure 4: Regression Tree Model: Single regression tree
trained on all six benchmarks. Each node shows the node
number, the group of observations from the training set that
it represents, the number of nodes in that group (N) and the
sum of their weights (W), the IPC value at that node (the
dependent variable), and the standard deviation for the mean
IPC value.

Tree provided us with a graphical representation of the re-
sulting model, shown in Figure 4 (the other two are difficult
to visualize and so were not generated). Each node shows the
node number, the group of observations from the training set
that it represents, the number of nodes in that group (N) and
the sum of their weights (W), the IPC value at that node (our
dependent variable), and the standard deviation for the mean
IPC value. Note that we elected not to place weights on any
of the features and thus N and W are the same in every node.

During evaluation six different trees were produced, and
across them all there is a common theme: Latency and Con-
tention are the most significant variables in determining the
IPC value with Data and Bandwidth rarely being used in the
decision trees. This is consistent across all of the regres-
sion techniques which rank the significance of features. The
pie charts in Figure 2 indicate the extent to which Latency
and Contention were significant in the analysis of these al-
gorithms. The algorithms vary primarily in how much share
they award to Bandwidth and Data.

This remained a common theme in both the TreeBoost and
Decision Tree Forest algorithms: Latency and Contention
are found to be the most significant variables with Data and
Bandwidth consistently less significant.

5.2 Cascade Correlation

We allowed the Cascade Correlation algorithm to run for 100
iterations (100 hidden nodes were added and weighted ap-
propriately). While there is no easy visualization of the re-
sulting model, this algorithm did reasonably well with an
average correlation of predicted and actual IPC of 0.83. Al-
though slightly lower, this correlation does not differ sig-
nificantly from any of the other models. Despite being the
most sophisticated of the techniques with which we experi-
mented, these Neural Nets fared no better. This lends further
credence to our conclusion that the problem is the factor lim-

SingleTree Latency

Contention

TreeBoost Latency

Contention

Data

Bandwidth

DecisionTreeForest Latency

Contention

Data

Bandwidth

Weighted Contributions Latency

Contention

Data

Bandwidth

MARS Latency

Contention

Data

Bandwidth

Figure 2:Relative Feature Importance Scores

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Model Prediction

M
ea

su
re

d
 IP

C

Training Data
Test Data

Correlation Coefficient
Single Tree Tree Boost Decision Tree Forest

Benchmark Training Data Test Data Training Data Test Data Training Data Test Data

fft 0.92 0.00 0.93 0.19 0.93 0.19
ocean 0.90 0.82 0.94 0.75 0.94 0.78
equake 0.93 0.93 0.92 0.92 0.92 0.93

art 0.86 0.62 0.94 0.79 0.92 0.83
gzip 0.70 0.92 0.93 0.78 0.94 0.92
mcf 0.89 0.88 0.93 0.90 0.93 0.89

Average 0.70 0.72 0.76

Figure 3:Regression Tree DataOn the bottom is a table showing the evaluation of six models on their training data and
their test data. Above it is a graph detailing the correlation between predicted IPC, on the x-axis, and actual IPC, on the
y-axis, for both the training data (all benchmarks exceptfft, gray triangles) and the test data (fft, black squares).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Model Prediction

M
ea

su
re

d
 IP

C

Training Data
Test Data

Correlation Coefficient
Benchmark Training Data Test Data

fft 0.90 0.81
ocean 0.91 0.70
equake 0.88 0.94

art 0.87 0.70
gzip 0.87 0.96
mcf 0.89 0.89

Average 0.83

Figure 5:Cascade Correlation DataOn the right is a table showing the evaluation of six neural networks on their training
and test data. The graph on the left is a plot of Actual IPC v. Predicted IPC for the model evaluated in the first row of the
table: training data is all benchmarks exceptfft (gray triangles), test data isfft (black squares).

iting the quality of these models.

5.3 Multivariate Adaptive Regression Splines
(MARS)

The models that we obtained by running our data with the
MARS algorithm consist of piecewise linear regressions.
The regressions shown in Figure 7, represent the model cre-
ated using all of the data (without cross-validation). Notice
that Latency, Contention, and Bandwidth all have inverse re-
lationship with the target variable (IPC) (while Data is di-
rectly related) when the algorithm finds them to be signifi-
cant contributors.

5.4 Multiple Regression

We experimented with 1-way, 2-way, and 3-way Multiple
Regression (with both curvilinear and interactive relation-
ships). The results of these experiments are shown in the
table in Figure 8. As we increase the expressiveness of the
model (moving from 1-way to 3-way) we see improving
correlation of the model to the training data (from approx-
imately .9 correlation to .98) but a degrading correlation of
the model to the test data (from .87 to .36). This is a clear
sign of overfitting, with the model predicting excellently the
values on which it was trained but lacking the generality to
predict anything about previously unseen data. Furthermore,
on inspection of each 3-way model, one sees a much larger
range in the coefficients than one sees in the 1-way models
(Appendix F). This is a sign of generality in the 1-way mod-
els that is lacking in the 3-way models.

5.5 Weighted Contributions

Contribution is the importance of the component to perfor-
mance. We computed this by calculating the variance of the
simulated IPC dividing it by the average IPC. In measuring
these IPC values the simulator was configured such that all
architectural components, except those effecting the feature
we sought to measure, were idealized. Higher contribution
values suggest that component, independent of the perfor-
mance model, is an important factor in performance. Low
contributions values suggest the component has no real bear-
ing on performance.

IPC = Contriblatency × CompLatency

Contribbandwidth × Compbandwidth

Contribdata × Compdata

ContribPeContention × CompPeContention

(1)
Based on experimental measures it was found that found

that Contriblatency = 0.57, Contribbandwidth = 0.03,
Contribdata = 0.07, andContribPeContention = 0.32.

6 Future Work

One approach for future research would be to apply some of
these techniques to learn the equations for the features. It
will be trickier deciding on what features to base this learn-
ing, however the feature calculations shown in Appendix D
are acknowledged simplifications of actual program behav-
ior. The reason they are simplified is because architects are
sure how to describe the more complex behaviors. Perhaps
machine learning could provide some insights in this do-
main.

While this project certainly did not attempt to comprehen-
sively explore all machine learning algorithms in the field, it

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Model Prediction

M
ea

su
re

d
 IP

C

Training Data
Test Data

Correlation Coefficient
Benchmark Training Data Test Data

fft 0.92 0.74
ocean 0.91 0.82
equake 0.84 0.94

art 0.88 0.78
gzip 0.89 0.83
mcf 0.82 0.90

Average 0.83

Figure 6:MARS Data On the right is a table showing the evaluation of MARS models on their training and test data. The
graph on the left is a plot of Actual IPC v. Predicted IPC for the model evaluated in the first row of the table: training data
is all benchmarks exceptfft (gray triangles), test data isfft (black squares).

Figure 7: Piecewise Linear Features:This output from the MARS software graphs the relationship of each of the four
features to IPC.

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1

Model Prediction

M
ea

su
re

d
 IP

C

Training Data
Test Data

Correlation Coefficient
One Way Two Way Three Way

Benchmark Training Data Test Data Training Data Test Data Training Data Test Data

fft 0.90 0.83 0.94 0.74 0.99 0.05
ocean 0.91 0.78 0.92 0.87 0.98 0.62
equake 0.87 0.95 0.92 0.82 0.98 -0.37

art 0.89 0.77 0.90 0.62 0.98 0.69
gzip 0.87 0.98 0.92 0.38 0.98 0.25
mcf 0.88 0.92 0.92 0.79 0.98 0.91

Average 0.87 0.70 0.36

Figure 8: Multiple Regression DataOn the bottom is a table showing the evaluation of eighteen models on both their
training data and their test data. Moving from left to right the models increase in their expressiveness. With this we witness
an increase in training data correlation. However we also see a marked degradation in test data correlation, indicating
that the more expressive model tends to overfit the training data. Above is a graph detailing the correlation between “One
Way” predicted IPC, on the x-axis, and actual IPC, on the y-axis, for both the training data (all benchmarks exceptfft, gray
triangles) and the test data (fft, black squares).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Model Prediction

M
ea

su
re

d
 IP

C

Training Data
Test Data

Correlation Coefficient
Benchmark Training Data Test Data

fft -0.86 -0.83
ocean -0.89 -0.68
equake -0.83 -0.95

art -0.84 -0.88
gzip -0.85 -0.87
mcf -0.84 -0.90

Average -0.85

Figure 9:Weighted Contributions Data On the right is a table evaluating the quality of the Weighted Contribution combi-
nation of features. On the left is a plot of Actual IPC v. Predicted IPC for the model evaluated in the first row of the table:
training data is all benchmarks exceptfft (gray triangles), test data isfft (black squares). Note that this regression technique
produced a strong but inverse correlation with respect to the others.

is interesting that each of the algorithms used here resulted
in very similar correlations. Further research could evalu-
ate other algorithms that may be better suited to this type of
problem or confirm our hypothesis that perhaps this problem
can only be learned to the extent that we have shown here.

Also, many of the software packages used in this project
provided several parameters that could be tuned to best suit
a particular problem or data set. On several occasions, the
author accepted default setting for the purpose of brevity. A
more in depth evaluation of each program (as opposed to
the breadth study presented here) would find best possible
parameters using a more in depth understanding of the pro-
gram. Examples of parameters that could influence results
are the number of allowable nodes in the regression trees or
the cascade correlation network. Also, the number of iter-
ations for which the cascade correlation is allowed to run
would effect both accuracy and overfitting.

Finally the six benchmark programs used for this project
were chosen in order to incorporate a broad collection of ap-
plication properties. If more benchmark programs with dif-
ferent characteristics were chosen, the learning algorithms
may benefit from the increased knowledge of a bigger and
wider training set.

7 Conclusion

We have applied a broad selection of regression algorithms
to a problem inspired by recently proposed, but relatively
unstudied, spatial computation architectures. We found the
range predictive powers of each algorithm (as measured by
correlation of predicted to actual performance) to be quite
small, with correlation coefficients varying from .83 (MARS
and Cascade Correlation) to .87 (1-Way Multiple Regres-
sion). The only time the correlation exceeded .87 was for
overfit models run on their training data. Based on this small
variance across algoriths we believe that prediction quality
is not limited by any specific regression algorithm, but rather
by the inherent difficulty of the architecture problem.

References

[1] S. C. Goldstein and M. Budiu, “Nanofabrics:spatial comput-
ing using molecular electronics,” inProceedings of the 28th
annual international symposium on Computer architecture,
pp. 178–191, 2001.

[2] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore, “Exploiting ILP,
TLP, and DLP with the polymorphous TRIPS architecture,”
in Proceedings of the 30th annual international symposium
on Computer architecture, 2003.

[3] W. Leeet al., “Space-time scheduling of instruction-level par-
allelism on a Raw machine,” inProceedings of the 8th Inter-
national Conference on Architectural Support for Program-

ming Languages and Operating Systems ASPLOS-VIII, Octo-
ber 1998.

[4] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz, “Smart memories: A modular reconfigurable
architecture,” inInternational Symposium on Computer Ar-
chitecture, 2002.

[5] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“WaveScalar,” inProceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, p. 291, 2003.

[6] J. B. Dennis, “A preliminary architecture for a basic dataflow
processor,” inProceedings of the 2nd Annual Symposium on
Computer Architecture, 1975.

[7] A. L. Davis, “The architecure and system method of DDM1:
A recursively structured data driven machine,” inProceedings
of the 5th Annual Symposium on Computer Architecture, (Palo
Alto, California), pp. 210–215, IEEE Computer Society and
ACM SIGARCH, April 3–5, 1978.

[8] S. Sakai, y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba,
“An architecture of a dataflow single chip processor,” inPro-
ceedings of the 16th annual international symposium on Com-
puter architecture, pp. 46–53, ACM Press, 1989.

[9] T. Shimada, K. Hiraki, K. Nishida, and S. Sekiguchi, “Eval-
uation of a prototype data flow processor of the sigma-1 for
scientific computations,” inProceedings of the 13th annual
international symposium on Computer architecture, pp. 226–
234, IEEE Computer Society Press, 1986.

[10] J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester
prototype dataflow computer,”Communications of the ACM,
vol. 28, no. 1, pp. 34–52, 1985.

[11] M. Kishi, H. Yasuhara, and Y. Kawamura, “Dddp-a dis-
tributed data driven processor,” inConference Proceedings of
the tenth annual international symposium on Computer archi-
tecture, pp. 236–242, IEEE Computer Society Press, 1983.

[12] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes,
“The epsilon dataflow processor,” inProceedings of the 16th
annual international symposium on Computer architecture,
pp. 36–45, ACM Press, 1989.

[13] G. Papadopoulos and D. Culler, “Monsoon: An explicit
token-store architecture,” inProceedings of the 17th Interna-
tional Symposium on Computer Architecture, May 1990.

[14] SPEC, “Spec CPU 2000 benchmark specifications.”
SPEC2000 Benchmark Release, 2000.

[15] D. Buell et al., Splash 2: FPGAs in a Custom Computing
Machine. IEEE Computer Society, 1996.

[16] P. Sherrod, “Dtreg software package,” 2004.
http://www.dtreg.com/.

[17] I. Logical Designs Consulting, “Thinkspro soft-
ware package,” 2004. http://www.sigma-
research.com/bookshelf/rtthinks.htm.

[18] S. Systems, “Mars software package,” 2004.
http://www.salford-systems.com/mars.php.

[19] M. Irani and P. Anandan, “Robust multi-sensor image align-
ment,” in ICCV, pp. 959–966, 1998.

[20] N. C. S. S. N. Company, “Ncss and pass data analysis sys-
tems,” 2004. http://www.ncss.com/.

i2
i3

i4

i1

i5

i6

i7

i2

i3

i4

i1

i5
i6

i7

Figure 10:WaveScalar Application Layout:

APPENDIX

A Contributors

All data was gathered prior to this course project. This in-
cludes

1. Layout algorithm design and implementation

2. Feature selection and validation (Appendix D

3. Simulation of each benchmark with each possible ap-
plication layout

The raw data with which we began this work is shown in
Appendix E, Table 1.

For this project we split all tasks evenly. Anna gath-
ered data for three regression algorithms (Regression Trees,
MARS, Cascade Correlation) while Martha covered (Multi-
ple Regression and Weighted Contributions). Writing, data
preparation and analysis of results was also divided evenly.

B Instruction Layouts

In the general case an application layout is a mapping of
computation elements composing the application to specific
locations in a regular computational substrate. In the specific
case of WaveScalar, a small application layout is a mapping
of WaveScalar instructions (dataflow nodes) onto a specific
processing element in the WaveCache.

Figure 10 illustrates an application and a sample layout.
For this study we concentrate only onstatic instruction lay-
outs. In a static layout each instruction is assigned to a pro-
cessing element prior to program execution, and this assign-
ment does not change during execution. The WaveCache
demand loads instructions and for this study always assigns
them to the location chosen for the layout. As more instruc-
tions can be assigned to a single location than that location
can physically handle, instructions are swapped out of loca-
tions using an LRU algorithm.

This study is based on simulation results from eight dif-
ferent instruction placements. Here we briefly describe the
placements and the algorithm used to generate them:

random Each instruction is assigned to a randomly chosen
PE anywhere in the WaveCache.

packed-random Each instruction is assigned to a randomly
chosen PE from a restricted set of contiguous domains.
The size of this set is the minimal number of domains
required to hold all of the program instructions.

static-stripe Instructions are assigned to PEs in static pro-
gram order, creating stripes across the WaveCache.

depth-first-stripe This is a depth-first search based algo-
rithm which computes a pre-order traversal ordering of
the instructions in the DFG. It then assigns each seg-
ment of 16 instructions to a PE. The goal of this algo-
rithm is to place strands of sequential, data-dependent
instructions all in the same PE, as these are instructions
which would not be able to fire in parallel and therefore
can best share a PE.

dynamic-stripe : Instructions are assigned in dynamic pro-
gram order to each processing element.

over-2-DFS This is the same depth first search algorithm
used for DEPTH-FIRST-STRIPE, except that twice as
many instructions are assigned to PEs as the hardware
can hold at any point in time.

over-4-DFS This is the same asOVER-2-DFS except four
times as many instructions are used.

over-8-DFS This is the same asOVER-8-DFS except that
eight times as many instructions are used.

We should note that these layout algorithms are used for a
variety of reasons in this study. TheRANDOM andRANDOM-
PACKED “algorithms” represent very naive layouts which
perform very poorly. TheSTATIC-STRIPE layout represents
something that a prefetching algorithm could easily accom-
plish. TheDEPTH-FIRST-STRIPEalgorithm attempts to uti-
lize the sequential nature of execution of dependent instruc-
tions in a productive way for layout. TheDYNAMIC -STRIPE

is our current overall best performing placement algorithm.
Finally, the over-subscribed DFS algorithms are used to ex-
plore contention effects in the architecture.

C Application Profile

An application profile of a WaveScalar binary is an annotated
dataflow graph of the program. Figure 11 illustrates an ap-
plication profile. The nodes represent program instructions,
and the directed edges that connect them indicate operand
producer-consumer relationships. These edges are annotated
with the number of times an operand was passed from pro-
ducer to consumer during profiled execution.

Ld

Add

Ld

Add

Mul

St

6 6

6

6

6

6 66

6
Cache Line #1

Cache Line #2

Cache Line #3

2

4

6

3

3

6

Figure 11:WaveScalar Application Profile

The profile also adds a second type of node, an address
node, each of which represents an address (of cache-line size
granularity) in memory that was accessed by the application.
Address nodes are connected to the instructions which ac-
cess them by directed edges. These edges also have weights
indicating the number of profiled accesses.

D Feature Details

In describing the four layout features we use the following
common set of variables:

n is the number of instructions in the application.

i refers to thei’th instruction,j refers to thej’th instruction.

Ci is thex, y physical location of the cluster containing in-
structioni. Cxi, andCyi are the components individu-
ally. Similarly,Di andPi are the location of the domain
and processing element, respectively, where instruction
i is placed.

Ti,j refers the amount of communication (or traffic) be-
tween instructionsi andj.

A is the set of cache-line size addresses the application
uses.

a refers to a particular cache-line size address.

Mi,a refers to the number of memory accesses between in-
structioni and memory addressa.

MC,a refers to the number of memory accesses between all
instructions in clusterC and memory addressa. MC,a

can be defined in terms ofMi,a: MC,a =
∑

i∈C Mi,a.

Many times throughout the text it important to refer to
the distance between two items. In these cases, we use the
Manhattan-distance in terms of clusters, domains or process-
ing elements. This distance,||Ci −Cj || is simply calculated
as|Cxi − Cxj |+ |Cyi − Cyj |.

D.1 Feature: Operand Latency

The latency of operand traffic in this micro-architecture can
be modeled as the distance between the producer and con-
sumer of the operand. Considering any two instructions,i
andj, the latency between them is dependent on their posi-
tion:

Latencyi,j =

{
0 if Di = Dj ,

Ci,j · (||Ci − Cj ||+ 2) otherwise.
(A-1)

The total latency incurred by operand traffic is therefore
the summation of this value for each pair of instructions mul-
tiplied by the quantity of communication between them:

Latency =
∑

i

∑
j

Ti,j × Latencyi,j (A-2)

D.2 Feature: Operand Bandwidth

We estimate the bandwidth demands at each network link in
the following way: Given the routing algorithm, when in-
structioni sends an operand to instructionj many possible
links between their respective locations (Ci andCj) could
be used. Each operand creates demand on a rectangular re-
gion of network switches. Overlaying all of these rectangles
for all operand communication in the application, we can
estimate the total expected bandwidth requirements at each
switch.

Across many messages, the aggregate bandwidth utiliza-
tion across these links is a predictable function of the lay-
out and profile data. The expected load,Loadx,y,i,j , at each
switch is simply the sum of incoming link loads:

Loadx,y,i,j =

0
when x, y /∈ BoundingBox(Ci, Cj)

Ti,j

when x, y = Ci ∨ x, y = Cj

Loadx−1,y,i,j + Loadx,y−1,i,j/2
when x = Cxj , y 6= Cyj

Loadx−1,y,i,j/2 + Loadx,y−1,i,j

when x 6= Cxj , y = Cyj

Loadx−1,y,i,j/2 + Loadx,y−1,i,j/2
when x 6= Cxj , y 6= Cyj

(A-3)
In this set of equations,BoundingBox(Ci, Cj) is simply

the set of network switches that traffic may flow over fromCi

to Cj . We have also simplified things slightly by assuming
thatCi is the upper-left andCj is the lower right corners of
this box. A similar (not shown) set of equations are used to
compute theLoad when this is not the case. The origin is
placed at the upper left of the WaveCache.

Using this model we can then estimate the total amount
of network traffic that passes through a particular network
switch:

Loadx,y =
∑
i,j

Loadx,y,i,j

Experiments have shown that the best scoring func-
tion for a set of estimate link work loads is PEAK-
ABOVE-AVERAGE: the maximum amount by which any
one expected workload exceeds the average workload
(maxx,y(Loadx,y)−AverageLoad).

D.3 Feature: Distributed Data Cache Behav-
ior

Missesa =
∑
C

{
1 if MC,a > 0,

0 otherwise.
(A-4)

Hitsa =

(∑
C

MC,a

)
−Missesa (A-5)

Misses =
∑

a

Missesa (A-6)

Hits =
∑

a

Hitsa (A-7)

D.4 Feature: Processing Element Contention

We use a simple model to estimate the amount of contention
there will be among instructions for available slots in their
PEs. The estimate is the number of instructions which cannot

be resident in the WaveCache at any time. In the following
equationsPeCapacity is the number of instructions which
any PE can hold, andIp is the set of instructions assigned to
processing elementP .

PeContention =
∑
P

|IP | − PeCapacity

when |IP | > PeCapacity

0
otherwise

(A-8)
Despite the model’s simplicity, it is highly effective at

modeling resource contention in the WaveCache.

E Data Tables

F Multiple Regression Models

F.1 One Way Models

Trained on all data:

Estimate = 1.35757923490309
−2.22283902899033× L
−.364895145130047×B
+1.58087577607372×D
−.625146295399346× C

(A-9)

Trained on all exceptfft:

Estimate = 1.30060757902123
−2.1098895690747× L
−.365835704298298×B
+1.4405402246403×D
−.50383304413062× C

(A-10)

Trained on all exceptocean:

Estimate = 1.32869546348535
−2.05498256078302× L
−.408708364098947×B
+1.38739858978484×D
−.515705049197833× C

(A-11)

Trained on all exceptequake:

Estimate = 1.4605725268469
−2.2077997138043× L
−.43019502557154×B
+1.61817106184067×D
−.755147396431784× C

(A-12)

Trained on all exceptart:

Estimate = 1.33370858312509
−2.45740966634696× L
−.20464809314502×B
+1.78114142673435×D
−.733231179130816× C

(A-13)

Feature Values
Benchmark Layout Latency Bandwidth Data Cache PE Contention IPC

FFT exp4 0.569552716 0.542023309 0.589768726 0.463870778 1
FFT dfs 0.578689802 0.652664031 0.599188127 0.45292937 0.739741817
FFT stripe 0.580717902 0.6646903 0.599398556 0.45292937 0.246423266
FFT randomPacking 0.674783883 0.39734024 0.639316305 0.518886897 0.389060865
FFT randomSpreading 0.730801538 0.542023309 0.669835961 0.453856608 0.230488046
FFT dfs2 0.571921426 0.6646903 0.58400388 0.723064698 0.385712822
FFT dfs4 0.572739964 0.68772699 0.589794031 0.858565073 0.158649659
FFT dfs8 0.570716293 0.698765047 0.57861794 0.925820733 0

OCEAN exp4 0.661067928 0.585547383 0.666793063 0.466243844 0.483918805
OCEAN dfs 0.526540395 0.632220824 0.569861786 0.560035451 1
OCEAN stripe 0.462099295 0.585547383 0.57359705 0.560035451 0.472554418
OCEAN randomPacking 0.91339994 0.632220824 0.808988323 0.560035451 0.018661675
OCEAN randomSpreading 0.920985774 0.61626494 0.808361912 0.560035451 0.010578864
OCEAN dfs2 0.505887256 0.632220824 0.560662827 0.560035451 0.707741438
OCEAN dfs4 0.483729634 0.632220824 0.506594291 0.757795086 0.358080975
OCEAN dfs8 0.474753604 0.632220824 0.453604575 0.92424764 0
equake exp4 0.205390632 0.370417422 0.284701991 0.489470013 1
equake dfs 0.293800159 0.315053659 0.244241454 0.489470013 0.692720505
equake stripe 0.274768371 0.430118034 0.288290508 0.489470013 0.695912381
equake randomPacking 0.849170354 0.429271973 0.880802573 0.461286401 0.146418565
equake randomSpreading 1.022943704 0.428015414 0.962800912 0.486880168 0
equake dfs2 0.291670876 0.462691405 0.247769517 0.371904091 0.609225312
equake dfs4 0.252215446 0.472966353 0.247764071 0.31305584 0.660470714
equake dfs8 0.195382817 0.476808099 0.228971333 0.283805821 0.809910163

art exp4 0.547229025 0.165696588 0.570116849 0.611538911 1
art dfs 0.626063774 0.868331361 0.660845125 0.627298194 0.382813322
art stripe 0.547359277 0.852848047 0.630590273 0.627298194 0.276166422
art randomPacking 1.005997719 0.741239159 0.918136837 0.64058152 0
art randomSpreading 0.986354852 0.762717294 0.963457136 0.639701441 0.01282984
art dfs2 0.59290902 0.528750525 0.630547946 0.715540789 0.420058292
art dfs4 0.569877286 0.591716002 0.600281 0.767547595 0.267816045
art dfs8 0.547172813 0.91166479 0.4489886 0.793457123 0.217352313

gzip exp4 0.446996087 0.611542865 0.505061575 0.148579657 1
gzip dfs 0.529031331 0.567415087 0.529538068 0.61952071 0.549878445
gzip stripe 0.520499185 0.509947844 0.498242141 0.61952071 0.332026228
gzip randomPacking 0.997844271 0.632297638 0.96995167 0.61952071 0.008076393
gzip randomSpreading 0.99704772 0.629970796 0.97352276 0.61952071 0
gzip dfs2 0.481256584 0.631924028 0.466471586 0.61952071 0.492770986
gzip dfs4 0.44909271 0.635484507 0.468915913 0.751944868 0.412106407
gzip dfs8 0.428947417 0.632132539 0.439011591 0.852587229 0.354426237
mcf exp4 0.240202669 -0.070698534 0.262256578 0.528150663 1
mcf dfs 0.357182615 0.677782218 0.410885158 0.528150663 0.759378517
mcf stripe 0.333085402 0.536827159 0.435472252 0.528150663 0.431175115
mcf randomPacking 0.9724043 0.792326256 0.891093863 0.507974414 0
mcf randomSpreading 1.005944484 0.682818906 0.989576064 0.521686066 0.028526346
mcf dfs2 0.273616372 0.438711028 0.350761743 0.41094957 0.798626174
mcf dfs4 0.272906994 0.225653701 0.216536403 0.352227928 0.748907567
mcf dfs8 0.244963277 0.416885379 0.143724052 0.323016147 0.533080168

Table 1:Feature and IPC Data: normalized per application

Trained on all exceptgzip:

Estimate = 1.32403189804916
−2.13454211367373× L
−.421754386750501×B
+1.52693757990869×D
−.551681836347069× C

(A-14)

Trained on all exceptmcf:

Estimate = 1.42500499246307
−2.31806965197578× L
−.355304559780754×B
+1.64061514333014×D
−.691967173027319× C

(A-15)

F.2 Two Way Models

Trained on all data:

Estimate = .646846726382973
−4.79998581607504× L
+.176845337194203×B
+4.88318811674013×D
+.995075188754996× C
−12.2070798918943× L× L
+2.4360578096496× L×B
+22.9714475551078× L×D
+5.38752108312524× L× C
+.711761275075665×B ×B
−2.51071872533098×B ×D
−2.10981799250765×B × C
−12.1509595565399×D ×D
−3.80031888334303×D × C
−1.20546840747366× C × C

(A-16)

Trained on all exceptfft:

Estimate = .552995986891075
−3.98553196729973× L
+.289959992199797×B
+4.31052298441198×D
+1.03183895921818× C
−12.8598438724197× L× L
+1.81972041157642× L×B
+24.8830377940944× L×D
+4.34780916931938× L× C
+.895718470427828×B ×B
−2.06412020037136×B ×D
−2.4316046346246×B × C
−13.5271371846747×D ×D
−2.81218215685294×D × C
−1.09507477718901× C × C

(A-17)

Trained on all exceptocean:

Estimate = .569095473436304
−4.9757995755376× L
+.458843091170079×B
+4.80577123632488×D
+1.07174055132507× C
−8.54289020338866× L× L
+1.03964420258117× L×B
+15.9362237070587× L×D
+7.34993033639456× L× C
+.685803545713162×B ×B
−1.02740557628383×B ×D
−2.78360441864369×B × C
−8.40808457123213×D ×D
−6.25324958308374×D × C
−.549639589652148× C × C

(A-18)

Trained on all exceptequake:

Estimate = 1.25344423992606
−4.91804639663961× L
+.114583279647884×B
+4.99350398979705×D
−.859171350291234× C
−21.0345257441464× L× L
+5.54963962355569× L×B
+41.8332328284203× L×D
+.792737791472825× L× C
+1.1780490915126×B ×B
−7.34730383709171×B ×D
−1.06964849396972×B × C
−21.8169651259802×D ×D
+1.82757178942486×D × C
−.85504598655848× C × C

(A-19)

Trained on all exceptart:

Estimate = .856067789756287
−.979157164517814× L
−.38368675695592×B
+.877297195292073×D
+.915797588427185× C
−13.9955464922535× L× L
−5.45197829276944× L×B
+29.9806307306872× L×D
+1.87717337142577× L× C
+.198322636226673×B ×B
+6.93156643446531×B ×D
−1.32295400573736×B × C
−17.315762348572×D ×D
−1.69348813360628×D × C
−.978534803573938× C × C

(A-20)

Trained on all exceptgzip:

Estimate = .355506850134312
−4.42472971596117× L
−.162272097245777×B
+4.00189469730502×D
+2.93679058475312× C
−18.9676637014647× L× L
+4.1034221146722× L×B
+36.7542762635053× L×D
+3.24665865384726× L× C
+.299299830175597×B ×B
−4.50226629281317×B ×D
−.47865908473717×B × C
−19.1189540422086×D ×D
−.719749244745123×D × C
−3.89415483937944× C × C

(A-21)

Trained on all exceptmcf:

Estimate = 1.60863738059912× C
−16.0730518798983× L× L
+4.3526228804108× L×B
+35.1917120135489× L×D
+6.851001483146× L× C
+1.30784287321571×B ×B
−3.55091180534156×B ×D
−1.78275283938774×B × C
−20.7851190396177×D ×D
−6.54037036267939×D × C
−1.31392600238978× C × C

(A-22)

F.3 Three Way Models

Trained on all data:

Estimate =
−5.58277372399634
−6.26463481290477× L
+.104091496811669×B
+13.7915581694172×D
+33.0181783684145× C
−22.2948524114537× L× L
+106.559605887342× L×B
−63.7468571048466× L×D
−4.82714210110338× L× C
+40.2289060571519×B ×B
−136.720036317505×B ×D
−78.1156004322207×B × C
+59.2604860587323×D ×D
+73.4907266029237×D × C
−49.3400152178979× C × C
+496.289170413332× L× L× L
−480.258949343188× L× L×B
−1470.94424028762× L× L×D
+420.215292526403× L× L× C
−364.930687409122× L×B ×B
+1193.70212290249× L×B ×D
+396.217775912385× L×B × C
+1627.2503076241× L×D ×D
−1265.75911481958× L×D × C
−17.5726976085011× L× C × C
+18.1060918781153×B ×B ×B
+348.438505850582×B ×B ×D
−113.275651123336×B ×B × C
−687.341008897365×B ×D ×D
−368.893968911273×B ×D × C
+192.336057286245×B × C × C
−653.012432967894×D ×D ×D
+860.805885401155×D ×D × C
−72.9054324762932×D × C × C
−17.0676171233299× C × C × C

(A-23)

Trained on all exceptfft:

Estimate =
−6.70489911359652
−77.358183002975× L
−30.7258748027209×B
+66.4207340166738×D
+81.9712477215603× C
−215.507398558395× L× L
+150.614048279455× L×B
+295.306217110512× L×D
+225.844533295334× L× C
+109.183829017832×B ×B
−214.535196528692×B ×D
−65.1890297446678×B × C
−89.0708245170768×D ×D
−98.7305317507319×D × C
−163.859283263678× C × C
+612.267491927846× L× L× L
−446.225450347633× L× L×B
−2001.34915368313× L× L×D
+981.896951753312× L× L× C
−207.780831359504× L×B ×B
+919.005500103044× L×B ×D
+182.092085685427× L×B × C
+2328.04837094334× L×D ×D
−2119.53766627545× L×D × C
−215.506945374313× L× C × C
+7.9299037204519×B ×B ×B
+233.2247865247×B ×B ×D
−232.652226914959×B ×B × C
−445.522035810119×B ×D ×D
−191.65011646169×B ×D × C
+305.599848022955×B × C × C
−943.969067130086×D ×D ×D
+1134.99240349335×D ×D × C
+121.267586921882×D × C × C
+9.7942331125198× C × C × C

(A-24)

Trained on all exceptocean:

Estimate = 5.24714036506066
−18.5166161851985× L
−16.7576803251652×B
+25.8384594001202×D
−7.06302119890658× C
−212.810640207234× L× L
+127.474850452569× L×B
+200.695463513735× L×D
+99.3886098178124× L× C
+7.71302757230586×B ×B
−148.03172929518×B ×D
+38.0662789624442×B × C
+32.1157150233328×D ×D
−119.669212920719×D × C
−2.62265180718772× C × C
−746.75042526607× L× L× L
+126.71384505734× L× L×B
+1500.63823789427× L× L×D
+650.096260275838× L× L× C
−388.300358597183× L×B ×B
+23.5286081966848× L×B ×D
+378.633020903096× L×B × C
−519.02657938056× L×D ×D
−1617.04560856973× L×D × C
−143.532082837902× L× C × C
+23.6515774635998×B ×B ×B
+357.357423363327×B ×B ×D
−54.8190530746558×B ×B × C
−130.108464299666×B ×D ×D
−330.216202389011×B ×D × C
+19.7962588592307×B × C × C
−255.813571200576×D ×D ×D
+969.895846709106×D ×D × C
+124.693762507772×D × C × C
−2.2006142692742× C × C × C

(A-25)

Trained on all exceptequake:

Estimate =
−1.1058296145392
−12.9145696370589× L
−31.742240839475×B
+63.6137341125083×D
−14.2192226935603× C
+606.067590620911× L× L
−48.5925377736995× L×B
−1477.69197974513× L×D
+333.217446548324× L× C
+9.94393245899634×B ×B
+58.7848819365562×B ×D
+63.2350861194432×B × C
+788.422084183634×D ×D
−314.234760869072×D × C
−14.8797824674288× C × C
+485.015954726155× L× L× L
−188.61740261143× L× L×B
−1685.26773893091× L× L×D
−707.056520899603× L× L× C
−159.246333603269× L×B ×B
+573.987949523436× L×B ×D
+210.295927476846× L×B × C
+2168.53116165039× L×D ×D
+1142.07459614386× L×D × C
−246.415492391879× L× C × C
+9.21109117374485×B ×B ×B
+90.5074867714206×B ×B ×D
+23.1245831532279×B ×B × C
−324.492262614972×B ×D ×D
−225.720545230833×B ×D × C
−51.0389788667802×B × C × C
−953.75190355329×D ×D ×D
−418.695192305601×D ×D × C
+217.253077449922×D × C × C
+27.7289345853318× C × C × C

(A-26)

Trained on all exceptart:

Estimate =
−14.0042737012478
+176.315332958374× L
+180.939063181863×B
−208.21991825287×D
−39.2009157458858× C
−110.083250361565× L× L
−208.863380268163× L×B
+33.3351020143411× L×D
−275.376509841926× L× C
−387.723229201401×B ×B
+357.045224151836×B ×D
−111.410248840629×B × C
−4.12069581582178×D ×D
+425.745491518281×D × C
+47.4124732347632× C × C
+488.894182406868× L× L× L
−1173.01838063143× L× L×B
−1381.93680038383× L× L×D
+1218.21343109496× L× L× C
−1355.01746841742× L×B ×B
+3208.58027013734× L×B ×D
+2423.73020138451× L×B × C
+1521.57047951747× L×D ×D
−3477.73337874829× L×D × C
−522.973763746664× L× C × C
+18.3623009246042×B ×B ×B
+1514.6039256421×B ×B ×D
+544.862788635241×B ×B × C
−2096.79513743946×B ×D ×D
−2901.25111327832×B ×D × C
−201.670105264077×B × C × C
−601.629846704226×D ×D ×D
+2361.87765651616×D ×D × C
+532.951818426539×D × C × C
+30.1522792811675× C × C × C

(A-27)

Trained on all exceptgzip:

Estimate =
−4.06517947955519
−39.2928010637235× L
−30.3640899135772×B
+78.3958062599992×D
+29.6968892664377× C
−223.304864603133× L× L
+122.091281555359× L×B
+350.555465104108× L×D
+88.0506715287155× L× C
+99.7391747810439×B ×B
−288.492040357919×B ×D
+28.5012499643061×B × C
−123.45335132393×D ×D
−48.5577569991573×D × C
−85.2175295422557× C × C
+885.688199296099× L× L× L
−856.577135296056× L× L×B
−2846.65960674198× L× L×D
+1454.39892063375× L× L× C
−526.543484697141× L×B ×B
+1958.46844382149× L×B ×D
+706.368412763451× L×B × C
+3312.02569953026× L×D ×D
−3608.73982973051× L×D × C
−116.650176540365× L× C × C
−2.90915044620492×B ×B ×B
+551.532345533153×B ×B ×D
−204.078987290418×B ×B × C
−1039.38441796659×B ×D ×D
−583.973204734535×B ×D × C
+163.747112223819×B × C × C
−1363.281086793×D ×D ×D
+2109.46164076051×D ×D × C
+54.1043974091502×D × C × C
+.96062193880829× C × C × C

(A-28)

Trained on all exceptmcf:

Estimate = 7.94077359300507
+2.81788651820168× L
−24.8073949422957×B
+19.3425610524692×D
−20.970106977387× C
+160.51792246553× L× L
+.899412808285314× L×B
−390.911519254012× L×D
+24.2528267300188× L× C
+7.32688513828638×B ×B
+4.39141805668798×B ×D
+41.9817299360341×B × C
+190.291419262007×D ×D
−21.5156220526788×D × C
+5.41732496211429× C × C
+511.049843424096× L× L× L
−85.0438493984723× L× L×B
−1503.43505893887× L× L×D
−273.972067123187× L× L× C
−183.285928163177× L×B ×B
+182.781174934111× L×B ×D
+395.502587006318× L×B × C
+1569.00448812019× L×D ×D
+441.900197140683× L×D × C
−167.565073187283× L× C × C
−5.57422792430857×B ×B ×B
+177.608039111264×B ×B ×D
−.886645874148615×B ×B × C
−111.083032422834×B ×D ×D
−358.734329476738×B ×D × C
−28.0178619471141×B × C × C
−565.021042419176×D ×D ×D
−132.938480772543×D ×D × C
+114.045385778895×D × C × C
+17.4431966682632× C × C × C

(A-29)

