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Abstract

Prime factorization of large integers is a difficult prob-
lem in number theory [1,6]. Even the best known meth-
ods of factoring an integer composed of two primes
would, given a reasonably large integer, take longer than
the lifetime of the universe. It is because of this diffi-
culty that RSA is believed to be secure (for large enough
keys). This paper discusses the authors’ attempt at solv-
ing the prime factorization problem using satisfiability
solvers and well as previous work on this problem. The
authors’ solution is then analyzed empirically in com-
parison with two other solutions.

Introduction
Problem Definition

For this paper, we are concerned with a small, yet impor-
tant, subset of the prime factorization problem: determining
the factors of a large integer known to be composed of only
two primes of equal bit-length. Namely, given an integér
which we know is of the formV = p * ¢ wherep andq are
prime, and/p| = |q|, how quickly can a satisfiability solver
determine the actual valupsandq?

Motivation

The motivation for doing this is three-fold. First, this prob-
lem is one of the outstanding challenges for satisfiability
solvers [1]. Many instances of “hard” satisfiability problems
can be created by posing the integer factorization problem as
a satisfiability problem. Intuitively, this problem is difficult
since there are only two solutions in the entire input space
(namely,p x ¢ andq * p), thus the odds of finding a solu-
tion decrease exponentially in the size of the inputs. Fur-
thermore, half of the bits in the resul depend directly on
all of the bits ofp andgq, so determining the bits gf and
g requires tracing and propogating complex effects through
many clauses.

Secondly, the authors found only a small amount of previ-
ous work on this problem, indicating that it probably hasn't
recieved as much research attention as it should.
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Finally, this is a problem of practical importance. Most
widely used cryptosystems that keep web traffic, remote ac-
cess, and sensitive files secure use the RSA public-key cryp-
tosystem at some point in their procedure. The RSA cryp-
tosystem is based on the difficulty of factoring large com-
posites of two primes (i.e. numbers of the form this pa-
per examines.) Advances in number theory have greatly in-
creased the speed of factoring, but it is still believed to be
impractical for larger keys. If modern satisfiability solvers
can decrease the required time, then it would indicate cur-
rent cryptosystems aren’t as secure as they are believed to
be, and should either increase their keylength, or switch to
some other method such as elliptical-curve cryptography.

Previous results have been much slower than brute-force
search, and impractical for input sizes beyond about 50 bits.
Due to these results, most people believe that satisfiability
solvers are impractical to use for this problem, unless the
underlying structure of the problem can be somehow cap-
tured and efficiently represented. This work represents the
the authors’ attempt to exploit the local structure inherent in
multiplication.

Layout

We begin by defining concepts that will be used throughout
the paper. We then discuss previous work in the area. Af-
ter discussing our implementation, we show the results of
our emperical comparision to the previous work. Finally we
conclude the paper and examine potential future research as
extentions of this initial study.

Definitions

In this section, we briefly introduce definitions that will be
used throughout the remainder of the paper.

Satisfiability

A Boolean variablex is a symbol that can take on the value
true or false. Boolean operations AND(), OR(v), and
NOT(—) are used to combine these variable into Boolean
sentencesf(). ¢ is satisfiable (SAT) if and only if there exist
an assignment for each variable that causés evaluate to
true. Deciding if a giveny has a satisfying assignment is
considered the quintessential NP-complete problem.



Conjuctive Normal Form

Any Boolean sentence can be converted into Conjuctive
Normal Form (CNF). A sentence is in CNF if it a conjunc-

tion of disjunctions. In other words, the sentence can be
separated into clauses consisting entirely of variables con-

numbers that have only two factgssndg where bottp and

q are prime. In fact, we can condense the problem further by
requiring thatp andq have equal length in their binary rep-
resentations. These two constraints make the problem more
manageable by eliminating a large section of the input space,

nected by OR operations and each clause in connected by anSince we need not consider more or less t}éfy2 bits per

AND operation. For examplénx v 3) A (v V =) isin CNF
while ((a A 8) V 7) is not.

Hardware Adders and Multipliers

Addition and multiplication are two of the most basic op-
erations performed at the low-level hardware within a com-
puter's processor by circuits of AND and OR gates. The
basic block of binary addition is the Full Adder in Figure 1
wherea andb are theith bit in the binary representation of
the two numbers being addedy is the carry bit from the
previous positionsum is the result of adding those two bits,
andcout will be the carry to the next Full Adder. So, adding
two n-bit numbers will require a chain of n Full Adders.

While much computer architecture research has been de-

voted to improving the speed of addition, the fundamental
process still reduces to a series of Full Adders.

Full Adder (FA)

—— sum

—— cout

}

Figure 1: Full Adder. Computes the sum and carry out of
the bits a and b taking into account the carry in from the
previous bits.

cin

The process of multiplication is simply a series of shifts
and additions. There are several procedures for doing this,
each with varying tradeoffs in terms of complexity and cir-
cuit speed. For this paper, we focus on two different forms of
Carry-Save Multiplication, discussed in the Section labeled
Multiplier.

Previous Work

Previous work in this area has concentrated on the factor-
ization of anynumber. Thus, if the Boolean sentence repre-
senting the input numbey¥ is unsatisfiable therV is prime.
Conversely, if the sentence is satisfiable tidéis obviously
not prime, but its factors may be any natural number. The
problem can be greatly reduced if we narrow our focus to

input.

The general idea of factoring using satisfiability is to sim-
ulate the circuits of a hardware adder and multiplier on the
bits of potentialp’'s andq’s, while setting the output bits the
same as the desiréd. The resultis a Boolean sentence such
that each variable corresponds to either one of the bjioin
q or values for the circuit wires. This Boolean sentence can
then be concerted into CNF (Conjuctive Normal Form) so
that a satisfiability (SAT) solver can solve it. If the Boolean
sentence can be solved (i.e. there exists an assignment for
each variable such that the sentence is true), then each bit
in p andq will have the value of its corresponding Boolean
variable and we have found theandq that composéV.

The CNF Generator by Paul Purdom and Amr Sabry
implements both a carry-save multiplier and a Wallace-
tree multiplier, giving the user this option. Additionally,
they allow the user to simulate either an n-bit or a fast
adder, which yield the same result, but differ in the struc-
ture of how the additions take place. Their circuit sim-
ulator requires that the first factor have at ma¢at| —

1 bits and the second have at ledsf|/2 bits (rounded

up when N is odd). Their program can be used online
at http://www.cs.indiana.edu/cgi-pub/sabry/cnf.html. They
also generously provide the source code, so that it may be
run on a local machine.

The FactoringAsSat project by Henry Kautz and Shane J.
Neph similarly produces a sentence that is unsatisfiable if the
input is prime, or has a satisfying assignment representing
two of the divisors of a non-prime input. Unlike Purdom and
Sabry’s generator, FactoringAsSat assumes that each factor
may be up to| V| bits long, and they add additional con-
straints that prohibit either factor from being 1, sinte N
is always a solution, but is not the desired one.

Both of these problem generators do a low-level simula-
tion of the multiplier circuit. They save the outputs of each
adder and/or half-adder, which is conceptually easy to fol-
low and construct, but requires a large number of intermedi-
ate variables to store all these temporary values.

Proposed Improvements

Unlike previous work that saves all the intermediate values,
we propose tracing the full circuit, and only retaining vari-
ables for the bits o andgq. Instead of storing each of these
temporary values as a new variable, we construct a boolean
expression by tying the outputs of one adder to the inputs
of the next. This will result in a complex boolean formula,
which we then convert to CNF, and find its solution using a
satisfiability solver.

The motivating idea is that the runtime of a satisfiability
problem is typically dependent on the number of variables
it must assign, so decreasing the number of variables should
decrease the time it takes to factor. This process will re-
sult in more clauses, but we hypothesize that the advanced



techniques in modern satisfiability solvers, such as watched —(—a) =«
clauses and clause learning, will allow us to overcome the  —(aV 3) = (-~a A =)
increase in the number of clauses. —(aAB) = (—aV-p).

Lo If either o or 3 are clauses, the negation will recursively

The Multiplier propogate inward until a literal is found. The second step

For our project, we simulated a multiplier circuit and set its  distributes all of the nested operations. For example:

output bits to correspond t&/. We then use this multiplier -

to construct a Boolean sentence that, if satisfiable, produces (@V(BAr))=(aVvB)Alavy)

the two prime factors of equal binary length of a large in-  Again, if o, 3, or  are clauses, the program recursively

teger input. After transforming that sentence into CNF, a applies this rule until all clauses are in CNF. Finally, in order

satisfiability solver generates an assignment for the two fac- to detect and eliminate duplications (suchraga = «) and

tors. contradictions (such asV a = true) we find nested clauses
Fundamentally, multiplication is just a series of shifts and composed solely of ORs and flatten them into one clause.

additions. For example, to multiply = b3b2b1bg by a =

azaiag, we start with the rightmost bit of one of the terms.  Modifications to the Original Design

If that bit (ao) is 1, we add one copy of the other teri) (o Our ideal going into this project was to construct this mul-
the final result, if that bit ig), we add no copies of thatterm tjpjier using as few variables as possible: only the bits of
(i.e. add)). For each successive hitin a, we shiftb left by the input. We wanted to construct a complex boolean for-
i, and add itto the final result if; is 1. The circuitcalculates  my|a that calculated the output using only the input vari-
this by addingy A ag + (b << 1) Aai + (b << 2) Aaz + ... ables, convert it to CNF, and then use a satisfiability solver.
whereb << i indicates a left shift ob by ¢ bits. We quickly realized that this would not be feasible. The

There were two choices to be made for our simulation clauses became deeply nested, and the conversion to CNF
circuit. Namely, which type of adders we would simulate,  took far too long for even small composites such as 35. Fur-
and how we would chain them to get the final product. We  thermore, the conversion process generated an exceedingly
used a simple ripple-adder for each of our adders, where |arge number of clauses, such that using this method directly
the carry-out from each Full Adder is tied to the carry-in  pecame intractable.
of the next. This is far from state of the art in Computer We overcame this obstacle by making a few minor ad-
architecture, but all of the improvements that speed up adder justments. First of all, we noticed that the cascade of carry-
hardware add complexity to the circuit. Since we wantto bits was contributing to a large part of the complexity, so
keep the number of variables and clauses small, we choseinstead of letting them propagate, we added a new variable
this simple ripple-adder so that we wouldn'thave to simulate  that corresponded to the value of each. This only increased
the additional complexity of other methods. the number of variables by a moderate amount, and it greatly

The second choice we made was how to perform the se- reduced the number of clauses. However, this was still in-
quence of additions. The obvious choice is to keep a running tractable for larger inputs. To get around this issue, we used
sum to which we add each successive term. An alternative is two different methods to periodically save the output bits
to recursively add adjacent terms, thus building the sequence from each of the adders.
of additions as a tree. The leaves of the tree are simply the
shifted and ANDed termg(§ << i) A a;), and each inter- Alternating-Save

nal node just sums two adjacent nodes. The final result is §nha of the methods we tried saved the adder output bits at
the output of the adder at the top of the tree. Both forms  gyery.other level in the addition tree, so we designate it as

require the same number of additions, they merely differ in - ajternating-Save. This still allows for a fair amount of local-
the order of those additions. Some preliminary experiments  gmjjarity that we could exploit (since there are similarities
showed that the final CNF generated using this tree struc- i agiacent nodes of the addition tree), but greatly reduced
ture had far fewer clauses than one using the running sum, e time to create the CNF. The output from this method
so we used this tree-multiplier for our experiments. We be- -4 fewer variables than all but the Left-Save method (de-
lieve that there is a fair amount of related material in adja- g¢riped next), and generated fewer clauses than any of the
cent terms for each adder, which can be exploited to make qther methods. So while this falls short of our ideal of mini-
the final CNF simpler. mizing the number of variables, it captures a similar essence
. while being tractable.
The Conversion to CNF
Once the multiplier produces a Boolean senteficae nor- Left-Save
malize this sentence to CNF where every clauses consists of The other method we tried saved the adder outputs for the
ORs (v) of variables that are ANDed\) together. To do left adder at each node in the tree. The idea behind this is
this we implimented the following DeMorgan Laws in three  to retain some of the complex nested clauses at each addi-
steps: moving negations inward, distributing nested opera- tion (and allow deeper similarities to be exploited), while
tions, and flattening of clauses. The first step involves mov- saving enough of them to still make the problem tractable.
ing all negations {) inward so that only the variables (as  This method used the smallest number of variables of any
opposed to entire clauses) are negated. For example: cnf generators we tried, but it also created 3-4 times more
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clauses than any other method we tried, and took an order
of magnitude longer to run than any of the other methods.

Itis a good comparison for the tradeoffs between number of
clauses and number of variables.
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Experiments

We empirically tested our program with the CNF Genera-
tor [4] and FactoringAsSat [5] against both zChaff [2] and 20000 1
Walksat [3]. We examined these three generators using 45 1009
composites, whose prime factors varied from 12 to 20 bits L s 14 1s 16 17 1 10 20
each. In our initial experiments we noticed a large vari- Bits per prime

ance in runtime when factoring different numbers. Since

we weren't able to determine the cause of this discrepancy, Figure 2: Clause counts for thensimplifiedoutput each of
we attributed it to the random variations in the choice of as- the five generators when tested on primes of varying bit-
signments. To compensate for potential inconsistancies, we lengths. FaS = FactoringAsSat, CCS = CNF Generator with
examined the average runtime over 5 different numbers per Carry-Save, CW = CNF Generator with wallace, LS = Left-

Number of Clauses

30000 -

bit-length. Save, AS = Alternate-Save.
For each test case, we generated an approriate CNF using
all three generators. We examined both the left-save and mPasmCCs BEW SLS mAS

5000

the alternate-save variations of our generator. For the CNF
Generator, we tested both carry-save and wallace multipliers
using the fast-adder option. Since we knew a priori that each
of the factors hag/NV|/2 bits, we added clauses to each CNF
that would force any higher bits to be zero. This ensures
that we don't penalize other generators by providing only
ours with this additional information.

4500 1
4000 1
3500 4+
3000 +
2500
2000
1500 -

Number of Variables

Walksat performs well in instances where the solution- 1000 7
space is dense, thus it wasn’t well suited for the sparcity of ~ °°° ]
this problem. Becuase, it was unable to correctly factor any T 13 1a 15 16 17 18 10 | 20
of the 45 numbers in our test set, we omit it from further Bits per prime

disucssion and focus solely on zChaff. ) ) S

Due to time constraints, we also restricted the runtime of Figure 3: Variable counts for thensimplifiedoutput each
zChaff by only allowing it to run for 1 hour for each test  ©f the five generators when tested on primes of varying bit-
case. Only a few test cases were unable to complete within lengths.
the hour and, as discussed below, all were with the problem-

atic Wallace-Multiplier. T+ Fas TGOS QW e LS —emAS

10000
Unsimplified CNF
For the first part of our experiment we provided zChaff with 1000 +
the default output of each generator. The only modification g
was the additional clauses setting the higher bits to zero. As S 190 |
expected, our Left-Save generator resulted in considerably E
more clauses (see Figure 2) than other generators with the
tradeoff of considerably fewer variables (see Figure 3). g 107
Also as expected, the Alternate-Save case had relatively £
few variables, but surprisingly it also appeared to have the 1
fewest number of clauses. This is mainly due to extra clauses
in the other generators that account for bits in the factor 01
larger than n. These unneeded clauses are eliminated by a 12 13 14 15 16 17 18 19 20
SAT-simplifier as discussed in the next section. Bits per prime

All methods performed about the same for smaller inputs,
but on larger inputs, the Alternate-Save method found a so- Figure 4: The results of running zChaff with unsimplfiied
lution 20% faster on average than any other method, with the outputs of five generators.
next best being FactoringAsSat (see Figure 4). Both outputs
from the CNF Generator performed significantly worse on
these larger inputs. The wallace-multiplier in particular in- therefore unable to solve them. The CNF Generator when
correctly generated some of the CNF descriptions for cases run with the carry-save adder was able to correctly factor all
of length 19 and all descriptions for length 20 bits, and was test cases, but it approached the 1 hour time limit for many
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Figure 5: Clause counts for ttsgmplifiedoutput each of the Figure 6: Variable counts for theimplifiedoutput each of
five generators when tested on primes of varying bit-lengths. the five generators when tested on primes of varying bit-
FaS = FactoringAsSat, CCS = CNF Generator with Carry- lengths.
Save, CW = CNF Generator with wallace, LS = Left-Save,
AS = Alternate-Save. —$—FaS —# :CCS &= CW - x- LS ——AS

10000

of the larger ones. 1000

100 -

Simplified CNF

For the second part of our experiment, we ran the CNF for-

mulas through the Hypresource CNF Simplifier [7] before

feeding them to the satisfiability solver. According to the au-

thors, this simplifier “does a rather remarkable job of simpli-

fying formulas, working best on structured formulas.” Since

this problem is highly structured (a cascade of adders), the

simplifier should reduce the input to the SAT-solve, and ide- 0.01

ally allow it to run more efficiently. 2 13 14 15 16 17 18 19 20
Surprisingly, this was not the case. It made the best Bits per Prime

performing generators (Alternate-Save and FactoringAsSat)

worse by a factor of 4-5, and it made the worst performing Figure 7: The results of running zChaff with simplfiied out-

generators (Left-Save and CNF Generator) better by a factor puts of five generators.

of 2 and .5 respectively. This is an interesting phenomenon

that may be due to the elimination of some structure inherent

in the unsimplified representations, butis a good opportunity  While this was interesting work, for the numbers we used

for further research. itis still much slower than brute force (takes only a few sec-
As expected, the simplifier reduces the number of clauses onds to find both 20-bit primes in all of the largest exam-

and variables for all test cases. The simplifier eliminates the ples.) It would be interesting to see how this method com-

extraneous clauses that represent the extra bits of the factorspares to brute-force and to more intelligent factoring algo-

which are known to be false. As expected, with these clauses rithms such as the General Number Field Sieve, the currently

removed, the other methods have fewer clauses, but more fastest known factoring algorithm, as the sizes of the primes

variables than our methods. Again, Figures 5and 6 visually scale up.

show the tradeoff of clauses to variables using our method.

Factor Time (Seconds)
=
o

I
=

Research Directions

Conclusions This project left us with many ideas for future work. We

Our method of reducing the number of variables by saving found ourselves wishing for more time and more resources
adder outputs at every-other level in the tree generated fewer on several occasions. It would be very interesting to create
variables, and was able to factor the numbers 20% faster or modify an existing SAT solver to take advantage of this
than the other methods on average. The Left-Save method particular problem domain. For example, it may be useful
was an interesting method that used the fewest variables, butto encode the SAT solver with information about number
its significantly larger clause count contributed to its overall theory, boolean logic, and DeMorgan’s Laws. The new SAT
worse performance. The FactoringAsSat method was highly solver could also take advantage of the structure of clauses
competitive despite its generalizations (i.e. assuming factors that are likely to occur using a specific multiplier.

can be any length), and in some test cases performed better In this project we implemented the Carry-Save Multiplier,
than the Alternate-Save method. but it may be the case that a Carry-Select, Carry-Skip, or



Carry-LookAhead would be more efficient for this specific
problem. A comparision of all four may provide insightinto
other improvements to either the SAT solver, the simplifier,
or the CNF conversion.

Obviously, it would be a valuable endeavor to investi-
gate the precise functionality of the Hypresource simplifier.
Specifically, we've noticed that its output occationally con-
tains clauses that have equivalent meaning, but in which the
variables are ordered differently (such as\(b Vv ¢) and
(b V ¢V a)). Thus it seems plausible to sort the variables
in each clause first, then sort the clauses, and then look for
duplicates.

Finally, it would have been fun to run some very very big
numbers, possibly on multiple, high-performance compters,
to see how our creation measures up to known records.
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Appendix A (Work Distribution and Acknowledge-
ments) The first author (Stef) created the multiplier and
the second author (Anna) implemented the conversion to
CNF. Code for the FactoringAsSat [5] was generously pro-
vided by Henry Kautz for use in our empirical studies. The
CNF Generator [4] was also used for empirical studies. The
two SAT solvers used for the experiments were zChaff [2]
and Walksat [3]. Code for the simplifying procedure called
Hypresource [7] was used unmodified.



