An Analysis and Comparison of Satisfiability Solving Techniques

Ankur Jain, Harsha V. Madhyastha, Craig M. Prince
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195
{ankur, harsha, cmprince} @cs.washington.edu

Abstract

In this paper, we present an analysis of different algorithms
that have been used for SAT solving. We implement and ana-
lyze the working of two standard algorithms used for solv-
ing SAT instances - WalkSAT and DPLL. Identifying key
optimizations in both these algorithms, we demonstrate with
the help of extensive experiments the improvement in per-
formance brought about by these optimizations. Based on
the insight gained from our explorations with WalkSAT and
DPLL, weimplemented and analyzed anew approach to SAT
solving, which we call HybridSAT. HybridSAT draws on the
strengths of both WalkSAT and DPLL, resulting in a remark-
able improvement in performance over DPLL, while still re-
taining completeness.

I ntroduction

Satisfiability (SAT) is one of the canonical NP-complete
problems in computer science. Given a boolean formula
with conjunction, disjunction and negation, the goal is to
find an assignment to the boolean variables that makes the
formula true. This has a wide range of applications in all
fields of computer science and especially artificial intelli-
gence.

The common representation of a boolean formula is
conjunctive normal form (CNF). In this form, formulae
are given as several clauses containing only disjunctions
(boolean OR), which are all linked together by conjunction
(boolean AND). It has been shown that any boolean formula
can be expressed in CNF. In addition, clauses need no more
than 3 symbols each to be able to express any boolean for-
mula. Because of this, for the remainder of this paper we
will focus on solving 3-CNF formula.

SAT as Search

Solving a boolean formulae is essentially a search problem.
As such, we can apply many of the techniques and algo-
rithms used for general search to the problem of satisfiabil-
ity. Two such classes of search algorithms commonly used
for satisfiability are backtracking search and local search.

e Backtracking Search: Backtracking searches usually are
designed to do a complete exploration of the search space

Copyright (© 2004, American Association for Artifi cia Intelli-
gence (www.aaai.org). All rights reserved.

to uncover the solution to a problem. They do this by
“remembering” where they have searched before (either
explicitly or because they employ a systematic approach).
Backtracking searchs are those such as depth-first-search,
breadth-first-search, etc.

e Local Search: Local search involves using local or
immediate information to inform the direction of the
search. These approaches are usually greedy and can of-
ten quickly lead to the correct result. Hill climbing is an
example of a local search algorithm.

In our paper we explore both a backtracking search (DPLL)
and a local search (WalkSAT) so that we can compare the
two methods. In addition, we have developed a hybrid ap-
proach of the two algorithms — taking the “best” aspects of
each — in an attempt to create an algorithm that is better than
either.

M ethodology

The goal of this paper is to gain understanding into the ben-
efits and tradeoffs of various satisfiability algorithms. Not
only did we want to gain an intuitive understanding, but also
a quantitative understanding of the tradeoffs involved with
each. We have chosen to experiment with the DPLL back-
tracking algorithm and the WalkSAT local search algorithm.

We knew a priori that DPLL was complete, but could
also be slow. We also knew that WalkSAT would work very
quickly most of the time, but was not guaranteed to find a
solution if one existed. What we didn’t know was exactly
how the two compared and what the effect of various opti-
mizations would be on the algorithms. For this we designed
several benchmark tests in order to quantify these values.

We began by simply implementing the two algorithms
without adding any enhancements. We used these as a base-
line for evaluation. For the case of WalkSAT we were then
able to adjust the various parameters of the algorithm in or-
der to determine the optimal values for them. After devel-
oping the basic implementation we added an enhancement
to each algorithm and again ran our tests to determine how
much improvement there was. Our main metric for perfor-
mance was running-time; however, in the case of WalkSAT a
second metric was the “accuracy” of the algorithm; namely,
given satisfiable clauses, how likely was the algorithm to
find the assignment.



Once our evaluation of the individual algorithms was
complete we implemented a hybrid algorithm that we felt
combined the benefits of both WalkSAT and DPLL. We then
evaluated this hybrid — comparing it to the other algorithms.

Outline

We begin with an overview of related work in the field of
satisfiability. The next section describes our implementation
and experimental exploration of the WalkSAT algorithm.
The next section explains our implementation and results
for the DPLL algorithm. After this we explore our hybrid
approach combining both DPLL and WalkSAT, again giving
experimental results of its performance. Finally, we con-
clude with a summary of our results.

Related Work

A lot of research has been conducted in the field of sat-
isfiability. In the 1960s work was done by Davis, Loge-
mann, and Loveland to develop what we know today as
the DPLL algorithm (Davis, Logemann, & Loveland 1962).
Since this time, there has been extensive work on attempt-
ing to improve upon this algorithm by providing heuristics
and optimizations for improving the performance of this
backtracking search algorithm. Some of these include using
heuristics for guiding the search (De 2002) as well as more
advanced techniques like conflict resolution and restarting
(Moskewicz et al. 2001).

On the other hand there has been a great deal of work in
improving the local search methods of finding satisfiability.
WalkSAT is perhaps the most famous local search method
(Selman, Kautz, & Cohen 1993); however, before Walk-
SAT there was a related algorithm called GSAT (Selman,
Levesque, & Mitchell 1992). This differs from WalkSAT in
that it does not employ randomness in its variable flipping,
but instead takes a pure greedy approach, running multiple
times with random starting configurations each time.

Much of the research around satisfiability is sparked by
the versatility of SAT solvers in solving real problems. SAT
can be used to solve planning (Kautz & Selman 1992) in
addition, SAT has been used in circuit verification (Gold-
berg, Prasad, & Brayton 2000). These real-world applica-
tions only further emphasize the need for good SAT algo-
rithms.

WalkSAT
Introduction to Walk SAT

The WalkSAT algorithm is considered a local search al-
gorithm (more specifically the search is randomized hill-
climbing) that does not keep any search history while look-
ing for a satisfying assignment to variables. As a result, this
algorithm cannot know when it has completely explored the
search space — meaning that WalkSAT is not complete. We
implemented the basic WalkSAT algorithm as described in
(Russell & Norvig 2003). The pseudocode for this algorithm
is given as follows:

WALKSAT (clauses, p, max Flips)
{
inputs: clauses, aset of clausesin propositional logic
p, the probability of choosing arandom walk step
mazx Flips, number of fips allowed before giving up
model = arandom assignment of true or false to the
symbolsin clauses
for i=1to maxFlips do
if model satisfi es clauses then return model
clause = arandomly selected clause from clauses
that isfalse
with probability p fip arandom symbol from the
clause
else fip the symbol in clause to maximize the num.
of satisfi ed clauses
return failure

There are two parameters that can be adjusted which af-
fect the performance of WalkSAT. The first is the maxFlips
parameters. This controls how many steps the algorithm
runs for. If the algorithm hasn’t found a solution after run-
ning for this number of iterations, then it will give up. The
second parameter, p, is the probability with which we choose
to flip some symbol at random from an unsatisfied clause as
opposed to using the heuristic of maximizing the number of
satisfied clauses.

This algorithm has some very nice properties. First of all,
because of the randomness, this mitigates the chance that the
algorithm will get stuck in a local maximum. In addition, be-
cause the algorithm runs for a finite number of flips we know
that the algorithm will always terminate. This means that
we can bound the running time. Also, because the search
heuristic is good, it means that the algorithm usually con-
verges quickly to an answer.

While the WalkSAT algorithm has some nice properties,
there are some important limitations of the algorithm. Most
importantly is the fact that the algorithm is not complete.
This means that when the algorithm does return an assign-
ment we can be certain that the formula is satisfiable; how-
ever, if the algorithm fails we don’t know whether this is a
result of the formula being unsatisfiable or just the fact that
we didn’t run for long enough.

WalkSAT Experimental Results

We wanted to quantify the performance of WalkSAT and so
we conducted a series of tests to benchmark the effectiveness
and speed of this algorithm. The first set of experiments that
we conducted were designed to determine the best param-
eters to use for both the maximum number of flips and the
random flip probability.

Figure 1 shows the accuracy (how many of the satisfiable
formulae it was able to solve) for various different maxFlips
settings. We can see that until we drop below the 2000 mark
we correctly identify nearly all the formulae. After this the
accuracy begins to drop off linearly from 2000 to 50.

Similarly, Figure 2 illustrates an interesting phenomenon.
Namely we can see that the time it takes to get a valid solu-
tion with WalkSAT is usually small and so if we take longer



1.2

170000 V—\
0.8

-
(&)
()]
f—
p—
o 0.6
004
o B
>
0.2 4
0 — - - T
o o N o N o N o o
S 3 ¢ 3 < § S § < <
s & & & E) A 3 S S

Max. Number of Flips

Figure 1: Percentage of the satisfiable 3-CNF formulae that
WalkSAT produced a satisfying assignment for over varying
maximum number of flips. All had a random flip probability
of 0.5, and a clause-variable ratio of 4.6

—e—Failures —#— Successes

Time (s)

Max. Number of Flips

Figure 2: Average time taken to solve 10 satisfiable 3-CNF
formula (with 5 runs for each) when varying max. number of
flips. The two lines represent the time taken when a solution
is eventually found and when a solution is not found

then we increase our confidence that a formula is not satisfi-
able. Note also that as we increase the maximum number of
flips the gap between the lines grows — meaning that we can
gain better confidence by increasing the number of flips.

Figures 3 and 4 are the same as the previous graph except
plotted over varying values of probability for making a ran-
dom flip. Here the story is somewhat different. There seems
to be a range between 40 and 60 percent where WalkSAT re-
mains effective. Also like above, in the time chart we again
see the gap between the failure and success cases of Walk-
SAT. Notice that the overall time increases as we decrease
the probability. This is an artifact of the algorithm. Since it
is much faster to choose a symbol at random than to choose
the best symbol, when we take the random choice we run
faster.

From these two experiments we can concluded that in
general a probability of 0.5 works well and a high number

0.8
0.7 4
0.6 -
0.5 4

0.4 *
0.3 ‘\/u
0.2

0.1 4

% Correct

Probability

Figure 3: Percentage of the satisfiable 3-CNF formulae that
WalkSAT produced a satisfying assignment for over varying
the probability of a random flip. All had a max. number of
flips of 800, and a clause-variable ratio of 4.6

—4— Failures ——Successes

0 03

>~ 0.25 1

o O

£ o2 -

= 0.15-4

0.1 A

0.05 -
? 0‘5" NS 0’,\(” NN 0?;" ? QP(" o 0’5" o? Q’f’ g 0,\(” N

Probability

Figure 4: Average time taken to solve 10 satisfiable 3-CNF
formula (with 5 runs for each) when varying the probability
of a random flip. The two lines represent the time taken
when a solution is eventually found and when a solution is
not found

of flips (over 2000) will give high accuracy and good perfor-
mance. With this knowledge we then proceeded to directly
test how quickly WalkSAT could solve satisfiable problems.
Given a set of 160 satisfiable formulae we ran WalkSAT and
timed how long it took (with a sufficiently high maxFlips
to ensure that we found the solution). Figure 5 summarizes
the results. As expected, between a ratio of 3.75 and 4.75
is where most of the difficult problems lie. We will use this
same set of formulae as a benchmark to compare the various
different algorithms presented later.

At this juncture, we must point out the mechanism we
employed to generate satisfiable SAT instances. An obvi-
ous way of doing this is to first pick a random assignment of
the variables and while generating clauses ensure that each
clause is satisfied under this assignment. However, as out-
lined in (Achlioptas et al. 2000), instances generated using



1.4
1.2
—~ 14
[%2]
~ 08
)
g 0.6 - v
= 0.4 -
0.2 I./‘
0 —o—0—09¢ : :
1 2 3 4 5
Clause/Variable Ratio

Figure 5: Average time taken to solve 10 satisfiable 3-CNF
formulae with 60 variables for varying clause-variable ratios

such a procedure tend to have some kind of bias and are
usually easier to solve. So, instead we generated satisfiable
instances by generating random instances of SAT and then
verifying that they are satisfiable using the publicly available
solver zChaff (Moskewicz et al. 2001).

Restart Optimization

During our experiments we noticed that many times the ini-
tial random choice of assignments made could have a large
impact on the success or failure of the algorithm. With
this in mind we hypothesized that performance could be im-
proved by restarting the WalkSAT at various times. By look-
ing at related work (Moskewicz et al. 2001), we found three
types of restarting optimizations that we could perform:

e Retry: If the algorithm fails, run it again up to n more
times

e Fixed Time Restart: If the algorithm runs for a certain
amount of time without finding a solution, then restart
(this is similar to retrying).

o Randomized Restart: With some probability after each
iteration, there is a chance of restarting. As the algorithm
runs longer there is a higher probability that the search
will be restarted.

Not only do we have intuition into why restarting should
be successful, but also from Figures 2 and 4 we can see that
there is a significant gap between the time on average it takes
to fail and the time it takes to return a satisfying assignment.
This means that as we spend more time on the answer then
we can be confident that either there is no answer, or that we
are stuck on a local maximum — and so restarting would be
helpful.

We implemented the basic retry mechanism to evaluate
how it affects the performance of the WalkSAT algorithm.
Figure 6 shows the accuracy of the algorithm as a function of
the number of retries performed. This graph was constructed
such that the total number of flips remained constant through
all runs of the algorithm. As such, for the case with 0 restarts
we used a maxFlips of 800, for 1 restart we used a maxFlips

0.9
0.8 -
0.7 A
0.6 -
0.5 &
0.4 A
0.3
0.2 A
0.1

% Correct

0 1 2 3 4 5

Num. Restarts

Figure 6: Percentage of the satisfiable 3-CNF formulae that
WalkSAT produced a satisfying assignment for over varying
numbers of restarts. All had a total number of flips of 800, a
random flip probability of 0.5, and a clause-variable ratio of

—&—Failures Successes
0.35

0.3 1
—~ 0.25 -
@£
0.2 1
£ 0.5

= o01-
0.05 -

0 1 2 3 4 5

Num. Restarts

Figure 7: Average time taken to solve 10 satisfiable 3-CNF
formula (with 5 runs for each). The two lines represent the
time taken when a solution is eventually found and when a
solution is not found

of 400 (so that the total remained 800), etc. In this way we
can effectively evaluate the restart mechanism without bias.
The results are somewhat surprising, we see that there is a
large improvement by using just 1 restart; however, there is
no improvement as the number of restarts is increased.

In addition, we also explored the time it took to run the
algorithm with varying numbers of restarts. These results
are reported in Figure 7. We can see that there is little effect
on the time it takes to find a satisfying assignment and only a
moderate effect on the time it takes to fail. This makes sense
since the purpose of restarting is only to improve accuracy
and not to improve the speed of the algorithm.

Summary

Overall the performance of WalkSAT is very good when it is
able to find the solution. However, because the algorithm is
not complete WalkSAT has limited use when searching for



unsatisfiability. We attempted to improve the performance
of WalkSAT by adding restarts; we found that having restarts
gives a slight increase in accuracy and the effect on running
time is negligible.

DPLL
Introduction to DPL L

The second satisfiability solver that we implemented was
based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm. This algorithm essentially performs a depth-first
search of the assignment tree. The only distinguishing fea-
ture of this algorithm from a naive depth-first search is the
use of intelligent heuristics to guide the order in which the
tree is traversed. At every step, instead of picking a random
unassigned symbol and a random assignment for it to branch
on, it employs a couple of heuristics for choosing the literal
to branch on.

There are two basic heuristics used for choosing the literal
to branch on.

e The first heuristic is called the “pure symbol” heuristic.
The basic idea underlying this heuristic is that if a symbol
occurs as the same literal in all the clauses, then it might
as well be assigned the value that makes that literal true.
This is because this assignment is guaranteed not to con-
flict with any other assignments as this assignment does
not introduce a false literal in any clause. Also, only the
currently unsatisfied clauses need be considered for find-
ing such a symbol as it does no harm if a literal in an
already satisfied clause is falsified.

e The second one is called the “unit clause™ heuristic. In
this heuristic, the algorithm checks whether there exists
any clause which has only one literal, the symbol of which
has not yet been assigned any value. If there does exist
such a clause, then clearly satisfying the only literal in that
clause is the only means of satisfying the clause. Note that
while finding a unit clause, it is not necessary that we just
look out for uni-literal clauses. In a multi-literal clause, if
all but one clause have already been falsified, then in this
case too, the one unassigned literal can be treated as a unit
clause.

Other than these heuristics to decide on the symbol and its
assignment to branch on, the DPLL algorithm also applies a
couple of pretty obvious tests to prune the search along a
particular branch if it becomes known that a solution cannot
be obtained by going further down the path. The two tests
that are employed are:

e A check is made whether all the clauses are already sat-
isfied. If yes, it implies that a satisfying assignment has
already been found and hence, there is no need to search
any further. The current assignment of the symbols is a
satisfying assignment.

e A check is made whether there exists any clause wherein
all the literals have already been assigned, and the result-
ing value for the clause is false. If yes, then it is futile
to continue searching along this path as any assignment
of the currently unassigned symbols cannot lead to this

clause being satisfied. So, backtracking is initiated in-
stead.

In short, the essence of this algorithm can be summarized
as below.

dpll(clauses, symbols, model)
{
if (al clauses are satisfi ed)
return TRUE;
if (some clauseisfalse)
return FALSE;
(P, v) = FIND_PURE_SY MBOL (clauses, symbols, model)
if (Pnot equal to NIL)
return dpll(clauses, symbol, EXTEND(model, P, v));
(P,v) = FIND_UNIT_CLAUSE(clauses, symbols, model)
if (Pnot equal to NIL)
return dpll(clauses, symbol, EXTEND(model, P, v));
P = PICK_UNASSIGNED_SY MBOL (symbols, model)
Heuristically pick some value v for P
if (dpll(clauses, symbols, EXTEND(model, P, v)) == TRUE)
return TRUE
return dpll(clauses, symbols, EXTEND(model, P, 7));
}

In the pseudocode of the DPLL algorithm presented
above, there is some room for choice only at the following
three steps:

e Picking the pure symbol when more than one exist
e Picking the unit clause when more than one exist

e Picking an unassigned symbol and an assignment for it
when neither a pure symbol nor a unit clause exists

There is no advantage in picking the “right” pure symbol
or unit clause when more than one exist. This is because
in each step of the recursion, DPLL first attempts to assign
pure symbols and unit clauses before branching on any other
variable. So, all the pure symbols and unit clauses would
be assigned before assignment of any other variable is at-
tempted. This implies that the only room for optimization
is in choosing the right variable to branch on when neither
a pure symbol nor a unit clause exists. The simple heuris-
tic we tried out for this was to choose the variable and its
assignment which would cause the maximum number of un-
satisfied clauses to become satisfied. We henceforth refer
to this variant of DPLL as optimized DPLL and the version
where we just pick a random unassigned symbol as unopti-
mized DPLL.

DPLL Experimental Results

We first studied the performance of optimized DPLL. For
this, we generated satisfiable SAT instances with different
number of variables and determined that our solver takes a
non-trivial amount of time, i.e., of the order of seconds and
not of the order of milliseconds, to solve the problem when
the number of variables is greater than 60. So, we consid-
ered the cases when number of variables is equal to 70 and
75. In either case, we considered a set of clause to variable



Average time vs. Ratio (Optimized DPLL)

60 T T T T T
Number of variables = 70 —— M

- Number of variables = 75 ----x--- i
T 50
g
] / i
e Y 4
c x
S 30t
=z ¥ %
[}
1 \
= 20 f
(%]
[o)
o
¢ 10}
<

0 " - . o

1 1.5 2 2.5 3 35 4 4.5 5 55
Ratio of No. of clauses to No. of variables

Figure 8: Variation of average time taken with number of
clauses to number of variables ratio

Average time vs. Ratio

~ 40 — : : : — :
3 Optimized DPLL —— i
I Basic DPLL -
35 -
%]
<
8 30t
g
«— 25¢ i
S i
2 20t
€ %
= AN
£ 15¢ AN
g ! N
E 10} i * Ly
o { e
g st Fa i
2 /\\/\,/
z . . = ‘ ‘

1 1.5 2 25 3 35 4 45 5 55
Ratio of No. of clauses to No. of variables

Figure 9: Comparison of average time taken by optimized
DPLL and unoptimized DPLL

ratios in the range 1 to 5.5%, and for each ratio, generated 10
satisfiable problem instances.

Figure 8 plots the variation of average time taken to solve
the satisfiable instances that we generated. It is a well-
known result that solving random satisfiable instances is
hardest when the ratio of number of clauses to number of
variables is around 4.33. We see that this fact is validated in
Figure 8 where we see that the average time taken peaks at
ratio of number of clauses to number of variables equal to
4.5,

We next studied what advantage is offered by the heuris-
tic we used to build optimized DPLL. Our explorations with
unoptimized DPLL showed that the time it takes to solve is
considerably longer than that for optimized DPLL for the
range of number of variables we considered above. So, in
Figure 9, we instead show the comparison of time taken

Finding satisfi able problem instances for clause to variable ra-
tios greater than 5.5 was extremely hard.

Average depth vs. Ratio

Optimized DPLL —+—
Basic DPLL ----x---
35 1 1 1 1 1 1 1 1

1 1.5 2 2.5 3 35 4 4.5 5 55
Ratio of No. of clauses to No. of variables

Average depth (Number of variables = 60)

Figure 10: Comparison of maximum depth traversed during
search by optimized DPLL and unoptimized DPLL

by optimized and unoptimized DPLL for different clause
to variables ratios when the number of variables is fixed at
60. The graph clearly highlights the improvement in per-
formance gained due to the heuristic employed in optimized
DPLL to choose the literal to branch on.

The potential causes for this improved performance could
be:

e The search has to reach a lesser depth than what it would
have originally, as some variables can be arbitrarily as-
signed

e The search gets directly along the right path

In other words, the savings could be either due to the fact
that the search goes to a shallower depth or due to the fact
that the search was focused in the right part of the tree. To
determine which of these cases was true, we studied the
maximum depth the search traverses during its execution,
both in the case of optimized DPLL as well as for unopti-
mized DPLL. Figure 10 shows that the gain in depth is not
much and in fact, both searches traverse the search tree till
the maximum depth of 60 for most ratios. So, this shows the
gain is more in terms of directing the search in the right re-
gion of the tree rather than decreasing the depth until which
the search has to be performed.

HybridSAT solver

The key insight we gained from our experiments with the
DPLL solver was that the performance can be improved
significantly by choosing the “right” variable to branch on,
when neither a pure symbol nor a unit clause exists. More-
over, the optimized DPLL highlighted the fact that choosing
the “right” variable led to exploring the “right” region of the
tree, which was the reason for better performance.
Although the heuristic we use for the optimized DPLL
performs much better than the trivial approach of picking
a variable randomly, it is still very simple. Choosing the
literal that maximizes the number of unsatisfied clauses get-
ting satisfied is, at best, a myopic greedy strategy. It would



be more fruitful to choose the literal that would achieve the
same even after a much larger number of steps. We do this
by running WalkSAT for a few steps for each of the unas-
signed symbols, and choosing that symbol that satisfies the
maximum number of unsatisfied clauses. This idea forms
the basis of our new SAT solver which is essentially a hy-
brid of DPLL and WalkSAT; and hence the name!

There is a subtle point though that we need to take care of.
Both in a “min-conflicts” and a “random walk” step, Walk-
SAT picks up a symbol to flip randomly. But some of these
symbols might have already been assigned by DPLL dur-
ing its search - and we should not meddle up those assign-
ments. Therefore, WalkSAT needs to be modified so that it
is restricted to assign only those symbols which were left
unassigned by DPLL; the symbols which have already been
assigned by DPLL should not be changed. This appears as
two changes in the WalkSAT code. Firstly, the clause that is
randomly selected from the set of clauses which are false in
the model should meet the added requirement that it has at
least one literal that was not assigned by DPLL. Secondly,
the symbol that is flipped should not have been assigned by
DPLL.

HybridSAT Experimental Results

HybridSAT has the same two tunable parameters that Walk-
SAT has, that affect its performance. Our first set of ex-
periments are targeted to find the operating point for the
solver. For this, we chose 10 satisfiable formulae with 60
variables and clauses-to-variable ratio of 4.25; and ran Hy-
bridSAT for different values of maxFlips and the probabil-
ity, p. Figure 11 plots the the variation of the average time
taken to solve the instances versus maxFlips for different
values of p. The more the number of maxFlips, the more
area gets searched and thus, the better is the symbol that is
chosen. On the other hand, the more the maxFlips, greater
is the constant amount of time the WalkSAT component of
the solver spends in picking up a symbol. We see this trade-
off in the graph with most curves converging to a minimum
close to 400. Figure 12 plots the same numbers as Figure 11
but in a different visualization - it shows the variation of the
average time taken to solve these instances with p for differ-
ent numbers of maxFlips. Although not very pronounced,
the common trend in all the curves Is that they decrease till
some value of p between 0.6 and 0.8; and increase after that.

Based on these two figure, we choose maxFlips as 400
and p as 0.7 as the operating point for HybridSAT.

We move on to comparing the performance of Hybrid-
SAT with DPLL. For this we ran HybridSAT on the same
set of formulae as in Figure 8. Figure 13 plots the vari-
ation of the average time taken to solve the satisfiable in-
stances by both the optimized DPLL and HybridSAT. For
all clauses-to-variables ratios of both the 70 and the 75 vari-
able instances, we notice that the HybridSAT outperforms
optimized DPLL.

Conclusions

We implemented and analyzed the performance of WalkSAT
and DPLL. In our analysis of WalkSAT, we showed how its

Average time vs Number of flips for different flip probablities (p)
12

60)

p=04 ——

| p=0.6 -x-
10 p=0.7 ~a

Average time (Number of variables

100 1000 10000
Number of flips

Figure 11: Variation of average time taken by HybridSAT
with maxFlips for different values of probability to do the
random-walk step

performance depends on each of the parameters the algo-
rithm requires. We also showed that introduction of random-
ized restarts helps improve the accuracy of WalkSAT with-
out resulting in a significant increase in running time. We
identified a key optimization that can be added on to the ba-
sic DPLL algorithm to reduce the running time significantly.
Drawing on these results, we implemented a new SAT solv-
ing technique, called HybridSAT. HybridSAT combines the
strengths of WalkSAT and DPLL to reduce running time
without sacrificing in completeness. All our results were
substantiated through extensive experiments.

References
Achlioptas, D.; Gomes, C. P.; Kautz, H. A.; and Selman,
B. 2000. Generating satisfiable problem instances. In Pro-
ceedings of AAAI’00.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. Commun. ACM
5(7):394-397.
De, B. L. 2002. Heuristic backtracking algorithms for sat.
Goldberg, E.; Prasad, M.; and Brayton, R. 2000. Using sat
for combinational equivalence checking.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of the Tenth European Conference on
Artificial Intelligence (ECAI’92), 359-363.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Proceedings of Design Automation Conference 2001.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition edition.
Selman, B.; Kautz, H. A.; and Cohen, B. 1993. Local
search strategies for satisfiability testing. In Trick, M., and

Johnson, D. S., eds., Proceedings of the Second DIMACS
Challange on Cliques, Coloring, and Satisfiability.



Average time vs. Flip Probability for different number of flips (n)

12 : : :
. n=100 ——
V n=400 ---- x|

0= n=800 --a

8r N=6400 ---»

“a

Average time (Number of variables = 60)

04 045 05 055 0.6 065 0.7 0.75 0.8 0.85 0.9 0.9
Probability to do random-walk

Figure 12: Variation of average time taken by HybridSAT
with the probability to do random-walk step, for different
values of maxFlips

Average time vs. Ratio (for Optimized DPLL and HybridSAT)

60 T T T T T T
DPLL, Number of variables =70 ——
@ 50 | HybridSAT, Number of variables = 70 -
5 HybridSAT, Number of variables = 75 /-8
3
c 40 |
g
i" 30 [
[}
£
= 20
(%]
j=2]
o
2 10}
<
0 - - - ——

1 1.5 2 25 3 35 4 45 5 55
Ratio of No. of clauses to No. of variables

Figure 13: Variation of average time taken with number of
clauses to number of variables ratio

Selman, B.; Levesque, H. J.; and Mitchell, D. 1992. A
new method for solving hard satisfiability problems. In
Rosenbloom, P., and Szolovits, P., eds., Proceedings of the
Tenth National Conference on Artificial Intelligence, 440—
446. Menlo Park, California: AAAI Press.

CONTRIBUTIONS

e Ankur: Wrote the HybridSAT code, wrote the Hybrid
portion of the paper.

e Harsha: Wrote the DPLL code, wrote the SAT genera-
tion script, wrote the DPLL, Abstract, and Conclusions
portion of the paper.

e Craig: Wrote the WalkSAT code, wrote the WalkSAT,
Intro, and Related Work portions of the paper.

We used the zChaff code in order to check for satisfiable as-
signments for testing our code and for generating only satis-
fiable formulae for our experiments.



