
A New Experience: O-Thell-Us –
An AI Project

Mathias Ganter1 and Jonas Klink2

1 Department of Genome Sciences, University of Washington, Seattle, USA

2 Department of Computer Science and Engineering, University of Washington, Seattle, USA

Contact: mganter@u.washington.edu jklink@u.washington.edu

Abstract
Othello is a two player strategy board game established in
England in the 1880s. It is also known as Reversi. The
motivation to implement this game as an AI project comes
from adversial search strategies, applying a minimax
algorithm with an alpha-beta pruning not taking branches
into account that cannot possibly influence the final
decision. By adding various heuristic evaluation functions,
the search problem can be solved in a more effective way,
thus yielding better moves compared to a simple greedy
method.

Introduction
This Othello implementation covers various aspects of the
game. Firstly, we implemented it as a Java application to be
more user-friendly and secondly, we focused on a
reasonable level of intelligence by taking only valid moves
and rules into account.
 The final version only allows one player-mode, i.e.
human versus computer.
 This paper focuses on an overview of the Othello game
including some general strategies, its implementation in
Java, and finally adversial search strategies with a short
outline of the minimax algorithm with an alpha-beta
pruning. The real focus lies on the heuristics optimizing the
AI. Up to date computer programs of Othello are able to
beat humans easily, as Logistello did in 1997 with the then
current world champion Takeshi Murakami. That program's
considerable playing strength is mainly due to several (by
the time) new approaches for the construction of evaluation
features, their combination, selective search, and learning
from previous games.

Overview of the Othello Game
Othello is now a popular two player strategy board game in
many countries - though it is not as popular as chess or

Contact: mganter@u.washington.edu
 jklink@u.washington.edu

backgammon, there are numerous players around the world
(although most are in Asia). In a regular Othello game, on
which we are focusing, there is a green 8-by-8-board with
64 squares. The discs are black and white.

Rules of the Game
The game starts with fixed board positions (Figure 1), with
black taking the first move. When it is the turn of the white
player, he can place a disc of his color onto one of the
empty squares on the board, provided that this move flips
at least one of the opponent's discs.
 Flipping is done by evaluating the surrounding squares;
vertically, horizontally and diagonally (totally 8 directions,
except for in corners and edges, where the board limits the
options). If this evaluation finds an unbroken line of the
opponent’s discs, followed by a disc of the player’s own
color, then a flip of all intermediate discs is done in this
direction. This procedure alternates between the two
players. If there is no legal move, the player has to pass.
 The game ends if all squares are occupied or if none of
the players can take a legal move on the remaining empty
board squares. The winner of the game is the one that
possesses more discs in such a situation.

Figure 1 – Starting position of every game.

General Strategies
There are three basic ideas to accomplish a winning game.
But before throwing ourselves at them, let us just start with
a surprising fact: having a lot of discs at a certain time does
not guarantee to win the game eventually, even it is very
close to the end of the game.
 First, let us consider the importance of corners. A disc
placed in a corner can never be re-flipped, because it faces
two adjacent edges.
 By gradually placing more discs around the corner, this
area cannot be flipped by the opponent, thus creating the
second general idea of stable discs. But taking the corners
is not the only way to create stable discs. To avoid your
opponent taking the corners, you should avoid playing the
squares diagonally next to the corner squares and the
squares next to corners (although the latter are less
dangerous).

 Third, there is the concept of mobility, i.e. the number of
legal moves of a player in the game at a certain time.
Obviously, it is a good idea to maintain high mobility
whenever possible. This can be achieved by only having a
few discs, that are packed and that are surrounded by the
opponent at the same time.
 On the other hand, a player should avoid creating empty
squares that are not possible to enter anymore and building
long thick “walls”.

Figure 2 – The board

The Othello Implementation
Our O-thell-us implementation is written in Java. Our aim
was to implement a user-friendly, i.e. readable, code
consisting of various classes. Their names refer to their
purpose. Worth mentioning, we started to work from
scratch on our program and built it all on that.
 In the following, we will give the reader a short
introduction and explanation to our user interface and the
important parts of the source code. For more details that
are not covered in this outline, please take a closer look in
Appendix B.

The User Interface
As mentioned above, our GUI was designed and created for
simplicity and to be able to transmit vital information to the
user in a pleasant and non-disruptive way.
 The interface consists of two main parts: the board
(represented by a self-designed picture, as viewed in Figure
2 and the user information and control panel (presented in
Figure 3) The board (placed to the left in our GUI) is
combined with an overlying mouseListener that catches
clicks within the picture. Only legal moves are executed,
and the turn switch back and forth after taken move,
flipping the appropriate disc between moves.

Figure 3 – The user information and control panel

 For the user information and control panel, this is further
subdivided into a statistics box for white, another one for
black, a message printing window and a Quit-button.
 The statistics boxes hold elapsed time for each user
(using our very own StopWatch class) and each player’s
current score (how many discs he has on the board).
 For the message box, this part is used to print
information and status messages, and it can also be
effectively used for debugging.
 Of course there are third party applications such as
JBuilder from Borland and Visual Café from Symantec,
which provide GUI builders. They provide a palette of
elements in a manner made popular by Visual Basic, and
allow us to draw our widgets directly on the screen. We felt
that it would be good experience to hand code the interface
however, and writing it yourself allows greater control and
flexibility.

Classes and functions
Othellus This is our main class. It extends a JFrame
(providing the container for the GUI) and also extends an
ActionListener. It handles all initializations, painting,
window handling, message printing and the actual game
process. The latter is controlled by a method called
boardPictureMouseClicked(), which is the starting routine
for method getPosition(). This method takes care of the
current “click” and does all the work regarding flipping,
clock-handling, score-counting and switching turns.
 Othellus furthermore also calls miniMaxAB() for the
computer player(s), which is the “engine” behind the AI.
The method compares the available moves, and by using
minimax search with alpha-beta pruning together with
some nice heuristics, it will choose a move to make, which
maximizes it current underlying utility function (more on
this algorithm in the Adversarial Search Strategies section
below). We also consider the fact when a player has to
pass, i.e. the number of possible moves is zero and if the
game has reached an end-state.

Generator The class Generator consists of both the utility
function and the heuristics. This class is accessed from the
outside by using the getUtility() method with parameters
describing the current world (board) status; the active
player, the underlying board matrix, the moves available
currently, the position of a suggested move and the current
turn number. These parameters are used in different ways
in the used heuristic, to calculate a utility score to return to
the minimax search.
 Depending on the choice made by the user at
initialization time, one heuristic (or, more often, a
combination of several) is used to give an estimation of just
how good a suggested move is. The heuristics are described
at some length in the Adversarial Search Strategies section
below.

Matrix() This class initializes the board matrix (placing the
two black and the two white discs in the starting position)
and controls its access and storage. It also includes a
routine for counting and updating the white and black
scores, by simply going through the underlying board
matrix and counting the occupied squares. The
printMatrix() method included here is used for debugging
activities.

Moves() The possibleMoves() method is used to calculate
and store all the possible moves that the current player can
take, and also returning their number. It is used extensively,
also by controlling the access to the matrix of possible
moves. The calculating routine consists of 8 sub-checks for
vertical, horizontal and diagonal testing, while imposing
restrictions to edges. All sub-checks follow a certain
(simple) algorithm:

1. Check if the current position in the board matrix is
empty

2. If so, then check for adjacent fields that belong to the
opponent

3. If there are some, then check the fields next to the
opponent’s square, on a line through both the opponent’s
one and the one being checked as a possible move.

4. If we hit a player’s square on our way along the line,
directly after an opponent’s one (without passing an empty
square), we are done. We can then return the current
position as a possible move. Otherwise, the current square
we are checking cannot be considered as a possible move.
The figure 4 below shows a possible move in filled grey.

Figure 4 – Possible move

The other important method in this class is flip(). Flip
works similar to possibleMoves(), but instead of returning
possible moves, it flips the discs between a taken move and
the one(s) that are already on the board (according to the
rules of the game). Therefore, all adjacent fields have to be
checked. Since this is done quite similarly to the possible
moves, we thought about combining these to methods into
a general one. However, we dropped this for the sake of
small time savings available in a less general method.

Player For managing attributes like player color and which
player is active, we maintain a small class called Player.
Grouping this information together enables much easier
use, debugging and a more readable code.

Position This is just another grouping together-class, this
time to keep track of the current x and y position as well as
the current board value of a move under evaluation by the
minimax algorithm.

Stopwatch and TargetsTimer These classes work closely
together to do an exact measuring of the elapsed time for
each player. The TargetsTimer will correct itself by using a
method called fireActionPerformed(). This method
overrides the very inaccurate one in javax.swing.Timer. It
does that by basically keeping track of the previous time

and then determining how inaccurate the update was.
Stopwatch uses an instance of the TargetsTimer, and adds
accessor functions and formatting options on top of the
accurate time-keeping.

Tuple This small class is just a grouping of two values, e.g.
used for sending calculated scores together in a packet.

Evaluator For doing the important job of evaluating all of
our different combinations of minimax and heuristics, we
have this special class to do the trick. It evaluates the
success of a move (and also a game and the average move)
according to our own, modified version of four of the
suggested parameters by William A. Greene in [Greene
91]. These parameters are used in the context of an Othello
game using learning algorithms, but works after our
changes equally well on evaluating O-thell-us also. More to
come on this special chosen type of evaluation, and how we
implemented it, in the Evaluation section.

Adversarial Search Strategies
To decide on the right move can be quite exhaustive and/or
misleading if the wrong search strategy is used. This is
partly due to the search depth used, but also to other
circumstances, e.g. the horizon effect.
 To make the computer a challenging opponent, while
still upholding an even pace in the game, we need to
consider the above mentioned parameters and also include
some interesting heuristics.
 First, however, let us get a brief reminder of what game
theory and adversial search strategies actually is.

Game Theory and Adversarial Search
This project is concerned with a specific area of AI, namely
that of game theory. Game theory is one of the most useful
branches of modern mathematics. It was actually
anticipated by French mathematician Emile Boel in the
early 1920's, but it was John von Neumann who published
his proof of the for us highly useful minimax theorem in
1926. It was further developed in the 1940's by von
Neumann, with the help of Oskar Morgenstern, in his work
Theory of Games and Economic Behaviour. [Walker 95]

In this context, the word 'game' does not simply apply to
board or video games. A game is "any set of interactions
governed by a set of rules specifying the moves that each
participant may make and a set of outcomes for each
possible set of moves." [Bullock 99]

In this way it can apply to many areas and is used in such
diverse fields as economics, political science, marketing
and even warfare. Anything that involves conflict of some
kind is a possible area for game theory.

The idea is to make intelligent moves based on the
current game state, a set of predefined rules, potential
moves the opposition will make and the game objectives.

Here, game theory will be applied to a set of rules we
defined earlier - that of the board game Othello.

Adversarial search is used in problems such as games,
where one player’s attempts to maximize their fitness (win)
is opposed by another player.

The search tree used in adversarial games such as
Othello consist of alternating levels where the moving
(MAX) player tries to maximize fitness and then the
opposing (MIN) player tries to minimize it. To find the best
move the system first generates all possible legal moves,
and applies them to the current board. Depending on how
many levels of lookahead an adversarial search uses, the
amount of legal moves (nodes) can be huge.

The Othellus Minimax search with ��-pruning
Now let us turn our attention for a while to the algorithm
that does all the actual “dirty work” of searching through
this often very large search space, and how we
implemented it in our game. To first get a feel what the
algorithm does, let us have a look on the pseudo code:

Alpha-Beta-Search(state) {

if (depth = 0) {return board's estimated
score;}

successors = valid moves from state;
if (successors is empty) {return board's

estimated score;}
if (is a Minimising node) {

for each successor in successors {
set Beta to min(Beta,

miniMax(successor, Depth - 1,
Alpha, Beta));

if (Alpha >= Beta) {return Alpha;}
}
return Beta;

} else {
for each successor in successors {

set Alpha to max(Alpha,
miniMax(successor, Depth -1, Alpha,

Beta));
if (Alpha >= Beta) {return Beta;}

}
return Alpha;
}

}

Figure 5 – Our alpha-beta search pseudo code

The minimax algorithm with alpha-beta pruning is, as can
clearly be seen, a fairly simple recursive algorithm. Yet it is
very powerful. By reducing the search space by pruning
away the nodes that cannot possibly be chosen by either
MIN or MAX, we are able to easily treat games in Othello
with a lookahead of as much as 9 plys. After this it still
works, but slows down to in some cases as much as 2
minutes of evaluation time for the computer. Given that the
branching factor of Othello is between 5 and 15, a 10 ply
lookahead gives us a search space (before pruning) of
between about 107 and 1012 nodes. For our search
algorithm with pruning and heuristics to be able to handle
this as well as it does, is well over our expectations at the
beginning of this project.

The Othellus Heuristics
Finally we arrive to the part we all have been waiting for:
the heuristics. What is then a heuristic and how do we use
it? A heuristic involves or serves “as an aid to learning,
discovery, or problem-solving by experimental and
especially trial-and-error methods”1. In this section, we
focus on the (in our game) implemented heuristics.
Intuitively, it is likely that not all features have a consistent
importance throughout the game. For example, mobility is
very important in the middle of the game while it is less
significantly at the beginning and the end. But more on this
and other small details later.
We have implemented and tested a fairly big number of
different heuristics. Most of them are complements to each
other and to our own two base ones, which uses position
and mobility together with a (in the basic version) static
board weight matrix to calculate the current utility.

Random move Before turning our attention to the more
advanced heuristics, we would like to start with a very
simple method that almost can’t even be considered as a
real heuristic – taking a random move without doing any
evaluation. The move is in the most basic version chosen
among all possible legal moves available to a player; each
one is equally weighted with the same probabilistic value,
i.e. every move is a likely to be taken as the next. This can
be considered as the play of a very (!) inexperienced human
player or as an AI without an implemented intelligence, and
our testing of this purely random player gave us an terribly
bad computer opponent.
 Why do we then even spend time thinking about this
seemingly useless heuristic? Well, a random element is
useful in as we found at least one situation: to avoid having
the same games played over and over again. Playing as
human vs. computer (or for testing purposes, computer vs.
computer) often leads to an repetitive game with a clear
pattern, or a game that ends in a sort of playing deadlock
(both computer players doing the same series of moves
over and over again). To be able to test our other heuristics
in many different situations, a random element therefore
needs to be introduced in the test games, and therefore we
chose to play human vs. computer for testing, while
measuring the heuristics proficiency with an independent
statistics evaluator (described in the Evaluation section
below).

Board Weights Next step towards building a more complex
heuristic, is our simple strategy idea of assigning weights to
the board squares according to their position and choose on
each turn to play on a square of best weight.
 The basic underlying idea is a board matrix containing
the weights. But how does one come up with a correctly
balanced set of weights for the board weight matrix? Well,
combining together some basic game playing strategies we

1 http://www.m-w.com/cgi-
bin/dictionary?book=Dictionary&va=heuristic

could come up with a good starting position for the weights
and then adjusting them as we went along with playing.
Ideally, to come up with a near-optimal distribution of
board weights, one would like to train the matrix
successively by using machine learning. In this case, there
just was not time enough for that.
 As soon realized by any player (even at the lowest level),
having the corners is always good. These discs cannot be
re-flipped, as argued earlier. By the same argument, the
fields directly adjacent to the corners are usually bad to be
the first to take, since this gives your opponent a good
chance of taking the corner, while shrinking your options of
taking it yourself. Furthermore, the squares even one step
further out from the corner are good to take, to gain a good
striking position for the corner. These ideas are
summarized in Figure 6.

Figure 6 – The board estimation

As can be seen from the above figure, this reasoning still
leaves us with 28 fields without any relative value, and the
classified ones are only just that; relative to each other
without any more precise measure.
 So, how to proceed? As the next general advantage rule,
we turn our attention to the edges. After the corners (which
has protection from flipping in all directions), the edges are
second in value to take, since the can only be flipped from
two separate directions. Also, they provide a great basis for
future moves of flipping discs towards the interior of the
board. Therefore, they should be given a higher score than
the interior of the field (the center 16 squares). For fields
affected both by the corner rule and the edge rule (lying on
the edge between those two areas), the scores are higher
than for fields just belonging to one rule.
 Finally, the interior of the board can be seen as a
miniature board of itself. The argument supporting this
declaration is given to the reader in the following section,
on our Several Stages principle. Of course, being nowhere
close to the value of having the “real” corners and edges,
this interior “board” has lower scores relative to the more
permanently advantageous positions of the field.
 Our final board weights are presented in Figure 7. The
exact values for each square are a combination of the above
reasoning, and evaluation of the extensive testing we have
done.

Figure 7 – Board weights matrix

Several Stages The next idea divides the whole game into
several stages; three to be more precise. The parts
identified on the subject are the beginning, the middle and
the end phase. The three phases are characterized by
interior stability, mobility and greediness, respectively.
 This is done by various mobility weights that simulate a
Gaussian distribution. (Figure 8 – simulation of the
Gaussian distribution). The advantage of taking mobility
into account is to force the opponent to very few possible
moves, thus enforcing bad choices on the opponent, while
keeping as many possible next moves for oneself. This is
done by giving an extra score for every square controlled
by our agent and a negative score for every square
controlled by the opponent. In the first phase, mobility can
be disregarded because the major aim is to gain control of
the underlying 4 x 4 sub-board in the middle. This because
it gives you a strong base for later expansion, and the
beginning phase is identified empirically by us to last for
about the first 12 moves. Concluding the discussion on the
first phase, this tells us that only small values or even
negative values are taken into account as a mobility weight
as a beginning.
 The second phase considers the whole board, implying
high mobility weights so that the player can spread as far as
possible over the board, thus gaining as many corners and
favorable edge squares as possible. Mobility score for this
part is therefore relatively high.
The third and last phase aims for the goal of gaining as
many squares as possible thus simulating a greedy behavior
(or cruelly, going in for the kill). This is implemented by
decreased mobility weights, giving more power to the
constantly underlying position gaining heuristic. This
whole procedure is implemented in a heuristic called
mobPos() that is an extension of position().
 position() uses the board weight to calculate the gain of a
possible move compared to another. The sum of the
weights is used as the utility value for a possible move, as
requested by the minimax algorithm.

mostFlipped This heuristic aims to take as many pieces of
the opponent as possible and is therefore purely greedy for
all plys of lookahead. The standalone version does not take
any other values like the current game situation or the
importance of various squares into account (cp. the board
matrix). But on the other hand, it can be easily combined
with functions like positions() or mobPos() forcing them to
be more greedy in the second phase without changing any

Figure 8 - simulation of the Gaussian distribution

parameter settings. This method works similar to the flip()
function, but of course instead of flipping the values, it
returns an utility value as measured in the number of
flipped pieces.

lowSurroundings This method designed by us returns the
square with the lowest sum of board weights of surrounding
squares as the optimal move. By using this strategy, the
agent reduces the opponent’s chance to gain a very good
square because it only chooses squares that are surrounded
by less attractive ones. Since the rule for the opponent is
that it must make a move on a square adjacent to one of the
other player’s discs, this strategy works extraordinarily
well. Success is especially apparent when we are in phases
of the game which only has few possible moves (like in the
beginning or the end).

Corners As already mentioned before, corners are very
important in the game because they face two edges and
therefore prohibiting a changing occupancy. We classify
such a disc as stable (unflippable, if you want). Expanding
this area leads to more stable discs and therefore to a
favorable situation in the current game. This process is
simulated in the heuristic enlargeCornerArea() that
modifies the current board weight matrix dynamically,
before one of the two heuristics positions() or mobPos() is
called. Changes are only applied to edges and with a
constant, non-optimized changing value, due to a lack of
time for this project. Further explored, this heuristic allows
a more dynamic and updated view of the value of taking
different board fields that from the beginning was classified
as bad. As an example of this, consider the squares
adjacent to a corner. Before you own the corner, these are
really bad to take, but following the discussion in the
lowSurroundings heuristic, growing the corner area can be
a good strategy.

Edges Another of our own heuristics is called
checkNeighbours. It basically tries to increase the number
of the agent’s pieces on an edge, thus running danger of
loosing all of them, but on the other hand increasing the
opportunity to catch more discs towards the interior of the
board. It can be considered as a preceding method or
complement to positions() or mobPos(); increasing their
playing ability.

Opening strategy While playing the game, we figured out
that it is always desirable to play a perpendicular or a
diagonal opening. This simple heuristic reduces the number
of pieces that could me flipped in the next move by the
opponent, i.e. from at most two to at most one. (Figure 9 –
The opening, where the upper discs are the new possible
ones)

Figure 9 – The opening

Evaluation
Since we were testing the game by playing it human vs.
computer (we had human vs. human enabled at an early
stage, and also computer vs. computer for testing), we
needed a independent way of measuring the performance of
the different combinations or standalone heuristics applied
to our minimax search with ��-pruning.
 For this purpose, the paper Machine Learning of Othello
Heuristics by William A. Greene (1991), presents some
interesting parameters for measure (even though we in fact
do not use machine learning).
 The theory behind Green’s suggested evaluation is the
use of six different parameters; (1) corner strength and
potential, (2) corner stability, (3) edge stability, (4) interior
stability, (5) mobility, and (6) square advantage. Let us
have a short overview of what these parameters mean,
before we go into why they are important to us, and how
we implemented them.
 The corner strength and potential is intended to be
helpful for steering play early in a game, when the corner
regions are thinly filled. The heuristic gives an assessment
of the degree to which a corner region is already
advantageous, offers positive opportunities or poses risks
to the player at hand. This is implemented in our program
by checking if a corner was lost or won during the
evaluated move, and if the player or his opponent holds
new, potentially advantageous squares for taking the
corners.
 The idea for the corner strength is basically to give a
measurement on how big a corner-based right triangle is
owned by the given player. We chose not to implement this

measuring parameter, since it is a bit complex, requires
much calculation and therefore slows down the fluency of
moves generated and evaluated by the computer. The same
goes for interior stability, where the idea is to calculate how
many stable (unlikely to be taken by the opponent),
unstable (likely to be taken by the opponent) and semi-
stable (too close to call) squares there are in the centre of
the board.
 For edge stability, we evaluate the same parameters as
with the interior stability; stable, unstable and semi-stable
squares. Implementation of this is done by successively
checking all four edges for empty squares. If we find one of
those, we check all the adjacent board squares to see if they
are dominated by our own discs, the opponent’s discs or if
it is too close to call. Using this measure, we keep a score
of how stable the edges are, by punishing the player’s
utility for empty squares surrounded by his own discs and
vice versa. This process is easily extended to also include
interior stability.
 The last two parameters, mobility and square advantage,
are the easiest ones to implement. The current mobility is
just a measure of how many opportunities a player has to
place a disc right now, and the future mobility says the
same about currently unplayable ones (but at least adjacent
to one of the opponent’s discs, and therefore potentially
good later on). This is calculated by weighting the mobility
calculated for our mobPos heuristic by a factor of 2
(suggested by Graves), and simply adding to this the
number of empty squares that borders to an opponent’s
square.
 Finally, the square advantage is simply calculated as the
difference between the number of gained squares for the
player and the number of gained squares by the opponent.
 The four parameters we chose to implement of these six
are implemented in our Evaluator class, together with a
simple printout method for statistics such as the four
separate scores, the total score and the average score per
made move.

Discussion
Certainly, a lot of improvements can be implemented due
to the pure facts that, we are not using any knowledge base
or endgame databases and no machine learning, to further
improve performance. These facts taken together with the
fact that we lacked the sufficient time to optimize our
variables for heuristics, such as checkNeighbours, leaves us
with a wish to continue this development process even
further.

One idea to alter our interface is to highlight all possible
moves a player or an agent can take (as some kind of
hinting system). But this increases the complexity of the
board so that it is difficult for the player to negotiate its
way, although it is easily implemented as a fourth graphical

square option. As we implemented a classical board game
without this feature, it is also largely irrelevant for us.

Another nice feature would be to add an undo option for
the last move. But this can also be seen as a gadget and is
therefore omitted.

In the beginning of this project, we aimed in implementing
more advanced user options, such as being able to select a
12 times 12 or a 16 times 16 board, instead of the
conventional 8 times 8. The code for this is still largely
present in our source code, and we also designed the two
bigger versions of our board picture (see Appendix B for
screenshots). The reason for leaving this option out is
mostly practical ones; all the different paddings for the
different board sizes made our code hard to get an
overview of.

We could also have included the option in the interface to
choose between both human vs. human and computer vs.
computer (which were available at a testing phase of our
interface and heuristics), but since we did not want the
interface to be too complex, we left these out as an option
for the ordinary user.

As a last point, we want to mention a few facts that would
improve our AI. First, adding an opening and an endgame
book that are continuously updated. Furthermore, instead
of having a fixed deepening factor, one could replace it by
an automatic iterative deepening that adapts to game
situations and progress. Another idea might be the
implementation of responses to certain moves done by the
opponent.

Test results and conclusion
After evaluating our results from the evaluation class, we
now want to present the major results including the major
drawbacks.

First, our program’s playing level corresponds to the one of
an average human player. This can be revealed by the fact
that the human player wins 3 out of 5 games with an
average winning margin of 22 points while the agent wins
by averagely 18 points. These results take all lookaheads
and all heuristics into account. But as soon as one only
considers the individual lookaheads more differences
become obvious. An increasing lookahead implies an
increasing computing time but also a better play - low
lookaheads like 3 or 4 usually lead to a loss, but as soon as
they take values of more or equal to 6 the agent increases
its chances to win enormously.

 Second, there is a strong connection between a high
mobility, square advantage, high heuristic and a high
average scoring move leading to a win with a fairly high

winning margin. This should be totally clear because they
simulate the ideal play.

 Third, a positive number in corner stability and potential
usually leads to a win by the agent as a cause of a stable
disc.

 Fourth, our fastest and best method is low surroundings
yielding the highest winning margins for the agent.

On the other hand, very low corner stability often leads to a
low average score per move and to a loss because it is more
difficult to build stable discs. But this cannot be
generalized because it can happen that corners are gained
in the end game which is connected to a low score. The
same is true for edge stability.

A problem we are still facing is that our agent sometimes
takes good moves while sometimes not recognizing them at
all. This can be traced back to the fact of required
adjustment of values that can be set like the ones for
mobility, mostflipped, enlargeCornerArea and
checkNeighbours. It is extremely difficult to adjust values
simulating the Gaussian distribution that is used in the
mobPos method simulating the importance of various game
stages.

References
Wolf, T. (published Aug ‘02). The Anatomy of a Game Program.
Retrieved 11/01/04, from:
 http://home.tiscalinet.ch/t_wolf/tw/misc/reversi/html/index.html

java.sun.com (published Mar ‘04). The Java Tutorial.
 Retrieved 10/25/04, from:
 http://java.sun.com/docs/books/tutorial/index.html

Walker, P. (published Apr ‘95). History of Game Theory.
Retrieved 11/01/04, from:
 http://william-king.www.drexel.edu/top/class/histf.html

Greene, W. A. (1991) Parameters for machine learning in
Othello. Machine Learning of Othello Heuristics.

Abramson, B. (1989) Computer games and control strategies.
Control Strategies for Two-Player Games.

Epstein, S. (1998) Heuristics. Learning Game-Specific Spatially-
Oriented Heuristics
.
Bullock, A. & Trombley S. (1999) Philosophical definitions,
amongst other. The New Fontana Dictionary of Modern Thought
3rd Edition, Fontana

Russell, S. & Norvig, P. (2003) Course book in CSE 573..
Artificial Intelligence: A Modern Approach 2nd Edition, Prentice
Hall

Appendix A – Who did what?
Basically, the whole project was done by the both of us in
equally parts thus spending many days and nights together.
But one can clearly state that the main class Othellus() with
the alpha-beta, minimax, evaluation and fine tuning of the
graphical interface was basically implemented by Jonas.

The Generator() class and the Moves() class was basically
implemented by Mathias, although the ideas came for
different heuristics from different persons in the group.

Worth mentioning, debugging and implementing
discussions were usually done by the two group members
together.

Appendix B – Screenshots
A draw game.

A big loss for black.

