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Abstract

In this paper we explore applying the technique of
Alpha-Beta pruned MinMax search to the board
game Abalone. We find that Alpha-Beta prun-
ing can give you significant processing savings.
We also present several heuristics for evaluating
non-terminal board positions and examine their
effectiveness when used by a depth limited search
algorithm to play the game of Abalone.

Motivation
Board games have always created a lot of interested

in every human community. Their simplicity in terms
of rules but complexity in games possibilities are one
of the key features of their success. Moreover, these
games have always been associated to strategy and war,
which has been up to now (and sometimes still is) one
of peoples favorites hobbies.

For half a century, these board games have been the
benchmark of computer scientists working in artificial
intelligence. Games like Chess, Othello, GO have all
been studied and had computational implementations
created, but not always with great success. While many
of these game playing programs are highly tailored to
the individual game, some general purpose techniques
have been developed. It is these general purpose algo-
rithms that we are interested in applying to the rela-
tively new board game of Abalone.

In the current state of the world, an Abalone play-
ing program by the name of ABA-PRO is the current
world champion. Unfortunately there is little informa-
tion available on how it actually works (Oswin Aich-
holzer 2002), or what heuristics it uses. As such, we
also looked at the process of tailoring a computer game
player to a game by investigating multiple heuristic
evaluation functions.

Abalone Rules
Abalone was first created in France some 20 years

ago. Like many interesting board games, it is very sim-
1Abalone is a registered trademark of Abalone S.A. -

France

ple to learn and amazingly complex to play. It is now
played all over the world and is considered a to be a
classic board game, among the ranks of Chess or GO.

The rules are very basic. We will give a simple
overview here, but for the finer points the reader is di-
rected to more thorough online references such as the
Wikipedia Abalone game entry (WIKIPEDIA 2004) or
the official Abalone web site(AbaloneS.A. 2004). There
is an hexagonal board, 5 spaces to a side, with white
and black balls. Each player has 14 balls of one colour
(black or white).

Figure 1: Initial board(WIKIPEDIA 2004)

The aim of the game is to remove 6 of the opponent’s
balls by pushing them out of the board. At each turn
one player can move up to three inline and adjacent
balls to the next free space. If moving multiple balls,
they must all move in the same direction. When mov-
ing multiple balls, we call moves to spaces in line with
the set of balls and in-line move, and moves to spaces
adjacent to the set of balls broadside moves. If there is
an opponent’s ball occupying the space a player wishes
to move to, they may try to push the opponents balls.
In order to push an opponents pieces, the number of
pieces in the players line of balls must outnumber the
number of pieces in the opponents line. Thus two player
pieces may push one opponent piece, and three player
pieces may push one or two opponent pieces. Any balls
pushed out of the board are lost for the remainder of
the game.



Figure 2: Before pushing(WIKIPEDIA 2004)

Figure 3: After pushing(WIKIPEDIA 2004)

In our version of the Abalone game, we are going
to forbid the broadside moves in order to simplify the
game. By doing this, we will reduce the number of
possible moves and thus we will reduce the breadth of
the search tree.

Solution : Name of our Solution

Choosing a Move
By defining our search space as the space of possible

game boards, it is easy to search through that space
generating child nodes using the rules for legal moves.
Using this search space, we can apply the Min-Max al-
gorithm to choose the best next move. Unfortunately,
Abalone has a very large branching factor which pro-
hibits searching the tree all the way to the endgame
states. Instead, we terminate the search at a pre-set
depth and apply a heuristic evaluation function the
board state at that depth. To further reduce the search
space, we apply the technique of Alpha-Beta pruning.
Below we describe the individual heuristics we imple-
mented.

Implemented Heuristics
Heuristics are functions that help the computer to

choose the best moves based on an incomplete set of
information. Using these heuristics, the computer can
choose the next move without forcing the Min-Max al-
gorithm to search the entire tree through to the end.

Instead, we can evaluate the board value at a non-
terminal depth and compare these to choose the best.
Contrary to Min-Max and Alpha-Beta pruning, heuris-
tics are specific to the particular game they are devel-
oped for and so cannot necessarily be directly applied
to other games.

As they are so specific to the game, these heuristics
can define the way a computer “plays”. In our case,
when designing the heuristics, it helped us to think in
terms of strategies we felt were valuable in playing the
game. For example, you can set a heuristic which may
play a defensive game by increasing the evaluation score
based on grouping, or on the hand have a very aggres-
sive game by increasing the score for pushing off the
other players pieces.

For the Abalone game we have developed four
main heuristics. Each one of them is based on game
experience that we have had and thus try to imitate
what a human player would (very often unconsciously)
do. Of course these are not the only heuristics
that exist and one can always come up with some
new function that will completely change the game play.

First Heuristic : Gravity Center The first heuris-
tic is based in the fact that being in the center is safer
than being near the borders. There are two reasons for
this. The first one is that when the pieces are near the
center of the board, they are further away from the bor-
ders (obviously) and so they are in less danger of being
pushed off. The second reason is that when the pieces
are in the center, they are in a pack and so there are
more likely to be in rows of three, a position in which
they cannot be pushed.

This heuristic was implemented by first assigning
a value to each of the board’s fields. This value is
calculated in function of its distance to the center.
The further from the center the lower the score it gets.
Then we just have to add all the scores of the positions
occupied by one players pieces and subtract all of
the opponents. This maps directly to use with the
Min-Max algorithm since one player will try to get the
highest values and the other one will go for the lowest
values. As this was the original, heuristic that came
with the codebase we are building upon, it is the one
that we pitted our solutions against as a base metric.

Second Heuristic : Three In a Row The second
heuristic awards points based on having up to three
balls in a row. This reflects the fact that it is bene-
ficial to have up to three in a row, but there is very
little strategic benefit to having four or more in a row.
When we have three in a row, we can push the maxi-
mum number of opponents pieces, but cannot be pushed
ourselves.

To encourage groupings of three in a row, the board
is scored as follows. For each of the 3 line directions
possible on a hexagonal board, the algorithm searches



through the corresponding rows. When it sees two
balls in a row, it adds or subtracts one point based on
whether it is the min players pieces or the max players
pieces. Similarly, it adds or subtracts two points when
it sees three balls in a row. It is a highly defensive
heuristic, as the previous one, but one is never too
careful!!

Third Heuristic : Keep Packed The third heuris-
tic is also a defensive one. It is based in the fact that
wherever the pieces are, it always better to have them
grouped than all scattered among the board. Like in
the first heuristic, a big group of balls will certainly be
harder to beat than small groups. It is more likely to
have rows of three in several directions when the balls
are packed than when just a few pieces are together.

We have implemented this heuristic by going all
along the board and whenever we find a ball, we
count the number of neighbours of the same colour
and add that number to a counter. Then we do the
same with the other colour only this time we subtract.
Thus one has to maximize and the other has to
minimize, which is what we want for the Min-Max.
This way of counting seems very simplistic since
we count the same neighboring pieces several times,
but in fact it is very interesting since the scores will
rise exponentially with the number of neighboring
pieces. The more packed they are, the better score
they’ll get. This is to emphasize that it is better to
have one big pack than two medium packs, for example.

Fourth Heuristic : Let’s Kill’em The fourth
heuristic is used to counterbalance this rather defen-
sive set of heuristics. It aims to attack whenever it is
possible and whenever it will not represent a danger
in the next move. It is worthless to push out a ball,
if in the next move the opponent can do the same to
you. This kind of situation occurs very often in the
game. For this heuristic to be effective, it is necessary
to explore at least one opponent move further.

We implemented this aggressive heuristic by basing
the score on how many pieces have been thrown
out. We calculate a score that has an exponential
relationship to the number of balls thrown out. Then
we calculate the difference between each opponent.
Let’s look at the situation where two white balls have
been pushed out, three black balls have been pushed
out, and black has a chance to push out a white ball.
If the ball is pushed out, the differencing will make
the heuristic score null again, representing an even
match. If the ball is not pushed, the large white score
will remain and it will severely reduce blacks heuristic
score. One should not forget that the aim of the
game is to remove six of the opponents balls and not
to survive forever, so it may be in one’s interest to
sacrifice a piece if it means it is possible to win in the
next ply.

H1 H2 H3 H4
Weight Weight Weight Weight

Run1 1 0 0 0
Run1 1 1 0 0
Run2 1 0 1 0
Run3 1 0 0 1
Run4 0 1 0 0
Run5 0 0 1 0
Run6 0 0 0 1
Run7 1 1 1 1
Run8 0 1 1 1
Run9 0 1 0 1
Run10 0 1 1 0
Run11 0 0 1 1
Run12 1 0 0 0

Table 1: Experimental Run Configurations

Experiments

Figure 4: Abalone Experiment Applet

We wanted to test two things in this experiment.
First, we wanted to show that Alpha-Beta pruning pro-
vided significant speedup to move searching, allowing a
deeper search. Second, we wanted to show that through
careful choosing of board evaluation functions, one can
play a better game of abalone without having to search
all the way to the endgame condition. To facilitate
this, we started with a Abalone playing applet by Frank
Bergmann and enhances it with Computer vs. Com-
puter play and scoring, move timing, move counting,



and move logging capabilities. The UI for the modified
applet can be seen in Figure 4.

To show the speedup benefits of Alpha-Beta pruning,
we set up two computer opponents, one using standard
Min-Max search, and the other enhances with Alpha-
Beta pruning. We then setup time counters around the
move search functions for each computer player. These
timers are rather coarse (millisecond accuracy) and be-
cause it was not strict process accounting, other tasks
running simultaneously could affect our measured time
of the computer players. In order to compensate for
this, we ran the program and accumulated the first 30
moves worth of time for a game for each player, and
repeated these games 5 times to get an average of the
time spent calculating these moves. While it is pos-
sible to prove that an Alpha-Beta pruned searches a
tree the same size or smaller than pure Min-Max for a
given depth, we wanted to demonstrate that the added
overhead associated with the Alpha-Beta pruning was
outweighed by the speedup gained from the reduction
of the searched tree.

To demonstrate the benefits of careful selection of
non-terminal board evaluation heuristics, we pitted
computer players with differently weighted evaluation
heuristics against each other. We gave the advanced
heuristics to the Alpha-Beta search player. We set
the search depths to be the same on both the tradi-
tional Min-Max and Alpha-Beta players, and varied the
weights on the heuristics for the Alpha-Beta player. We
then recorded wins, losses, and piece counts for tied
games. We tried the experiments with the weights listed
in Table 1. HX refers to the heuristic evaluation func-
tions described in the Implemented Heuristics section,
and they are numbered according to the order of ap-
pearance.

Upon running these experiments on the first 6 runs,
we realized we were obtaining inconclusive results.
Noticing that the computer players would often get
stuck in cycles of moves, we added a bit of random-
ness to our Alpha-Beta player. We let it randomly
pick between boards with equivalent heuristic evalu-
ation scores. We also stacked the cards in favor of
the Alpha-Beta player, setting the Min-Max recursion
depth to 1 ply and the Alpha-Beta recursion depth to
3 plys.

Experimental Results

Upon running our first experiment, we saw a signif-
icant improvement in calculation time when compared
to the Min-Max algorithm running at the same recur-
sion depth with the same heuristic evaluation function.
The results are given in Table 2 show the evaluation
time per move of each algorithm at a recursion depth
of 3 plys averaged over 51 moves each.

After running the experiments, we obtained the re-
sults given in Table 3. As you can see, the results were
not very enlightening when it comes to telling whether
or not the heuristics we wrote improved play. In all of

Level 3 Min-Max 404ms per move
Level 3 Alpha-Beta 170ms per move

Table 2: Min-Max vs. Alpha-Beta Time Comparison

Black Average Black White
Score Time Score

Run 1 1 12ms 2
Run 2 0 8ms 0
Run 3 0 15ms 0
Run 4 0 15ms 0
Run 5 0 5ms 0
Run 6 0 under 1ms 0
Run 7 1 12ms 4

Table 3: Initial Experimental Run Results

these games, the two computer opponents get stuck in
an endless loop of moves. This often happens in the
early stages of the game so we cannot assume that the
average times are meaningful when compared to full
games. This is due to the fact that at the beginning,
all of the pieces are tightly packed at either side, so
they can only move forward. This severely limits the
breadth of the tree and decreases the effectiveness of
the Alpha-Beta pruning.

Due to the lack of useful results in the fist set of
experiments as can be seen in Table 3, we modified
and re-ran it, as described in the Experiments Section.
Table 4 shows the results of the modified experiment.

Conclusions

It is interesting to note that any set of heuristics that
included the first one did quite well. When looking at
the last 3 heuristics alone, H2 was the only one able to
win by itself, and even then only twice. It also seems
that having H1 and H2 together actually strengthen the
play, as they win by a greater margin than H1 paired
with either H3 or H4. In fact, the performance of H1
combined with H3 or H4 is not noticeably different from
the performance of H1 alone. This could be a hint about
combining heuristics to build stronger players. It could
also mean that the weights are not appropriate. Hav-
ing all the heuristics together isn’t necessarily a good
thing, as is shown by runs 7 and 11. We don’t always
get better results, but we will definitely slow down the
computation by combining these heuristics.

It is not that easy, or at least not intuitive, to design
good heuristic functions. This is especially apparent
when you look at the results of Run 11, where the com-
puter did quite well playing second, but lousy when it
played first. Because the other runs didn’t show this
similar trend, we can be fairly comfortable in assuming
that it is due to the combinations of heuristics used,
and that starting first doesn’t automatically put one at
a disadvantage.



Run 1 Run 2 Run 3
Black White Black White Black White
6-0 0-6 6-5 5-6 6-3 5-6
6-0 0-6 6-0 5-6 6-3 2-6
6-2 0-6 6-2 2-6 6-0 5-6
6-3 0-6 6-4 5-6 6-3 4-6
6-0 0-6 6-2 5-6 5-6 4-6
6-0 0-6 6-5 4-6 5-6 5-6
6-0 0-6 6-2 5-6 6-3 5-6
6-2 0-6 6-3 4-6 6-4 5-6

Run 4 Run 5 Run 6
Black White Black White Black White
6-5 5-6 stuck 6-1 3-6 6-1

stuck 6-0 stuck 6-1 1-6 6-2
0-6 6-0 stuck 6-1 2-6 6-1
0-6 6-0 1-6 6-1 1-6 6-1

stuck 6-0 1-6 6-0 1-6 6-1
stuck 6-1 stuck 6-1 0-6 6-1
stuck 6-2 stuck 6-1 0-6 6-0

Run 7 Run 8 Run 9
Black White Black White Black White
6-3 5-6 stuck stuck 1-6 4-6

stuck 5-6 6-3 5-6 stuck 6-1
stuck 5-6 stuck stuck 6-4 5-6
6-3 5-6 6-5 5-6 6-5 5-6
6-3 2-6 6-4 5-6 0-6 6-0
6-4 1-6 6-4 4-6 6-5 4-6
6-1 2-6 6-4 stuck 6-4 6-2

Run 10 Run 11 Run 12
Black White Black White Black White
6-3 stuck 6-5 6-5 6-5 4-6
6-5 6-0 6-4 6-0 6-5 2-6
6-5 5-6 6-4 6-0 6-3 3-6
3-6 4-6 stuck 6-1 6-4 2-6
3-6 6-2 stuck 6-1 5-6 4-6

stuck 6-0 0-6 stuck 6-3 4-6
5-6 stuck stuck 4-6 6-5 6-5

Table 4: Experimental Run Results with Modifications
- Scores are given in B-W format. The colour at the
head of the column indicates that played by the Alpha-
Beta algorithm.

We noticed that for a 2 ply depth search, the Min-
Max implementation was sometimes faster than the
Alpha-Beta implementation. Because the Alpha-Beta
implementation requires more computation at each
node than Min-Max, in trees where there is not a lot
of benefit to pruning, it is expected that Alpha-Beta
may take longer. In short trees, you only get the op-
portunity to prune short trees and leaf nodes. The real
advantage comes in deep trees, where you can prune
whole subtrees near the root.

The game length was quite variable, from 60 to 600
moves. In the longer games, many of these were cyclic
moves. This is most likely due to the fact that it would
take the first good move it saw with a very high prob-
ability, and we only included the randomness to get it
”un-stuck” in these cyclic situations.

During the course of our experiments, we noticed that
on several occasions with higher depth search trees, the
computer player we created would fail to take obvi-
ous and immediate moves that would allow it to win
the game. We believe this is because of the depth-first
search nature. If it finds a winning board position three
ply’s down before it finds the winning position one ply
down, it will simply accept the sequence with the three
ply win first. So sometimes it is better to think only
one good move in advance as opposed to three moves.

Suggestions for Future Research

The obvious extensions to the research would be to
investigate more and varied heuristics and their inter-
acting effects. These should be developed with more
precise testing/timing procedures and better movement
and strategic effect analysis. Also, more variety in the
assignment of weights to the heuristics may reveal bet-
ter balances than our simple all-or-nothing approach.
Of course this method is a lot of tedious work. In order
to capture the short-term obvious win moves with large
depth search trees, an iterative deepening approach can
be attempted. In addition, if leaf nodes at one depth are
re-ordered before proceeding to the next depth, it may
be possible to get near the optimal ordering for Alpha-
Beta pruning. It has been shown that the repeated
effort in iterative deepening search doesn’t add a pro-
hibitive amount of computing time.(Russell & Norvig
2003) The way we set up the evaluation function, the
heuristics may be combined in a variety of ways. One
further investigation would be to find closer to opti-
mal weightings of the heuristics using machine learning
techniques. Extending this idea, one could experiment
with on-line machine learning to allow the program to
adapt as it plays. It could, for example, use more de-
fensive strategies whenever the amount of pushed out
pieces is similar, but go on the offensive when it is about
to win. We have also noticed that it is quite easy for
the computer players to get stuck. This is also appears
to be a problem for people, and an interesting avenue
of research would be to explore more starting positions
that prevent defensive stalemates, as suggested by the



Wikipedia entry(WIKIPEDIA 2004).
In our implementation, setting the Level that the

computer plays at via the GUI is equivalent to setting
the search depth in plys. Something that may be in-
vestigated in the future is whether or not it is better to
look ahead and end your search on a player ply or an
opponent ply. One can imagine that for a heuristic such
as the one that awards points for pushing a ball off the
board, it may be better to look ahead to an opponent
ply, so that we don’t greedily push a ball of, only to
lose one immediately on the next turn.
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Appendix A - Contributions
We received a basic Abalone Java Applet GUI com-

plete with a computerized MinMax opponent from
Frank Bergmann. On top of this we added an Alpha-
Beta search capable opponent. We also implemented
3 new heuristic evaluation functions. For facilitating
experiments, we modified the code so that computer
opponents could play one another, and we added lost
pieces, move counter, and time spent statistics to the
UI. We also implemented a game logging feature that
records each game in side text from in the format de-
scribed by the Abalone Wikipedia entry(WIKIPEDIA
2004).

Stephen Friedman’s contributions to the project in-
cluded research into other works, implementing Alpha-
Beta pruning, implementation of the Gravity Center
and creation/implementation of the Three in a Row
heuristics, GUI layout, computer vs. computer mode,

scoring, timing, and large contributions to writing of
the report.

Beltran Ibarra’s contributions to the project include
research into other works, setting up the initial LaTeX
outline, implementation of the Keep Packed and cre-
ation/implementation of the Let’s Kill’em heuristics,
implementation of movement logging, movement count-
ing, executing and recording test runs, and large con-
tributions to the writing of the report.


