
Five-In-Row with Local Evaluation and Beam Search

Jiun-Hung Chen and Adrienne X. Wang
jhchen@cs
axwang@cs

Abstract

This report provides a brief overview of the game of
five-in-row, also known as Go-Moku, the basic struc-
ture of our program, and the heuristics we develop to
improve the efficiency of searching. The basic search
algorithm is min-max search with alpha-beta pruning.
With a sorted successor list at each level, we are able
to explore beam search which bounds the number of
searching branches and analyze the improvement.

Introduction
The game of five-in-row, also known as Go-Moku, is
a two-player game. Its rules are simple, but they lead
to a highly complex game. On a board ofn horizonal
lines andn vertical lines, two players, Black and White,
take turns to mark their own color on one of the empty
squares. Black starts the game. Once a marker is placed
on the board, it can not be moved to another square
later. A marker can not be taken over by the other player,
either. The player who creates a line of five consecutive
markers of his/her color wins. If no one creates five-in-
rwo before the board is completely filled, the game is drawn.

Five-In-Row variants
Five-in-row is a game with long history. Some professional
players claim that this game is a won game for the player
who moves first. Many variants of five-in-row exist. They
all try to restrict Black’s move to reduce the advantage
of moving first. However, none players nor existing
five-in-row programs can prove that this claim is true. Here
we briefly introduce some of the variants to this game.

1. Non-standard boards People in early days play on a
board bigger than the size of15 × 15. However, it’s be-
lieved that larger board would increase the first player’s
advantage.

2. Standard Five-In-Row This is the most popular five-in-
row these days. If a player creates a line of six or more
consecutive markers, this line does not win. A line of five
consecutive markers is the only winning pattern.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

3. Renju Renju is the professional five-in-row. It restricts
Black from winning with a line of six or more consecu-
tive markers or double threats, while does not place any
restriction on White.

We design our program to play the non-restricted
five-in-row due to its simple rules.

Previous Work

1. Heuristic Search Some previous implementation of
five-in-row employed heuristic searches. The decision is
based on maximizing the value of evaluation function.

Eval(i, j) = AttackV alue(i, j) ∗ (AttackFactor +
16)/16 + DefenseV alue(i, j) + randomfunction

The AtttackV alue is the number of lines affected
by the move, and theDefenseV alue is the number of
opponent’s lines affected if the move is taken by the
opponent. TheAttackFactor is to emphasize the move
that would lead to winning for sure.randomfunction
adds randomness to the program’s behavior.

2. Threat-Space SearchThe five-in-row programV ictoria
uses Threat-space search (Allis, van den Herik, & Hunt-
jens 1993). It is modelled to formalize the human search
strategy. It searches for the moves that can lead to a win-
ning threat sequence.
We use the idea of threats in our program to evaluate the
utility of the game after one action is taken.

Basic Structure
We implement this game using min-max search algorithm
with alpha-beta pruning. Besides alpha-beta pruning, sev-
eral heuristics are implemented to limit the search space.
The successor list is limited to the actions which are useful
to the player. We sort the successor list based on the evalua-
tion scores. The most promising action is searched first. We
then use local beam search to reduce the branch factor fur-
thermore. At the same time, to save the time of computation
of evaluation function, we evaluate each action when gener-
ating the successors instead of evaluating the state globally
at each cut-off point.

Experiments
Since we implement several techniques to speed up min-max
search, we measure the improvement at the end. The mea-
surement is based on the branch factor, which is the indica-
tor of the search space complexity. The experiments include
comparison of different search depths, and improvement of
beam search.

Heuristics
We design the evaluation function to be an estimate of the
expected utility of the game based on the local situation after
a mark is placed on the board. This is simpler than the global
evaluation on complexity of computation, but still maintains
high accuracy level. To make the estimate as accurate as
possible, we introduce the idea of threats.

Threats
In five-in-row, each winning sequence consists of one or
more threats. Threats are early indications of potential
winning. Some threats are not refutable. Having those
types of threats is equivalent as having a five-in-row. The
other threats can be refuted. The other player has to take a
defensive move or create a more powerful threat in order
not to lose. Our evaluation on the entire state relies heavily
on the type of threats and number of threats. Being able to
identify them helps us to predict the result.
We define 5 types of threats in our evaluation function.

Types of Threats
Winning Threat The threat offive-in-row 1 is the win-
ning threat. The player who creates this threat wins.

Figure 1: five-in-row threat

Non-Refutable Threat The threat ofstraight-four 2 is a
line of six squares, of which one player has occupied the
four center squares, while the two outer squares are empty.
This threat is not refutable. The other player may mark one
of the empty squares in his next move, but marking the other
one would create a five-in-a-row. In our program, whenever
such a threat appears, we claim that the player will win this
game.

Refutable Threats We call them refutable threats because
whoever creates them threatens to win, but it’s not an assured
win. Refutable threats can be saved if the opponent takes ac-
tion immediately. Assume Black creates a refutable threat.
This threat forces White to either take defensive moves or
create more powerful threats in order not to lose. White

Figure 2: straight-four threat

can force Black to defend by creating a threat/threats which
can lead to winning after less number of steps. We will
talk about these ”more powerful threats” in the section of
Category Reduction. If White doesn’t have more powerful
threats, and chooses to defend, his/her successive actions are
limited to the set of defensive moves.

1. four-in-row The threat offour-in-row 3 is a line of five
squares, of which one player has occupied the four con-
secutive squares, while the fifth square is occupied by the
other player. Unlike the above two types of threats, this is
a refutable threat. There is one possible defensive move
to the other player. He/She may mark the square on the
other side of the four consecutive squares in his/her next
move so that the four existing marks won’t grow into five-
in-row.

1

Figure 3: four-in-row threat. 1 is the defensive move

2. three-in-row The threat ofthree-in-row 4 is a line of five
squares, of which one player has occupied the three center
squares, while the two outer squares are occupied by the
other player. This is also a refutable threat. There are two
possible defensive moves. The other player may mark one
of the two empty outer squares.

1 2

Figure 4: three-in-row threat. 1 and 2 are the defensive
moves

3. broken-three The threat ofbroken-three 5 is a line of
six squares, of which one player has occupied three non-
consecutive squares of the four center ones, while the
other three squares are empty. Three possible defensive
moves can be taken by the other player. He/She may mark
one of the two outer squares or mark the middle square.

1 2 3

Figure 5: broken-three threat. 1, 2 and 3 are the defensive
moves

Category Reduction
We mentioned earlier that when the opponent has one or
more threats, the player may choose to defend or create
more powerful threats. We use category to represent the
power of each type of threats. Intuitively, if a threat re-
quires less steps to win, it is considered to be more powerful.

Category 0 five-in-row
This threat requires 0 step to win.

Category 1 straight-four and four-in-row 6
These two threats require 1 more step to win.

1

1

Figure 6: Threats in Category 1. Both need to mark square
1.

Category 2 three-in-row and broken-three 7
These two threats require 2 more steps to win.

1 2

1 2

Figure 7: Threats in Category 2. Both need to mark square
1 and square 2.

Clearly, each threat of categoryn can be refuted by a
threat of categoryn−1 for n = 1, 2. A player can choose to
attack instead of defend if he/she can create such a threat. In
Figure 8, White creates a three-in-row, which is in Category
2. Black can extend his/her existing three marks into four-
in-row, which is in Category 1, and force White into defense
because there is one more step for Black to win, while White
needs two more steps. This is also called global refutation.

Double Threats
If one player creates more than one threats, and the sets of
defensive moves available to the other player have no inter-
section, we call these threats double threats. For example, if
Black creates a three-in-row threat and a broken-three threat,

1

2 3

Figure 8: Black’s Category1 threat can refute White’s Cate-
gory2 threat

there are two possible outcomes. If they share the same de-
fensive move, this combination of threats is refutable, and
therefore is as powerful as a single threat (see Figure 9). If
their defensive moves don’t have intersection, it becomes a
non-refutable double threat (see Figure 10).

1 2 3

4

Figure 9: two threats that can be saved by one action

1 2

5

4

3

Figure 10: double threat

Evaluation function
Since a winning sequence must consist of some type of
threats, we design our evaluation function base on the
number and types of threats. This evaluation is an estimate
of the local state. When generating successive actions of
a state, we evaluate each action mainly on the new threats
that would be created if the player would take that move.
We assign different weights to each type of threats.
In addition, when there is no threat in the current state,
number of two-in-rows and single marks which could
potentially be extended into threats in successive states
become important. A line of three consecutive marks with
two different marks on both ends will not help us win the
game because it can’t grow in either direction. This line is
rather dead. We don’t assign any weight on these lines.

Eval = w1 × # five-in-row +w2 × # straight-four
+w3 × # four-in-row +w4 × # three-in-row+w5 × #
broken-three+w6 ×# two-in-row+w7 ×# single marks

The weights on non-refutable threats are much heav-
ier than the weights on refutable ones, whose weights are
substantially heavier than the non-threat lines.
This evaluation function reflects the new threats created
after taking a possible action. It is relatively simple since

it’s a local evaluation. This evaluation correctly predicts
how likely one action may lead to winning.

Reducing Searching Space
The efficiency of min-max search depends on the branch-
ing factorb. It performs a complete depth-first search of the
game tree. Letd be the maximum depth of the tree, the time
complexity of the min-max search isO(bd). The complex-
ity of seaching increases exponentially with the number of
branches at each level. We propose several ideas to cut the
branching factorb.

Eliminate actions of no real value
We can greatly improve the efficiency by reducing the
number of successors. The key to reduce search space is to
eliminate moves that are easily determined to be of no real
value. A move is not useful if the player marks far away
from any of his/her own marks and any of its opponent’s
marks.

successors = {(x1, y1)|∃x, y where (x,y) is an existing
mark s.t.|x−2| ≤ x1 ≤ |x+2| and|y−2| ≤ y1 ≤ |y+2|}

All valuable successors are within two steps from any
existing mark on the board. We only need to evaluate a very
small set of actions on the board during the initial stage
of the game. Instead of considering nearly 225 possible
actions, we reduce the number of branches to less than 30.
This is very important because it helps most if number of
branches is small at a higher level in the hierarchy.

Defensive moves vs. Global refutation
A substantial reduction comes from the determination of the
defensive moves connectd to a threat. However, instead of
choosing from these defensive moves, the player may glob-
ally refute the opponent’s threats by creating a threat with
reduced category. When the opponent has some types of
threats, the player’s actions are limited to either the set of
defensive moves or the set of global refutations. The succes-
sor list will contain only these moves since the other moves
will for sure lead to loss of the game. The branch factorb
under such a circumstance is normally less than 3.

Sorted Successor List
The effectiveness of alpha-beta pruning is highly dependent
on the order in which the successors are examined. If the
most promising action is examined first, we would be able to
prune a lot of branches. Theoretically, if we assume that the
best successor is always the first in the list, it turns out that
alpha-beta needs to examine onlyO(bd/2) nodes to pick the
best move, instead ofO(bd) for minimax. This is equivalent
to reducing the branching factor to

√
b instead ofb. (Russell

& Norvig 2003)
We sort the successors based on the evaluation of the local
utility if this action would be taken.

Local Beam Search
Because we sort the successor list on evaluation scores, the
best moves are likely to be searched first. We could bound
the branching factorb with a limit k. The search complexity
is further reduced toO(kd) (Russell & Norvig 2003).

Experimental results and Discussions
We implement our program in C++. The execution is real-
time if search depth is no more than five. However, when
we search more than five levels in the game trees, computa-
tion becomes very intensive and memory load is very high.
Hence, we limit search to be at most five levels in following
experiments.

We create an experiment to demonstrate how sorted suc-
cessor list can improve the efficiency of alpha-beta pruning.
Each test tasks consists of 100 games and we take the av-
erage. The opponent is a player who picks an action ran-
domly from the successor list. This random player gets to
pick defensive moves and global refutation moves when the
other player creates threats. Figure 11 shows the average
branching factorb with different search depthd. It turns out
that sorting does help to reduce the search space while it
still maintains similar performance (see Figures 12 and 13).
However, when we generate the successor list, we limit the
list to defensive moves and global refutation moves when
the other player creates threats. It substantially cuts the size
of the list in both experiments (sorted and unsorted list). Be-
cause threats appear often in a game, it becomes a big dis-
tortion in the measurement. We are able to show that sorting
helps to improve the efficiency to some extent. Figure 12
reveals the fact that the deeper we search in the game tree,
the more likely we win the game. Our evaluation function
tries to maximize the winning possibility for each player, so
attacking moves always get higher score. This best explains
the experimental result in Figure 13. If the search depth is
odd, the leaf node is an action for MAX. The player is more
likely to pick an attacking move, and therefore finishes the
game sooner.

We create another experiment to measure the improve-
ment of beam search. In the first test case, we search the
game tree with depth 3 using min-max search with alpha-
beta pruning. In the second test case, we put a bound on
the number of successors. The average branching factorb of
min-max search with alpha-beta pruning is 13.6, while the
the average branching factorb of beam search varies from
4.81 to 6.28. Beam search helps to cut the branching factor
b. However, it does not lower the performance, which proves
that our evaluation function accurately estimates the state
utility. In Figure 14, we demonstrate that beam search could
substantially improve the efficiency while still get high per-
centage of winning.

Conclusions and Future Work
We notice that local beam search substantially improves
the efficiency of searching when the successor list is sorted
based on an accurate evaluation function. However, it is not
easy to design such a good heuristic. In this project, we de-
sign the heuristic using the idea of threats, which models

the strategy human players use. We believe that the idea of
threats may be used on some other games with similar na-
ture, like connect-four and tic-tac-toe. Although this idea
is proved to work really well in the game of five-in-row, it
turns out to be very complicated in computation. Applying
some of the AI techniques, like reinforcement learning and
pattern database, on heuristic design may be more efficient
and promising.

Reinforcement learning has been applied in game search
design and obtained very successful results. For example,
Tesauro proposes arguably the best player in the world for
TD-Gammon (Tesauro 1992). Many other successful appli-
cations can be found in (Sutton & Barto 1998).

We plan to apply Q-learning algorithm (Russell & Norvig
2003) for five-in-row. We only evaluate a local state, which
at most is a9 × 9 binary board. Because the number of
possible states is extremely large, we dynamically keep the
states with highest frequency in our table. For each state,
there are two possible outcomes. One is to occupy the center
position and the other is not to occupy the center position.
For each action, we give some reward or punishment. An
action which can create more threats or refute the opponent’s
threats in the next state is greatly rewarded. On the other
hand, an action which allows the opponent to have a chance
to create threats is heavily punished. The degree of reward or
punishment depends on the category described inCategory
Reduction.

After learning, we find the actiona∗ for states∗ in the
successor list.

(s∗, a∗) = arg max
s∈successors,a∈A

Q∗((s, a) (1)

whereA is the set of possible actions andQ∗ is Q-value
learned from Q-learning.

Acknowledgments
We greatly thank Miao Xu for his valuable help in many
directions.

References
Allis, L.; van den Herik, H.; and Huntjens, M. 1993. Go-
moku and threat-space search. InReport CS 93-02, Depart-
ment of Computer Science, Faculty of General Sciences,
University of Limburg.
Russell, S., and Norvig, P. 2003.Artificial Intelligence: a
modern approach. Prentice-Hall.
Sutton, R. S., and Barto, A. 1998.Reinforcement Learning
An Introduction. MIT Press/Bradford Books.
Tesauro, G. 1992. Practical issues in temporal difference
learning. InMachine Learning, 257–277.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

160

depth

a
ve

ra
g

e
 b

ra
n

ch
in

g
 f

a
ct

o
r

average branching factor vs. depth

alpha−beta pruning w/ unsorted successor list
alpha−beta pruning w/sorted successor list

Figure 11: Branching factor vs. different search depth

1 1.5 2 2.5 3 3.5 4 4.5 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

depth

p
e

rc
e

n
ta

g
e

 o
f

w
in

n
in

g

percentage of winning vs. depth

alpha−beta pruning w/ unsorted successor list
alpha−beta pruning w/ sorted successor list

Figure 12: Percentage of winning vs. different search depth

1 2 3 4 5

5

10

15

20

25

depth

n
u

m
b

e
r

o
f

st
e

p
s

in
 e

a
ch

 g
a

m
e

total number of steps vs. depth

alpha−beta pruning w/ unsorted successor list
alpha−beta pruning w/ sorted successor list

Figure 13: Steps of each game vs. different search depth

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

Beam Search branching factor bound K

a
v
e

r
a

g
e

b

r
a

n
c
h

in
g

f
a

c
t
o

r Beam Search vs. normal min−max search with depth=3

beam search
normal min−max search

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

Beam Search branching factor bound K

p
e

r
c
e

n
t
a

g
e

o

f

w

in
n

in
g

Performance comparison: Beam Search vs. normal min−max search

beam search
normal min−max search

Figure 14: Branching factor with beam search

