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Abstract

Propositional satisfiability is the problem of determin-
ing if there exists an assignment of truth values for
which a given propositional formula evaluates to ’true’.
Treating this problem as a search through the space of
possible assignments, we describe two popular algo-
rithms – DPLL and WALKSAT – as instances of com-
plete and incomplete methods respectively. We examine
the effect of incorporating heuristics – reported in liter-
ature and our own – by analyzing their performance on
various types of problems. In particular, we explore us-
ing Genetic Algorithms as a viable bootstrapping mech-
anism for WALKSAT and provide supporting results.
We verify hypothesis presented in the literature on iden-
tifying hard problems. We show in our study, that while
WALKSAT works well for most satisfiable problems
and DPLL works well even for unsatisfiable ones, both
these algorithms struggle to find a solution when pre-
sented with hard satisfiable problems. This is observed
by increased run-times in case of DPLL and decreased
correctness in case of WALKSAT. Based on our results,
we present some possible directions for future work.

1 Introduction
Propositional satisfiability is the problem of determining, for
a formula of the propositional calculus, if there is an assign-
ment of truth values to its variables for which the formula
evaluates to true. SAT is a common shorthand for referring
to the problem of propositional satisfiability in conjunctive
normal form (CNF).

The first, and one of the simplest, of the many problems
which have been shown to be NP -complete, SAT holds
a central position in the study of computational complex-
ity. Consequently, an efficient SAT algorithm is a good
pointer to the potential tractability of many practical prob-
lems which are currently considered NP -hard. A related
aspect which motivates the analysis of SAT problems is the
A.I. paradigm of planning. Many problems in planning can
be “compiled” into SAT problems. Therefore, a good solu-
tion for the SAT version would assist in solving the corre-
sponding planning problem efficiently.
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Before proceeding, we provide some terminology and
definitions for the SAT problem. A formula or a sentence
is a conjunction of clauses. A clause is a disjunction of
literals and a literal is a propositional variable or its nega-
tion. Let U = u1, u2, . . . un be a set of n boolean vari-
ables. A (partial) truth assignment for U is a (partial) func-
tion T : U → {true, false}. Corresponding to each vari-
able are two literals, u and ū. A literal u (ū) is true under
T iff T (u) = true ( T (u) = false ). We call a set of
literals a clause, and a set of sequence (tuple) of clauses, a
formula or a sentence. The restriction of SAT to instances
where all clauses have length k is denoted k − SAT (Cook
& Mitchell 1997). Of special interest are problems in the
category 3− SAT 1, and for the purposes of our evaluation,
we have considered only problems of this category.

A procedure for SAT is sound if every input on which it
returns yes is satisfiable and complete if in addition, it re-
turns yes ( in finite time) on every satisfiable input. In prac-
tice, we often need a procedure to return a solution when
the input is a satisfiable formula - the search or function ver-
sion of SAT . Under the aforesaid taxonomy, therefore, the
methods attempting to solve a SAT problem fall into two
categories, complete methods and incomplete methods.
• Complete methods: Since resolution is refutation com-

plete, a simple method for resolvents, and then check if
an empty clause has been generated. Davis and Putnam
(Davis & Putnam 1960) introduced a method in which
the variables are eliminated one-by-one from the formula
by generating all possible resolvents based on a chosen
variable and then deleting all clauses mentioned in that
variable, all in one step. Each such step generates a sub-
problem with one fewer variable, but possibly quadrati-
cally more clauses. The above procedure is guaranteed
to be complete. However, most implementations typi-
cally involve setting up a search tree and traversing it in a
depth-first fashion and backtracking as required. For large
problem instances, this generates considerable space-time
overhead, which not only slows down the search but also
limits the size of problems which can be solved using
complete methods.

• Incomplete methods: As the name suggests, these meth-
1
3 is the smallest value of k for which k − SAT is NP -

complete.



ods are not guaranteed to find a satisfying solution even
if one did exist. Typically, these methods employ some
notion of a randomized local search2. In local search, an
objective function is defined over truth assignments such
that global minima correspond to satisfying assignments.
Most algorithms typically start by guessing the truth val-
ues and then try to improve the guess incrementally by
checking truth assignments within a neighbourhood of the
current one with a lower value for the objective function.
Typically, the initial guess is a random truth assignment,
the objective function is the number of clauses not satis-
fied by the current truth assignment, and the neighbour-
hood is the set of truth assignments at Hamming distance
one from the current guess.
Incomplete methods can be thought of as model finders:
they cannot prove unsatisfiability, but are often much bet-
ter than the known complete methods at finding satisfying
assignments when they exist. In addition, because they in-
volve local computations, they are faster. These attractive
features have tended to overshadow the incompleteness
factor, leading to an ever-increasing emphasis in SAT re-
lated literature – a trend which continues to-date (Selman,
Kautz, & Cohen 1996) (Selman, Kautz, & Cohen 1997).

This report is organized as follows: Sections 2 and 3 de-
scribe an instance from each of the two methods mentioned
above. In particular, we look at DPLL and WALKSAT as
instances of complete and incomplete methods respectively.
We also try various heuristics – reported from literature and
our own – and analyze their effects on the aforementioned
algorithms. In Section 4, we briefly describe concepts cen-
tral to Genetic Algorithms and illustrate how they can be
used to bootstrap DPLL and WALKSAT. In Section 5, we
describe the results of various experiments and analyze the
performance of the algorithms. Section 6 provides the con-
clusion and directions for future research. Appendix A de-
scribes the work done by each of the authors.

2 DPLL algorithm
The Davis-Putnam algorithm (DPLL) –named after its au-
thors, Davis, Putnam, Logemann, and Loveland (Davis &
Putnam 1960)– is a commonly used complete backtracking
algorithm for boolean satisfiability problems. It improves
the traditional depth first search over the variables of the
problem by using various simple search space pruning tech-
niques described below:

• Early Termination: The DPLL algorithm determines the
truth value of a sentence for a partial assignment of its
variables. In particular, if a literal is assigned to be true
any clause that contains the literal is true irrespective of
the assignment to its other variables. Furthermore, if any
clause in a sentence is false, then the entire sentence is
false, irrespective of all other clauses in the sentence. The
DPLL algorithm uses Early Termination to avoid exami-
nation of entire subtrees in the search process.

2That this is a promising approach for SAT is a relatively re-
cent discovery, made independently by Selman (Selman, Levesque,
& Mitchell 1992) and Gu (Gu 1992).

• Pure symbol heuristic: A symbol is said to be pure if it
is present in the same sign that it appears in. For exam-
ple, in the sentence (A ∨ B) ∧ (A ∨ ¬C) ∧ (¬B ∨ C)
A is a pure symbol as it always appears in the form A
and never as ¬A. According to the Pure symbol heuris-
tic, assignment of true to the pure symbol literal (i.e., the
literal form in which the literal appears) cannot make any
clauses false. Moreover, the Pure symbol heuristic can
ignore the clauses which are already true at the current
depth of the search tree.

• Unit clause heuristic: A unit clause is a clause which
has only one literal which must be assigned true in or-
der to make the clause true. In particular, this includes
all clauses that contain only a single literal or clauses
in which all but one literal have been assigned false in
the partial assignment in the search space. The unit
clause heuristic assigns all such symbols to be true before
branching on the remaining symbols. Note that assigning
a unit clause can create another unit clause. This cascade
of forced assignments is called as unit propagation. This
process represents forward chaining in horn clauses.

We shall now discuss the data structure that we used in
order to enable the DPLL algorithm to execute efficiently.

Data Structures for DPLL The data structures that we
build primarily focus on making individual operations per-
formed by DPLL more efficient. In particular, the data-
structures presented in this section enable quick identifica-
tion of clauses that are affected by assignment to the literal.
Furthermore, they aid in identification of unit and pure lit-
erals without searching through all the literals in individual
clauses. On the other hand, every backtrack operation re-
quire restoring the data structure to its original state. The
individual components of the data structure, as shown in Fig-
ure 1 are created as follows:

• Structure for each Symbol: The DPLL algorithm essen-
tially selects a literal and then propagates assigned value
to individual clauses. In doing so, each literal requires
to modify the status of each clause it occurs in. Further,
some heuristics (discussed later) require the knowledge of
the number of clauses in which the symbol occurs in ei-
ther as the literal itself or its complement. Therefore, the
data structure built for each symbol provides the informa-
tion in the form of a table lookup. Each symbol provides
the count of clauses that contain the literal and the num-
ber of clauses that contain the complement of the literal.
In addition, it provides pointers to all clauses in which the
symbol occurs. (This structure is modified as each symbol
gets assigned.)

• Structure for Clauses: The DPLL algorithm requires in-
formation such as the unassigned literals in each clause
and the status of the clause (such as, clause is satisfied or
not yet satisfied).

• Unit literal Queue: In addition to the above, we maintain
a list of unsatisfied clauses that contain a unit literal. This
allows easy look up of unit literals.
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Figure 1: DPLL Data Structures.

The following operations need to be performed during ev-
ery iteration:

1. For all clauses containing the literal, the clauses are
marked satisfied and all clauses that contain the negation
of the literal mark the symbol as deleted. If the clause
becomes a unit clause or an empty clause after the dele-
tion of the symbol the clause is pushed in the appropri-
ate queue. Further, for each clause that was satisfied, the
unsatisfied clause count maintained by its other symbols
needs to be updated.

2. This allows easy look up of unit literals. Pure literals are
easily looked up using the count structure maintained for
each symbol.

3. On backtracking all the above operations need to be re-
versed which is done by a clean up routine.

Heuristics for DPLL Although DPLL is a complete
search algorithm, its performance can be improved using
good ordering on symbols for partial assignment. We shall
now discuss a few heuristics that can be used with DPLL:

1. Random Heuristic: This heuristic selects a symbol at ran-
dom to assign value. Thus, symbols are assigned in a ran-
dom order while the completeness of DPLL is retained.

2. Greedy Heuristic: In this heuristics we choose the literal
that satisfies most number of unsatisfied clauses with the
goal of finding the solution at the earliest. This heuristic is
based on the greedy approach but retains the completeness
property of the DPLL algorithm.

3. Random Heuristic with re-starts: Although the random
heuristic does better that a static ordering on the sym-
bols it suffers when the ordering on the literals is a rel-

atively undesired one, thus exploring a part of the such
tree which is unlikely to yield a solution. In order to over-
come this drawback, we added the re-start property which
restarts the search for the solution from the beginning if
the solution is not found within a some number of steps.
However, the price for this improvement is loss of DPLL’s
completeness property, or in other words, DPLL with re-
starts may return without a solution even given sentence
has a solution.

Preliminary evaluations suggest that the Greedy heuristics
outperforms the rest. Therefore, in the interest of time and
space we shall use the performance of Greedy DPLL in our
analysis.

3 WALKSAT
WALKSAT belongs to the class of algorithms which per-
form a local search in the space of complete assignments. A
local search procedure moves in a search space where each
point is a truth assignment to the given literals. A solution
is an assignment in which each clause of the CNF formula
evaluates to true (McAllester, Kautz, & Selman 1997). Lo-
cal search has been shown to be surprisingly good at finding
completely satisfying assignments for CNF problems (Sel-
man, Levesque, & Mitchell 1992; Gu 1992). WALKSAT
starts with a randomly generated truth assignment. On every
iteration, it picks an unsatisfied clause and picks an unsatis-
fied literal in this clause to flip. It chooses randomly between
two ways to pick which symbol to flip: (1) a “min-conflicts”
step that minimizes the number of unsatisifed clauses in the
new state, and (2) “a random walk” step that picks the literal
randomly (Russell & Norvig 2003). The first corresponds
to the evaluation of an objective function. The objective
function that WALKSAT attempts to minimize is the total
number of unsatisfied clauses. The second corresponds to
a random, possibly non-optimal move that enables WALK-
SAT to escape from local minima. This randomized strategy
helps WALKSAT avoid the most common pitfall that often
plagues combinatorial problems. Algorithm 1 is the pseudo-
code representation of WALKSAT.

WALKSAT is an incomplete search algorithm, in the
sense that it may not always terminate with a satisfying as-
signment. However, WALKSAT is usually faster than its
systematic counterparts since, at any given time, it involves
flipping a single variable from an unsatisfied clause, a task
of much smaller complexity than the sub-tasks in system-
atic search. The performance of a stochastic local search
procedure critically depends upon the setting of the param-
eters that determine its likelihood of escaping from local
minima by making non-optimal moves. This characteris-
tic of a search strategy that causes it to make non-optimal
moves – moves which increase or fail to decrease the ob-
jective function even when better moves are available – is
called “noise”. Adding noise perturbs the search space and
enables the search to “jump” out of local minima. In WALK-
SAT, this “noise” parameter is the probability p. The optimal
setting for this parameter depends both upon the problem
instances and on the specfic details of the search procedure,
which may be influenced by other parameters and in general,



/* clauses = A set of clauses in propositional logic */
/* p = probability of random-walk */
/* MAX FLIPS = maximum number of flips per try */
/* MAX RESTARTS = maximum number of restarts

before terminating */
/* model = random assignment of true/false to literals

in clauses */
/* result = true if WALKSAT finds a solution, false

otherwise */
input : clauses,p,MAX FLIPS,MAX RESTARTS,model
output: bool result

WALKSAT(clauses,p,MAX FLIPS,MAX RESTARTS,model)
for i← 1 to MAX RESTARTS do

for j ← 1 to MAX FLIPS do
if model satisfies clauses then

return true ;
end
falseClause = A randomly selected clause
from clauses that is false in model ;
rNum = Generate a random number in [0, 1];
if rNum ≤ clauses then

Flip the value in model of a randomly
selected literal in falseClause ;

else
Flip whichever symbol in falseClause
maximizes the number of satisfied clauses
;

end
end

end
Algorithm 1: The WALKSAT algorithm

requires a non-trivial amount of tuning to achieve an agree-
able setting. However, the general performance of WALK-
SAT can be improved by using heuristics. A crucial step is
selecting which literal in the randomly selected unsatisfied
clause. For our experiments, we applied some heuristics in
making this selection, which are detailed below. The first
heuristic is our own and the subsequent ones have been de-
tailed in (McAllester, Kautz, & Selman 1997).

Heuristics for WALKSAT

• GREEDY : Strictly speaking, this heuristic applies to
the selection of an unsatisfied clauses from among the un-
satisfied ones. In this, instead of randomly selecting the
unsatisfied clause, the selection is performed in a greedy
manner. As soon as it is determined that the given sen-
tence is unsatisfied, the first clause that renders the sen-
tence unsatisfied is greedily chosen. This simple strategy
was generally found to be the fastest algorithm to obtain a
satisfiable solution , as our experimental results in section
demonstrate. This is a natural consequence of the greedy
choice as described.

• NOV ELTY : In this heuristic, the literal whose flip
causes the greatest reduction in number of unsatified
clauses and the second best such literal ( if it exists ) in
the selected clause are considered. If the best literal is not

the most recently flipped literal, it is selected. Otherwise,
with a probability p, the second best literal is selected, and
with probability 1− p, the first literal is selected.

• R NOV ELTY : This heuristic is similar to NOVELTY,
except in the case where the best literal is the most re-
cently flipped one. In this case, let n be the difference in
the objective function between the best and second-best
literal. There are then, four cases:

1. When p < 0.5 and n > 1, pick the best.
2. When p < 0.5 and n = 1, then with probability 2 ∗ p,

pick the second-best, otherwise pick the best.
3. When p ≥ 0.5 and n = 1, pick the second best.
4. When p ≥ 0.5 and n > 1, then with probability 2∗(p−

0.5) pick the second-best, otherwise pick the best.

The intuition for NOV ELTY and R NOV ELTY is to
avoid repeatedly flipping between the same literal back
and forth.

• SELFTUNE: This heuristic is related to obtaining the
optimal setting for the parameter p. Let us define the nor-
malized noise level of a search procedure on a given prob-
lem instance as the mean value of the objective function
during a run on that instance. This quantity has been ob-
served to be approximately constant across WALKSAT
implementations employing heuristics such as those de-
scribed above. In (McAllester, Kautz, & Selman 1997),
the authors describe a preliminary principle for setting
noise parameters based on statistical properties of search.
More specifically, many short runs of the search proce-
dure are made and the mean-to-variance ratio of unsatis-
fied clauses is recorded and subsequently, averaged over
the runs. We modifed this heuristic to arrive at a self-
tuning version of WALKSAT. The idea is to start a run
at a arbitrary noise level. Then the averaged mean-to-
variance ratio of unsatisfied clauses is obtained every few
runs. If this ratio is too low, it means we are reaching
states with low numbers of unsatisfied clauses. But, this
can also mean that the variance is also very small, and in
fact, so small, that the algorithm seldom reaches a state
with zero unsatisfied clauses. When this occurs, the al-
gorithm is stuck in a deep minima. In this situation, the
noise levels are increased. If the ratio is too high, the vari-
ance is large but the average number of unsatisfied clauses
is even larger. We would need to ”cool down” the system
and decreased the perturbations induced by the current p
setting. Therefore, the noise levels are decreased. In this
manner, by dynamically adjusting noise level, one can ob-
tain optimal performance.

4 Genetic Algorithm with Local Search
Genetic Algorithms have been to used to obtain near op-
timal solutions for many hard problems (Hao, Lardeux, &
Saubion ; Lardeux, Saubion, & Hao 2004). We use Genetic
Algorithms as a bootstrap for local search algorithms such
as WALKSAT, Tabu Search. While Genetic Algorithms aid
in quick search for near satisfiable assignment, local search
heuristics then use these solution to obtain the optimal so-
lution if it exists. Like most randomized algorithms, this
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Figure 2: Genetic Algorithms, representation and opera-
tions.

heuristic is not guaranteed to find the solution even if it ex-
ists; therefore Genetic Algorithm with local search is not a
complete search algorithm.
Characterizing Genetic Algorithms Representation:
The most obvious way to represent a solution is stream of
bits which represent individual assignment to the symbols of
the satisfiability problem. Therefore, the ith bit turned on,
represents that the ith symbol is assigned true while a turned
off bit represents that the ith symbol is assigned false. Each
string in the population thus represents a chromosome.

Fitness Function: The fitness of a chromosome can be
defined as number of clauses in given sentence that the chro-
mosome satisfies. The fitness function induces the selection
procedure on the chromosomes.

Cross over Function: The crossover function represents
the generation of new chromosomes from existing chromo-
somes. Once the parent chromosomes are selected based
on the fitness function the crossover operation is performed
to generate two children. For each gene in the chromosome
(i.e., each symbol in the assignment) we randomly exchange
each gene between the parents to create new children. Fig-
ure 2 demonstrates the crossover operation.

Mutation Function: In order to rescue Genetic Algo-
rithm from local minimas we add the Mutation function
which randomly flips a small number of genes from ran-
domly selected chromosomes from the population.
The Algorithm The initial population for a given satis-
fiability problem is randomly generated. Each successive
generation is generated by the crossover and mutation op-
erations on the current generation. The newly created gen-
eration is evaluated for fitness and the fittest chromosome
is used as a bootstrap to the local search algorithms pre-
sented in the next section. If at any point in the execu-
tion a solution is found the search terminates and the so-
lution is returned. Otherwise, Genetic Algorithm contin-
ues generating further generations and evaluating the fitness
of individual chromosomes. If no solution is found within

the MAX GENERATIONS then the search terminates
declaring that the given sentence is unsatisfiable.

Local Search Heuristics We tried two different local
search heuristics to complement Genetic Algorithm.

Tabu Search: We use tabu search to flip the symbol that
satisfies the most number of unsatisfied clauses. Whenever,
a symbol is flipped it is pushed into a fixed size tabu-list in
order to prevent flipping it back again. Using Tabu Search
prevents the local search algorithm from evaluating the same
solution over and over again by flipping the same symbols
over and over again. The intuition behind flipping the sym-
bol that satisfies the most number of unsatisfied clauses is
maximize the gain and reach the optimal solution at the ear-
liest.

WALKSAT: We bootstrap the WALKSAT local search
heuristic using the fittest chromosome of the genetic al-
gorithm generation. Using a good solution to bootstrap
WALKSAT provides a better initial solution to WALKSAT
reducing the number of flips required to find the optimal
solution. We restrict WALKSAT to use initial assignment
generated by Genetic Algorithm by setting the number of
restarts to 1.

5 Evaluation
Characterisation of Randomly Generated 3 SAT
problems
In this section we present some important characteristics for
satisfiability problems. In particular, we answer the follow-
ing questions:

• For a given clauses-to-literals ratio what fraction of prob-
lems have a solution?

• Does clauses-to-literals ratio have any bearing on the
hardness of a problem?

As the number of clauses increases the solution space be-
comes more and more constrained. The first question at-
tempts to answer if the clauses-to-literals ratio is a good in-
dicator of the complexity of the problem. In other words,
if there exists a point such that the probability of finding a
problem with a valid solution is the same as probability of
finding a problem without a valid solution then most prob-
lems near this point are such that they have very few (if
any) solutions thus making them hard problems. The second
question tries to justify the argument that problems which
are hard in theory are indeed hard in practice.

Figure 3 answers the first question about the fraction of
problems that are satisfiable for a given clauses-to-literals
ratio. In particular, we observe that for a low clauses-to-
literals ratio the SAT problem is not constrained enough so
that any randomly generated problem is satisfiable. On the
other hand at high clauses-to-literals ratio the any randomly
generated problem is highly constrained and hence mostly
unsatisfiable. Of particular interest is the region between 4.0
and 4.5 where probability that a randomly generated prob-
lem is satisfiable changes drastically. This region represents
the region of high entropy where any randomly generated
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Figure 4: Distribution of run-times of DPLL for randomly
generated problems.

problem is equally likely to be either satisfiable or unsatis-
fiable. This suggests that the satisfiable problems in this re-
gion are likely to have very few solutions and hence would
require clever heuristics rather than brute force search.

Figure 4 justifies the above conclusion by showing that
a practical complete search algorithm such as DPLL stug-
gles in the region of high entropy i.e., around clauses-to-
literals ratio of 4.3. Towards the left most of the problems
are satisfiable and hence DPLL can find a satisfiable solu-
tion quickly. On the other hand, towards the right most of
the problems are unsatisfiable and hence DPLL finds a con-
tradiction quickly, thus pruning a significant fraction of the
search space. It is around the region of high entropy that
DPLL needs to search a large portion of the search space
resulting into high running times. Thus, the region around
clauses-to-literals ratio of 4.3 represents hard problems.

Performance Characteristics
As a preliminary experiment, we com-
pared WALKSAT,R WALKSAT, WALK-
SAT SELFTUNE,DPLL,GA+TABU and WALKSAT+GA
algorithms on various 3 − CNF hard problems. The

results are given in Table 1. For each strategy, we give
the average time in seconds it took to find a satisfying
assignment, the average number of flips it required, and
R, the average number of restarts needed before finding
a solution. For each strategy, we used atleast 30 random
restarts on each problem instance. If we needed more
restarts, then we performed the restarts for a maximum of
100 times. A ”*” in the table indicates that no solution
was found after running for more than 4 hours or using
more than 100 restarts. The results are averaged over
the various parameter settings. In our case, we ran the
experiments for MAX FLIPS = 1000, 5000, 10000,
MAX RETRIES = 5, 10, 25, 1000, p = 0.2, 0.5, 0.7
and TABU list lengths ranging from 10 to 100.

The results suggest that DPLL performs poorly at find-
ing solutions to large instances of unsatisfiability problems
within a reasonable period of time. WALKSAT, inspite of
the incomplete nature of its search, performs better. The
greedy WALKSAT performs competitively with WALK-
SAT which uses the NOVELTY heuristic. We implemented
WALKSAT-SELFTUNE as a means of verifying the hypoth-
esis given in (McAllester, Kautz, & Selman 1997) that a dy-
namically parameter adjusting version would be equivalent
to a hand-crafted optimal version. While the results do not
indicate the same, we believe that the internal parameters for
changing the “noise“ factor ( p ) could be tweaked to obtain
the same. We defer this to a future version of the work.

Completeness vs Correctness
Although the execution time for WALKSAT (for large prob-
lems) is much smaller than complete search algorithms such
as DPLL, such heuristics sacrifice the important property of
completeness. In this section we study the ability of such
incomplete search heuristics to find the solution when it ex-
ists. We define, correctness of a heuristic as the fraction of
times it returns the right answer.

Clearly, correctness of a heuristic depends on the hard-
ness of the problems it attempts to solve. It might be easy
to for the most naive heuristic that randomly explores the
solution space to almost always find a solution for a sen-
tence with many solutions. On the other hand, for a problem
with just one valid solution, that best of the heuristics may
stuggle to find it. Therefore, we study the correctness of a
heuristic in the light of the hardness of the problem. While
it may not be easy to quantify the hardness of a problem
in absolute terms, previous studies (Selman, Levesque, &
Mitchell 1992) show that for randomly generated problems,
a clauses-to-literals ratio of 4.3 tends to be hard. Problems
with clauses-to-literals ratio less than 4.3 tend to have mul-
tiple solutions and hence tend to be easy. On the other hand
clauses-to-literals ratio of greater than 4.3 tend to be unsolv-
able and hence may not be of interest.

Figure 5 shows the correctness of WALKSAT and
Genetic Algorithm based heuristics for various values of
clauses-to-literals ratio. Each point is generated using 20
sets of randomly generated problems for a given clauses-to-
literals ratio. Using DPLL (a complete search algorithm) we
solve the problem completely to determine is a valid solution



Formula WGY WNY WGA WST DPLL GTU
Vars Clauses T F R T F R T F R T F R T T
10 43 0.126 8 1 0.399 31 1 0.319 4 1 0 5 1 0.339 4
50 215 9 89 1 10 128 1 26 3 1 3 24 1 882 16

100 413 74 607 1 37 221 1 69 5 1 367 1250 1 21000 473
500 2150 4934 7893 2 5888 7802 2 17000 100 9 49904 32423 4 * *

1000 4300 416598 328927 30.5 204877 138150 13.6 * 500000 100 1164388 309277 31 * *

Table 1: Performance of various algorithms on hard random 3CNF instances. WGY = WALKSAT GREEDY, WNY = WALK-
SAT NOVELTY , WGA = WALKSAT GA, WST = WALKSAT SELFTUNE, DPLL = Davis Putnam, GTU = GA+TABU. T
= Running time ( in milli-s ), F = Number of flips, R = Number of retries.
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exists. We compare the result of WALKSAT/Genetic Algo-
rithm to that of DPLL. The result is declared correct if the
heuristic agrees with DPLL on the solvability of the prob-
lem. Note that the heuristics need not return the same satis-
fiable assignment as DPLL. Moreover, the case that DPLL
is not able to find a solution while heuristics find one can-
not arise because DPLL considers all possible candidate so-
lutions. The figure illustrates that while incomplete search
heuristics are mostly correct for easy problems they may re-
turn incorrect results for hard problems.

Table 2 illustrates that the correctness of WALKSAT is
a strong function of its paramter values. Infact, the correct-
ness of WALKSAT is greatly improved by increasing the
number of flips and the flip probabilities. Clearly this rep-
resents the trade-off between time and correctness. This can
be attributed to the fact that increasing the number of flips
increases the number of local solutions explored by WALK-
SAT while increasing the flip probability increases the prob-
ability of deterministic choice thus preventing WALKSAT
to ”walk” away from the exact solution.

Effect of Problem Size
In this section, we show that increase in problem size has
a tremendous impact on various SAT solving algorithms.
In particular this impact may be exhibited by various al-
gorithms in two different ways. For complete search al-
gorithms such as DPLL, increase in problem size results

Flips 1000 5000 9000
Probability

0.2 0.7 1.0 1.0
0.5 0.9 1.0 1.0
0.7 1.0 1.0 1.0

Table 2: Effect of parameters on the correctness of WALK-
SAT at clauses to literals ratio of 4.25
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Figure 6: Effect of increasing problem size on the runtime
of DPLL

in non-linear increase in running times. Heuristics such as
WALKSAT which execute in bounded number of iterations
may show this non-linearity by decrease in correctness.

Figures 6 and 7 show the effect of increased problem
size on the run times of DPLL and WALKSAT at clauses-
to-literals ratio of 4.3. While WALKSAT shows more of a
linear worst case increase in runtime, DPLL shows shows
a non-linear increase. The linear increase in WALKSAT
is owing to the linear increase in problem size while that
of DPLL is dues to an exponential increase in the size of
search space. On the other hand, for a fixed parameter value
WALKSAT begins to show decrease in correctness for larger
problems, as shown in Figure 8.

Comparison of Heuristics
We shall now address the question on what heuristic should
be used to solve a given set of satisfiability problems? Of-
course, our arguments are subject to our implementation of



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80

Ti
m

e 
ta

ke
n 

W
al

kS
at

 (i
n 

se
c)

Problem Size (Literals)

Randomly Generated Problems

Figure 7: Effect of increasing problem size on the runtime
of WALKSAT
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Figure 8: Effect of increasing problem size on the correct-
ness of WALKSAT
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Figure 9: Distribution of run-times for WALKSAT on ran-
domly generated 60 symbol problems.
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Figure 10: Distribution of run-times for Genetic Algorithm
on randomly generated 60 symbol problems.

various heuristics. While we do not argue that our imple-
mentations for various heuristics is the most efficient imple-
mentation, we took great care to optimize various data struc-
tures used by the algorithms. Furthermore, all the heuristics
were programmed in C, and compiled using gcc 3.3.3. For
our experiments, we used Linux 2.6.7 running on a Dell Op-
tiPlex GX400 with a 1.7 GHz Pentium 4 processor, one GB
of memory. While running the experiments, no other appli-
cations were active on the system. We determined that the
memory requirements never exceeded the amount of physi-
cal memory available on the system.

Figures 4, 9, and 10 show the distribution of runtimes on
randomly generated 60 symbol problems for DPLL, WALK-
SAT, and Genetic Algorithm respectively. A striking differ-
ence to note is that while the runtimes for DPLL reduces
after the hard problem region (i.e., after clauses-to-literals
ratio of 4.3) the same is not true for partial search heuris-
tics such as WALKSAT and Gentic Algorithms. The reason
for this difference is owing to the number of unsatisfiable
problems. While DPLL finds a contradition and terminates
declaring no solution exists, WALKSAT and Genetic Algo-



rithms continue running for maximum number of tries be-
fore they arrive at the same conclusion. This shows that
while partial search heuristics may be good to solve prob-
lems which are guaranteed to have a solution, they are not
good for highly constrained problems. Another interesting
point to notice is that even though the number of retries re-
main the same as the clauses-to-literals ratio increases the
run time also increases towards the right of the hard prob-
lem region. This increase is owing to additional work that
needs to be done to evaluate more clauses for every symbol
assignment.

Figure 9 exhibits a range of different clusters of run-times
for various values of maximum number of flips.

In summary, the choice of algorithm to use is highly de-
pendent on the clauses-to-literals ratio. In particular for low
clauses-to-literals ratio, WALKSAT works very well as it
finds a solution quickly without much error. For highly con-
strained problems DPLL works well since it generates a con-
tradiction quickly. However, at the high entropy region , the
choice of algorithm is based on the trade-off between run-
time and the correctness of the output.

6 Conclusions and Future Work
In this report, we have presented an overview and perfor-
mance analysis of two popular approaches to propositional
satisfiability problems – DPLL and WALKSAT. Both have
their pro and cons, naturally arising out of the trade off be-
tween a complete and incomplete nature of searches they
perform. Our experimental results confirm with some of the
conjectures posed in literature. In addition, we have also
proposed new heuristics whose performance was found to
be competitive with existing heuristics.

Given the dynamic ranges of parameter settings which
were found to be optimal for the aforementioned two cat-
egories of problems, statistical measures and techniques
which allow the algorithm to dynamically adapt the parame-
ter settings are particularly appealing (McAllester, Kautz, &
Selman 1997). Such algorithms would also enable a much
more uniform platform for comparing the performances of
these algorithms.

During the course of our experiments, we have observed
that while a heuristic may be motivated by shortcomings
present in existing approaches, incorporating the heuristic
may incur a performance overhead. In some cases, this over-
head has not been adequately compensated by improvement
in performance. In particular, we found that the simplest
heuristic to apply – the greedy heuristic of WALKSAT per-
formed better than other heuristics. We believe that a ‘lean-
and-mean’ approach for designing heuristics can help im-
prove the performances of search algorithms.

We explored the possibility of bootstrapping the search by
using techniques which generate a good initial assignment.
In our case, we used a Genetic Algorithm to find the pur-
ported good ’seed’ with which to commence the search, but
there was no observed improvement, owing to the fact that
we did not incorporate any optimized heuristics for Genetic
Algorithm itself. However, we believe that if the bootstrap-
ping is done intelligently, it can boost the speed of existing

algorithms greatly. This could be a particularly fruitful di-
rection for future research in search techniques for proposi-
tional satisfiability.

The experiments discussed in this report were performed
on randomly generated 3 − CNF problem instances. It
would be interesting to observe the performance of various
heuristics for other kinds of CNF problems. Another po-
tential test set for future work employing the heuristics men-
tioned here could be planning problems which have been
compiled into SAT problems. In our experiments, we have
not compared the performance with existing implementa-
tions since we would have wanted to discuss the results not
just by comparing running times but also by a qualitative
explanation of the tweaks implemented therein. We believe
that would lead to a better understanding of the method,
however, time and space constraints have necessitated the
deferment of such a study to future.

A Division of Work
• DPLL and various heuristics, bootstrapping algorithm for

GA - Gaurav
• WALKSAT and various heuristics - Ravi
• SAT Generators, Scripts to run programs in batch mode -
Gaurav, Ravi

• Literature Survey - Gaurav,Ravi
• Project Report - Gaurav,Ravi
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