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Abstract: We define and explore a general class of two-
player board games. Members of this class are defined by
the dimensionality and size of the board, the allowable moves
and the length of a a run required to win. We evaluate and
compare three heuristics which can be applied to any member
of this class. We have implemented a general game-playing
framework, referred to as Connect-Toe which can simulate all
games in this class and which can be used for further investi-
gation.

1 Introduction

We have defined a general class of games to study. This class
contains two board games which have already been studied
extensively, Tic-Tac-Toe [2] and Connect Four. Researchers
have developed specialized heuristics to evaluate incomplete
boards for both of these games [7]. We believe that a general
heuristic could be developed and applied to all games in this
more general class of board games.

In games, where the search tree is potentially very large
(both in depth and branching factor) a heuristic which can
evaluate incomplete game states is useful. With such a heuris-
tic a Minimax search algorith can be both targeted (to search
directions that show the best potential first) and shortened (re-
cursive search can return before reaching a leaf of the search
tree).

We define three very simple heuristics,Optimistic, Pes-
simisticandUndecided, described in Section 3 and evaluate
and compare their efficacy on a broad class of board games.

2 Class of Board Games

The class of games which we study for this project contains
board games which are played by two players alternately
dropping their own tokens into the board. When a token is
dropped into some slot, it falls until it hits either another to-
ken or the bottom of the board. The first player to create a
designated length string of his own tokens wins.

The games in this class vary according to several attributes:

dimensionality Dimensionality of the game board

size Size of board in each dimension (greater than or equal
to 1)

winning run length Length of run (in any direction) re-
quired to win

1st Dimension

3rd Dimension

2nd Dimension

Figure 1:Classic Tic Tac Toe as a class member.

open facesAn open face is a face through which pieces can
be dropped into the board. Once inserted a piece will fall
either to the bottom of the board, or until it is blocked
by another piece already in the board. For example, in
Connect Four, the grid is 7x6x1 with only one 7x1 face,
1, open. In Tic-Tac-Toe the grid is 3x3x1 with one 3x3
face, 2, open. See Figures 1 and 2 for illustrations. The
shaded board faces are the open faces. Each face id is a
signed integer. The magnitude indicates the dimension
along which a piece will fall, and the sign indicates the
direction,upwardsor downwards. This attribute restricts
the allowable moves.

We first focus our heuristic comparison on Tic Tac Toe and
Connect Four. Because this class of games is defined by so
many attributes, it makes sense to first study them one at a
time, instead of taking them all on at once. After first looking
at the special cases of Tic Tac Toe 5 and Connect Four 6, we
focus our heuristic comparison on varying three dimensional
board sizes 7. For the purposes of this paper, we have com-
bined these two variants into testing the results from varying
sizes of cubes. In Section 8 other potentially interesting and
relevatory studies are discussed.



1st Dimension

3rd Dimension

2nd Dimension

Figure 2:Connect Four as a class member.

3 Heuristics

The heuristics used in this study were designed to be simple.
When presented with a complete board, determined by either
the board being full, or a win for one of the players, all of
the heuristics returned a +1 for a win, 0 for a draw and -1
for a loss. The variation betweenOptimistic, Pessimisticand
Undecidedheuristics developed from the game having to re-
solve the value of an unfinished/undecidable board resulting
from a depth control added to decrease search time.Opti-
mistic, when faced with an undecidable board, would choose
to mark it as a possible winning move, +1.Pessimisticwould
choose a loss, -1, andUndecidedwould choose a draw, 0.

4 Methodology

For this study we implemented a general representation of all
board games in our class. With this is a general Minimax
search algorithm which can use each of the three heuristics.
Our framework also supports arandomgame player, which
makes all of its moves at random. For each game configura-
tion we evaluate we simulated 10 games. A bigger sample set
would have been ideal, but time concerns restricted us to just
10 runs of each game.

5 Special Case: Tic Tac Toe

First we examine the case of Tic Tac Toe. As we seek to
evaluate the efficacy of our three simple heuristics, we look
at how they perform as the search depth varies. We expect to
see interesting trends since the search depth determines how

TicTacToe: Heuristics for A
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Figure 3: Player A’s winning percentage at Tic Tac Toe broken
down by heuristic.

early the heuristic is applied. The farther from the leaves the
heuristic is applied the more of the search it influences. Figure
3 shows how the winning percentages of each heuristic are
effected by search depth.

We see that relatively large (though inconsistent) differ-
ences between the heuristics with small search depths dimish
as the search deepens. We explain this trend in the following
way. When a board is empty, every possible game outcome
is possible. As moves are made and the board fills, the set
of possible outcomes shrinks. If the heuristic is applied when
this set is small, it has less opportunity to affeect the game
outcome.

The early part of this graph is difficult to decipher. There
are not any clear trends. This could be due to our relatively
small sample size, and that with more experiments the vari-
ation would settle and a more clear trend would emerge. It
is also possible that looking at the data in more detail might
reveal more. In Figure 4 we show the winning percentage
for each of the heuristics when playing against each type of
opponent. The ’R’ opponent is aRandomopponent.

Most noticable in this data is the “sweet spot” that thePes-
simisticheuristic seems to have with searches 3 deep. How-
ever, we hesitate to trust the results. As shown in Figure 5 as
the search deepens more and more games reach draws. Be-
cause the winning percentage is calculated as the number of
games player A wins divided by the number of games either
player won, the sample set is increasingly small. Starting with
an already small sample set, the shrinking due to elimination
of increasing numbers of draws only exacerbates the problem.

6 Special Case: Connect Four

Let us now examine our second special case, Connect Four.
There the game player has a larger grid to contend with (6x7)



Optimistic Heuristic for A
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Pessimistic Heuristic for A
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Undecided Heuristic for A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

Search Depth

A
's

 W
in

n
in

g
 P

e
r
c
e
n

ta
g

e

O

P

R

U

Figure 4:Breakdown of winning percentage at Tic Tac Toe for each
strategy, by opponent.

Tic Tac Toe: Decided Games
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Figure 5:Number of Tic Tac Toe games that do not end in draws,
by search depth.

Connect Four: Heuristics for A
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Figure 6: Player A’s Connect Four winning percentage broken
down by heuristic

yet there are fewer legal moves (seven compared to nine for
Tic Tac Toe).

The experiments from 5 were repeated for the Connect
Four. Just as before, we expected to see interesting trends
dependent on the search depth. Figure 6 shows how the win-
ning percentages of each heuristic is effected by search depth.

Where with Tic Tac Toe we had little evidence for one
heuristic outperforming the others, in the Connect Four case,
we are able to find a more likely winner. The best perfor-
mance is given byUndecidedwith an average 74% winning
percentage, followed byOptimisticwith an average of 60%
andPessimisticat 58%. As further support, we can see in Fig-
ure 7 thatUndecidedtends to have at least 5% fewer losses
than any other heuristic.



Optimistic Heuristic for A
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Pessimistic Heuristic for A
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Undecided Heuristic for A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

Search Depth

A
's

 W
in

n
in

g
 P

e
r
c
e
n

t
a
g

e

O

P

R

U

Figure 7:Breakdown of winning percentage for Connect Four for
each strategy

Growing cubes: Heuristics for A
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Figure 8:Player A’s winning percentage at Cubic Tic Tac Toe bro-
ken down by heuristic, for increasing cube sizes.

7 Increasing Cube Sizes

As another test of our heuristics abilities, we experimented
with 3D sized cubes while varying the size of the cube and
matching the winning run length to the size of a cube side. We
expect to see the diference of the cube size not to cause any
change in performance of our heuristics. Although the search
tree is much larger for each increasing size of cube, due to the
increasing size of run length necessary to win, the problem is
basically the same. As such, this experiment, in part checks
whether our heuristics are scalable. Figure 8 shows how the
winning precentages of each heuristic are effected by cube
size.

We see first of all the inconsistency that all heuristics have
a 100% winning ratio when applied to cubes of size 2x2x2.
Such a result is expected, due to the size 2 3D cube being a
generic case, since no matter what the opponent’s next move
may be, any next move that our player makes, forces an in-
stant win for our player.

As we examine the sizes of cubes greater than 2, the hy-
pothesis of scalability is realized. With slight variation, most
likely a result of using a small sample, the winning percent-
age of any of our heuristics remains constant through the in-
creases in cube size. We can observe thatOptimistic has
not performed nearly as well as eitherPessimisticor Unde-
cided. Additionally, we have further proof ofUndecidedout-
performing the other two of our heuristics. Notice that the
variation ofUndecidableis less than 2%, Figure 9.

Let us now examine Figure 8.Undecidedoutperforms the
other heuristics by losing the least percentage of games to its
opponents, including itself, withPessimisticas a close sec-
ond.Optimisticplays poorly and barely outperformsrandom
play.



Optimistic Heuristic for A
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Pessimistic Heuristic for A
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Undecided Heuristic for A
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Figure 9:Breakdown of winning percentage at Cubic Tic Tac Toe
for each strategy, by opponent, for increasing cube sizes.

8 Future Work

There are many future studies that could be done in this vein.
The framework we have implmenented is extremely general,
and in this work we have evaluated only a small sliver of the
class of games it is capable of representing. As mentioned
in Section 2 the class is highly multidimensional. That is to
say game members can vary along many dimensions: board
dimensionality, board size, the length of a winning run, the
number and orientation of open faces. The basic heuristics we
describe in this work could be evaluated along one or more of
these dimensions.

We also believe that a more intelligent heuristic could be
developed to more precisely evaluate an incomplete board
state. Because the rules of the game are fairly regular, a player
could find existing runs and depending on how long they are
and if it is possible to extend them to winning length, make a
more precise valuation of an incomplete board.

9 Conclusion

The Connect-Toe program designed to facilitate our experi-
ments on the Tic-Tac-Toe and Connect Four class games has
been built to play all games designed in Section 2. We ex-
amined how three simple heuristics perform against one an-
other and against random play. With limited feedback, due
to time constraints, we were able to discern that theUnde-
cidedheuristic tended to outperform the other heuristics. Our
framework will support more thourough exploration both of
the designated class of board games and the space of possible
heuristics.
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Data Tables



Tic Tac Toe

Search depth O P U

1 0.458333333 0.857142857 0.628571429
2 0.782608696 0.567567568 0.913043478
3 0.46875 0.958333333 0.695652174
4 0.826086957 0.764705882 0.85
5 0.722222222 0.764705882 0.782608696
6 0.789473684 0.653846154 0.708333333
7 0.652173913 0.75 0.727272727
8 0.705882353 0.764705882 0.6875

Table 1: Source data for Figure 3.

Search depth O P R U

1 0.2 0.428571429 0.8 0.428571429
2 0.75 0.714285714 1 0.5
3 0.444444444 0.125 0.875 0.428571429
4 0.333333333 0.857142857 1 0.8
5 1 0 1 0.4
6 1 0.5 1 0.5
7 0.714285714 0.5 1 0
8 #DIV/0! 0.333333333 1 0.666666667

Table 2: Source data for Optimistic heuristic in Figure 4

Search depth O P R U

1 0.875 0.666666667 0.888888889 1
2 0.222222222 0.8 0.9 0.25
3 1 1 1 0.75
4 0.6 0.5 1 0.5
5 0.666666667 0.5 1 0.5
6 0.5 0.428571429 1 0.5
7 0.75 1 0.857142857 0.4
8 0 0.333333333 1 0.75

Table 3: Source data for Pessimistic heuristic in Figure 4

Search depth O P R U

1 1 0.3 0.666666667 0.625
2 0.5 1 1 0.8
3 0.714285714 0.75 1 0.2
4 0.666666667 0.833333333 1 0.666666667
5 1 0.666666667 1 0.571428571
6 0.571428571 0.75 0.875 0.6
7 0.666666667 0.571428571 1 0.333333333
8 0.5 0.333333333 1 0

Table 4: Source data for Undecided heuristic in Figure 4



Search depth Decided Games

1 94
2 83
3 79
4 60
5 58
6 69
7 65
8 50

Table 5: Source data for Undecided heuristic in Figure 4



Connect Four

Search depth O P U

1 0.35 0.65 0.675
2 0.818181818 0.3 0.724137931
3 0.536231884 0.8 0.735294118
4 0.530612245 0.625 0.828571429
5 0.735294118 0.583333333 0.735294118

Table 6: Source data for Figure 6.

Search depth O P R U

1 0.4 0.4 0.6 0
2 0.823529412 0.9 1 0.222222222
3 0.8 0.1 0.9 0.111111111
4 0.375 0.230769231 1 0.7
5 0.571428571 0.875 0.9 0.555555556

Table 7: Source data for Optimistic heuristic in Figure 7

Search depth O P R U

1 1 0.2 0.8 0.6
2 0.1 0.3 0.6 0.1
3 1 0.7 1 0.6
4 0.3 0.5 1 0.7
5 0.5 0.625 0.9 0.25

Table 8: Source data for Pessimistic heuristic in Figure 7

Search depth O P R U

1 0.7 0.6 0.8 0.6
2 0.333333333 0.8 0.9 0.75
3 0.9 0.6 1 0.333333333
4 0.888888889 0.857142857 0.9 0.666666667
5 0.5 0.625 1 0.75

Table 9: Source data for Undecided heuristic in Figure 7



Growing Cubes

Search depth O P U

2 1 1 1
3 0.425 0.75 0.775
4 0.425 0.75 0.769230769
5 0.35 0.815789474 0.757575758

Table 10: Source data for Figure 8.

Search depth O P R U

2 1 1 1 1
3 0.7 0.1 0.9 0
4 0.7 0 1 0
5 0.7 0 0.7 0

Table 11: Source data for Optimistic heuristic in Figure 9

Search depth O P R U

2 1 1 1 1
3 0.9 0.7 1 0.4
4 1 0.6 1 0.4
5 1 0.7 1 0.5

Table 12: Source data for Pessimistic heuristic in Figure 9

Search depth O P R U

2 1 1 1 1
3 1 0.4 1 0.7
4 1 0.6 1 0.444444444
5 1 0.3 1 0.666666667

Table 13: Source data for Undecided heuristic in Figure 9


