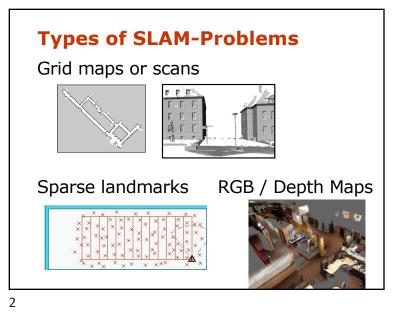


Problems in Mapping

- Sensor interpretation
 - How do we extract relevant information from raw sensor data?
 - How do we represent and integrate this information over time?

• Robot locations have to be known

• How can we estimate them during mapping?



Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions

4

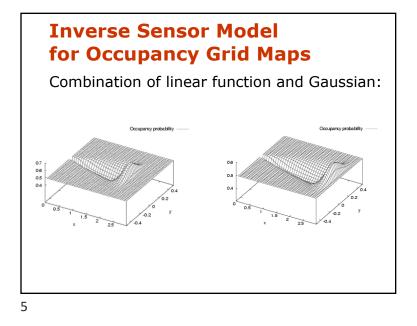
• Occupancy of individual cells is independent

1

$$Bel(m_t) = P(m_t | u_1, z_2 ..., u_{t-1}, z_t)$$

= $\prod_{x,y} Bel(m_t^{[xy]})$

• Robot positions are known!



Alternative for Lidar: Counting

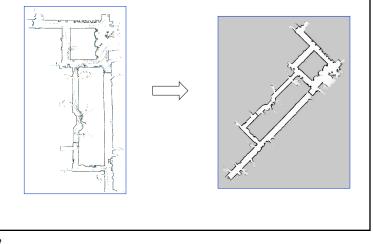
- For every cell count
 - hits(x,y): number of cases where a beam ended at <x,y>
 - misses(x,y): number of cases where a beam passed through <x,y>

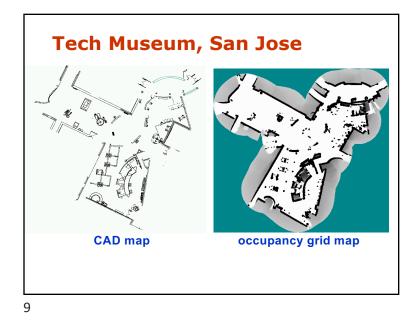
$$Bel(m^{[xy]}) = \frac{hits(x, y)}{hits(x, y) + misses(x, y)}$$

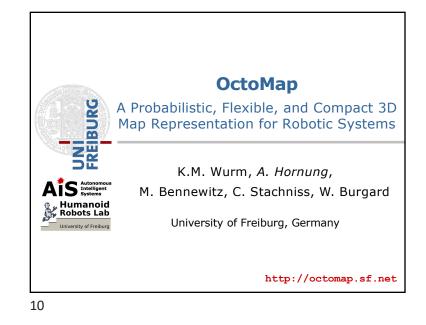
• Assumption: $P(occupied(x, y)) = P(reflects(x, y))$

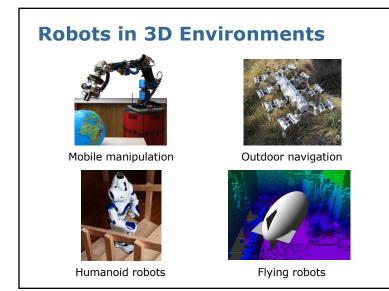
6

Occupancy Grids: From scans to maps









3D Map Requirements

- Full 3D Model
 - Volumetric representation
 - Free-space
 - Unknown areas (e.g. for exploration)
- Can be updated
 - Probabilistic model
 - (sensor noise, changes in the environment)
 - Update of previously recorded maps
- Flexible
 - Map is dynamically expanded
 - Multi-resolution map queries
- Compact
 - Memory efficient
 - Map files for storage and exchange
- 12

Map Representations

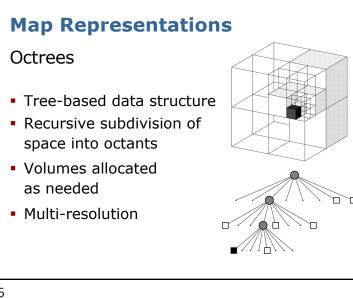
Pointclouds

- Pro:
 - No discretization of data
 - Mapped area not limited

Contra:

- Unbounded memory usage
- No direct representation of free or unknown space

13



Map Representations

3D voxel grids

- Pro:
 - Probabilistic update
 - Constant access time

Contra:

- Memory requirement
 - Extent of map has to be known
 - Complete map is allocated in memory
- 14

Map Representations

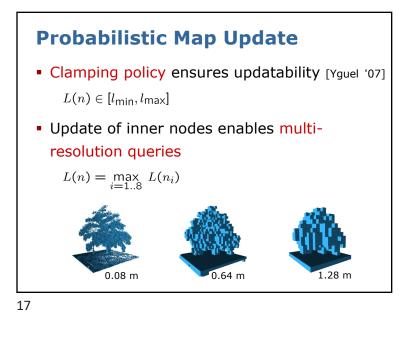
Octrees

- Pro:
 - Full 3D model
 - Probabilistic
 - Flexible, multi-resolution
 - Memory efficient

Contra:

 Implementation can be tricky (memory, update, map files, ...)

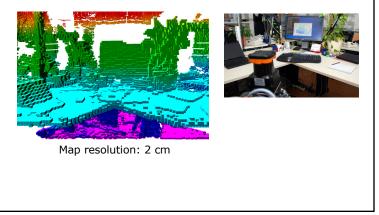
Open source implementation as C++ library available at http://octomap.sf.net

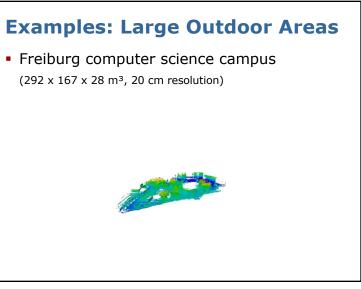


<text>

Examples

Cluttered office environment





<section-header>

Memory Usage

Map dataset	Mapped	Resolution	Memory consumption [MB]			File size [MB]	
	area [m ³]	[m]	Full grid	No compr.	Lossless compr.	All data	Binar
FR-079 corridor	$43.8\times18.2\times3.3$	0.05	80.54	73.64	41.70	15.80	0.6
		0.1	10.42	10.90	7.25	2.71	0.1
Freiburg outdoor	$292\times167\times28$	0.20	654.42	188.09	130.39	49.75	2.0
		0.80	10.96	4.56	4.13	1.53	0.0
New College	$250\times161\times33$	0.20	637.48	91.43	50.70	18.71	0.9
(Epoch C)		0.80	10.21	2.35	1.81	0.64	0.0

21

CSE-571 Robotics SLAM: Simultaneous Localization and Mapping Many slides courtesy of Ryan Eustice, Cyrill Stachniss, John Leonard

The SLAM Problem

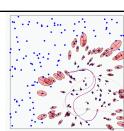
A robot is exploring an unknown, static environment.

Given:

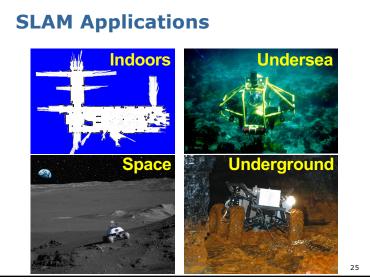
- The robot's controls
- Observations of nearby features

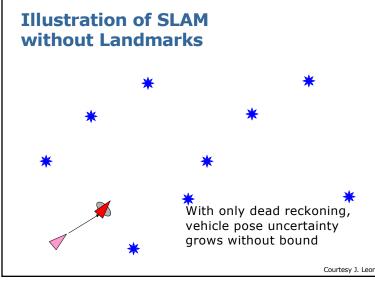
Estimate:

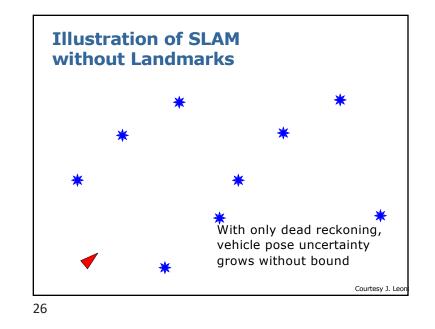
- Map of features
- Path of the robot

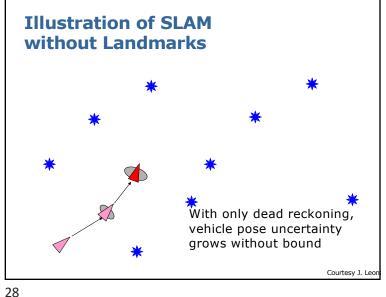


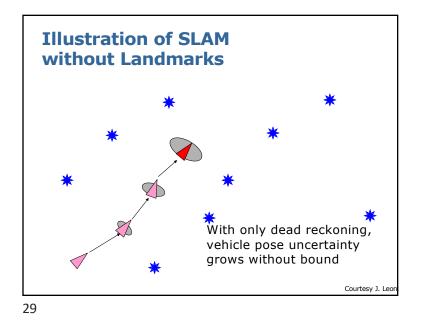
24

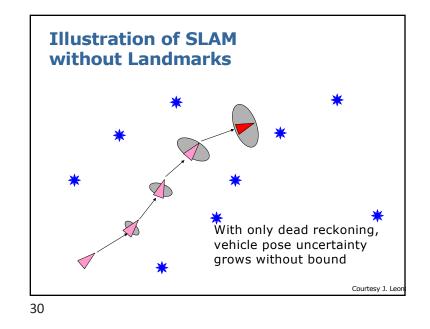


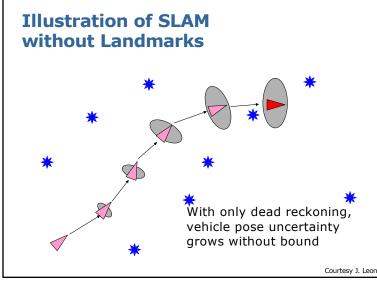


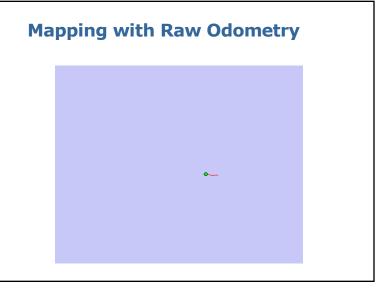


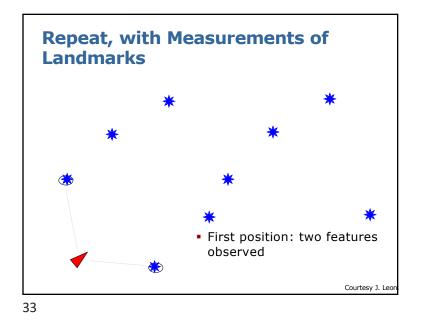


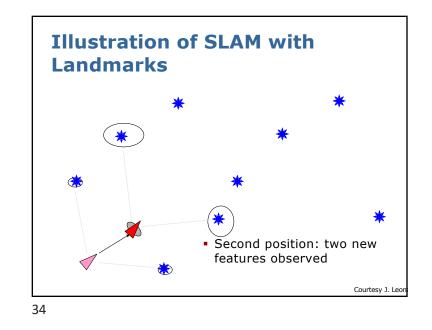


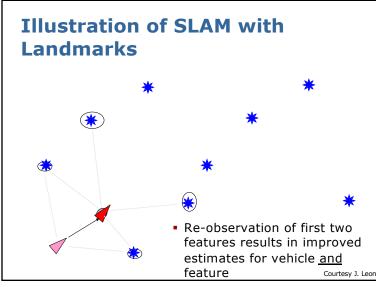


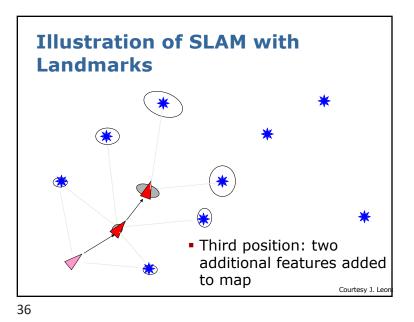


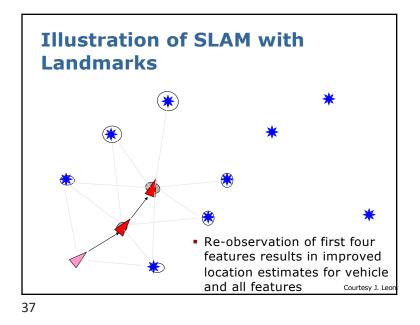


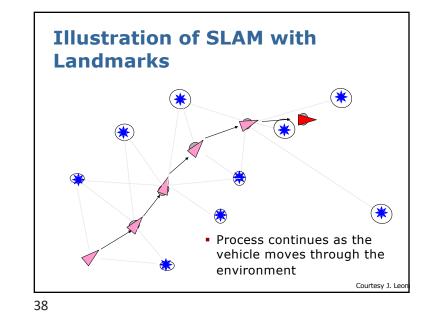


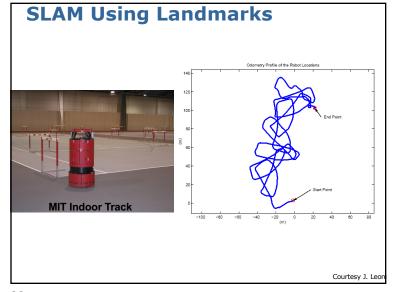




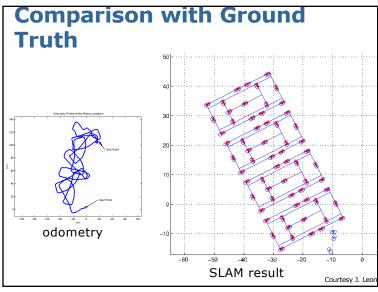






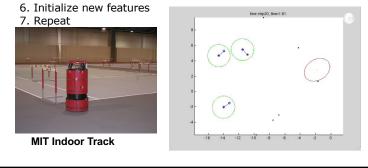






SLAM Using Landmarks

- 1. Move
- 2. Sense
- 3. Associate measurements with known features
- 4. Update state estimates for robot and previously mapped features
- 5. Find new features from unassociated measurements

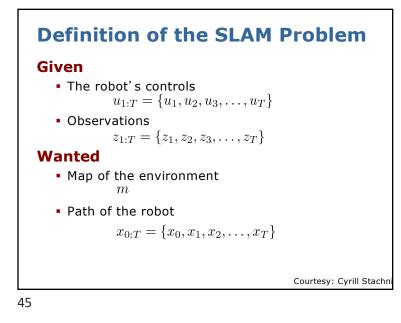


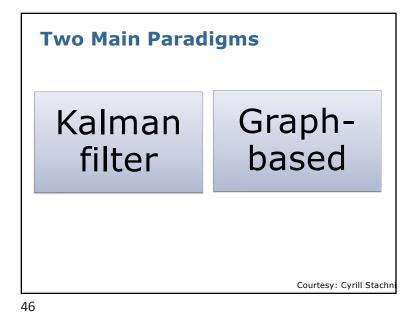
42

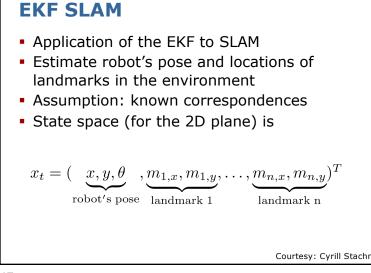
Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-and-egg problem

44

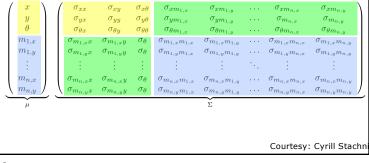


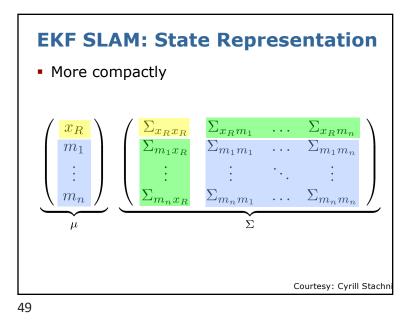




EKF SLAM: State Representation

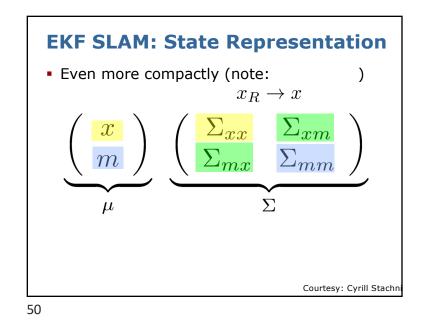
- Map with n landmarks: (3+2n)-dimensional Gaussian
- Belief is represented by

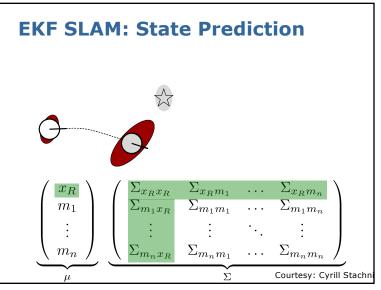




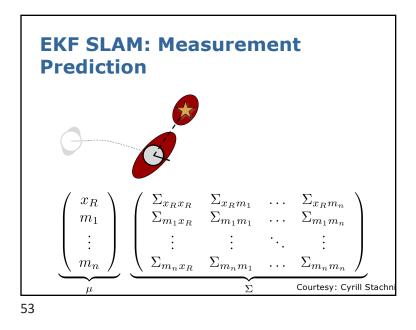
EKF SLAM: Filter Cycle

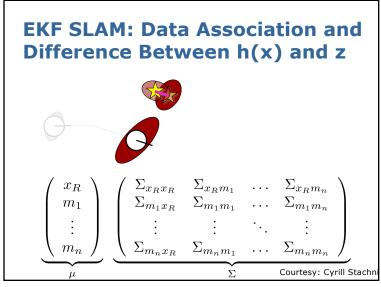
- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

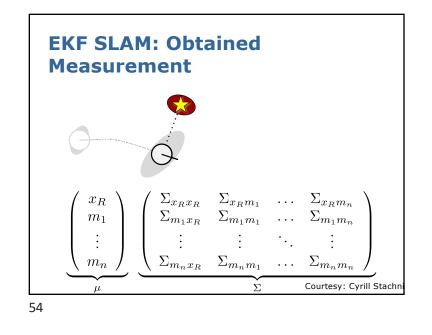


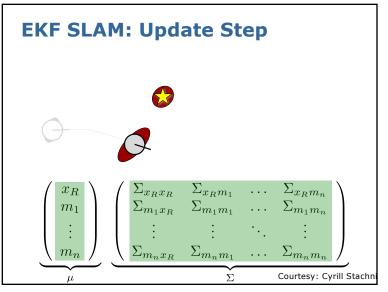


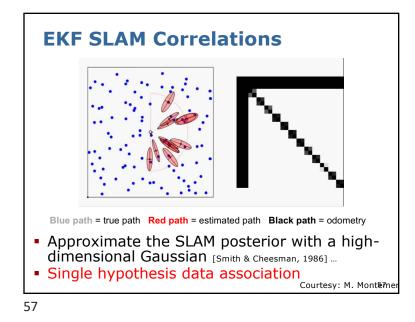
Courtesy: Cyrill Stachr

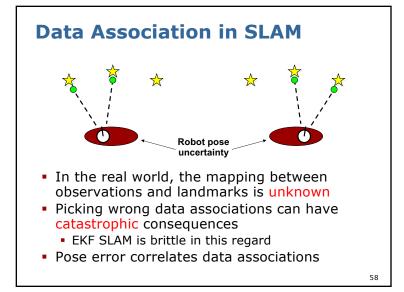


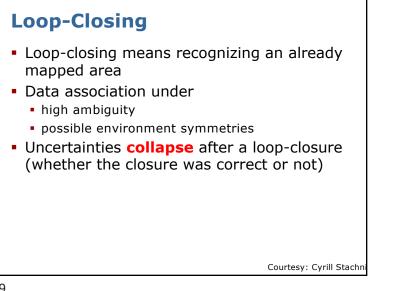


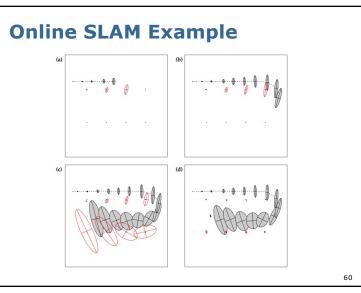


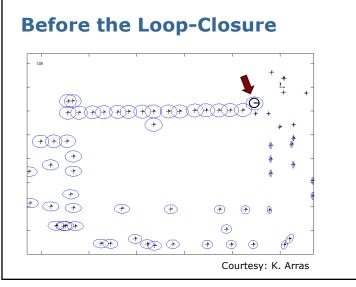


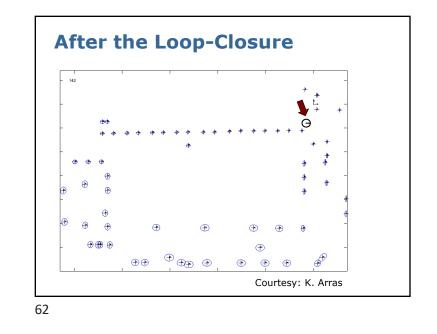


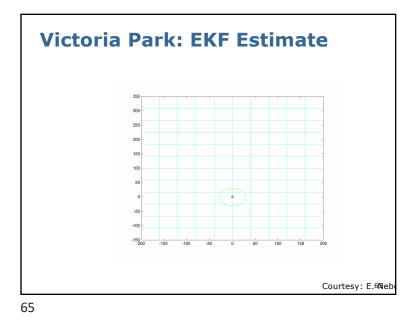


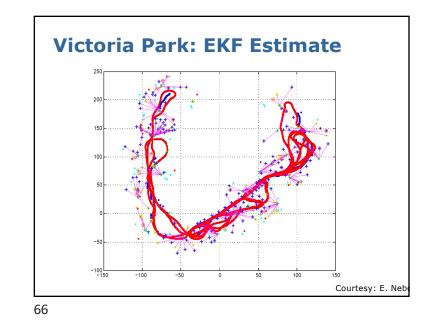


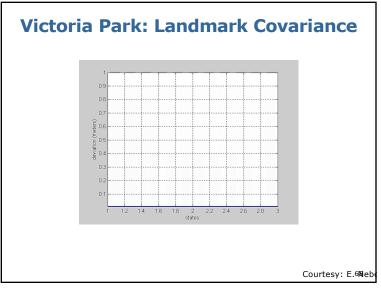












Andrew Davison: MonoSLAM

69

EKF Algorithm 1. Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): Prediction: 2. 3. $\overline{\mu}_t = g(u_t, \mu_{t-1})$ $--- \overline{\mu}_t = A_t \mu_{t-1} + B_t u_t$ 4. $\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ $\longleftarrow \qquad \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$ 5. Correction: 6. $K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1} \quad \longleftarrow \quad K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$ 7. $\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$ $(\mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t))$ 8. $\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$ \leftarrow $\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$ 9. Return μ_t, Σ_t $H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$ 71

EKF SLAM Summary

- Quadratic in the number of landmarks: O(n²)
- Convergence results for the linear case.
- Can diverge if nonlinearities are large!
- Have been applied successfully in largescale environments.
- Approximations reduce the computational complexity.

70

Literature

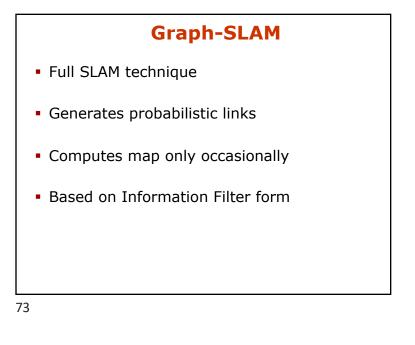
EKF SLAM

- "Probabilistic Robotics", Chapter 10
- Smith, Self, & Cheeseman: "Estimating Uncertain Spatial Relationships in Robotics"
- Dissanayake et al.: "A Solution to the Simultaneous Localization and Map Building (SLAM) Problem"
- Durrant-Whyte & Bailey: "SLAM Part 1" and "SLAM Part 2" tutorials

Courtesy: Cyrill Stachn

70

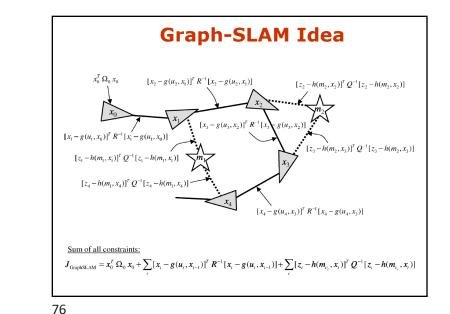
72

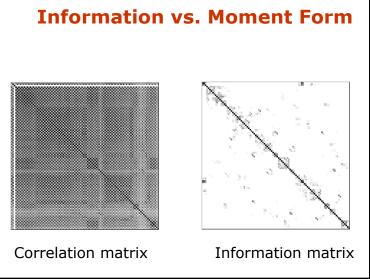


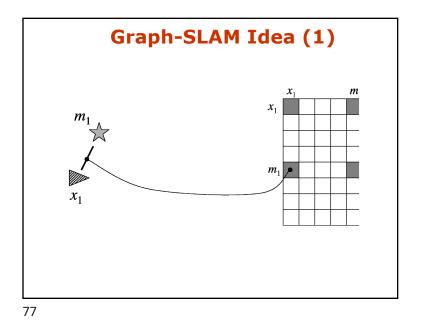
Information Form

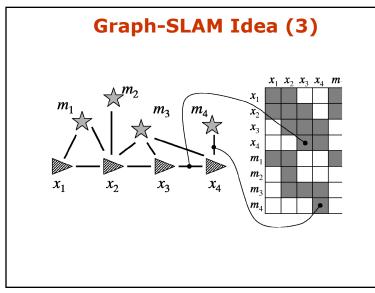
- Represent posterior in canonical form
 - $\Omega = \Sigma^{-1}$ Information matrix
 - $\xi = \Sigma^{-1} \mu$ Information vector
- One-to-one transform between canonical and moment representation $\Sigma = \Omega^{-1}$ $\mu = \Omega^{-1} \xi$

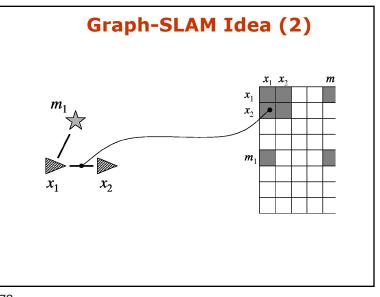
74

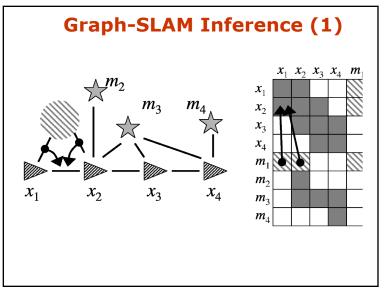


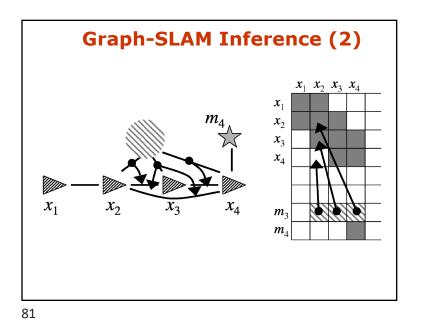




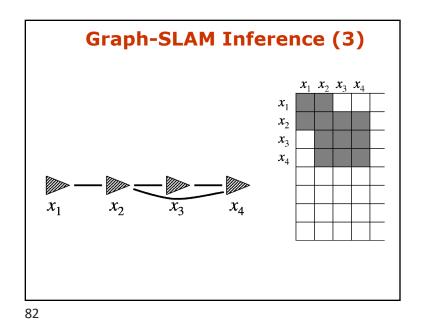


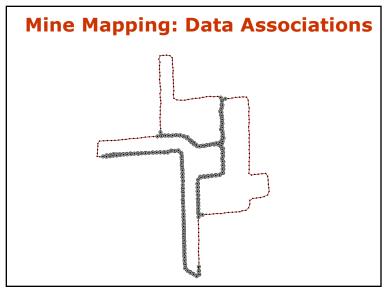


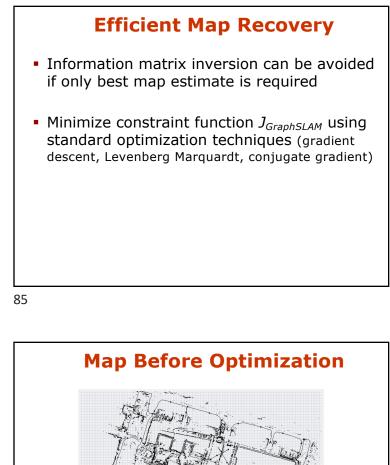




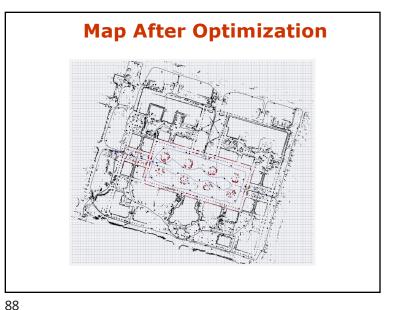
<section-header>

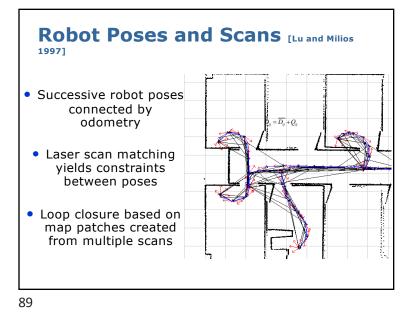




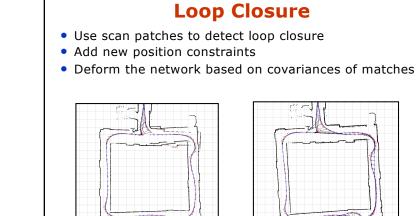


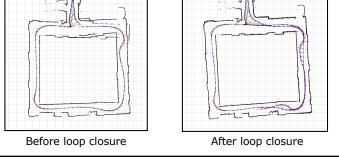
<image><image><image><image>





Mapping the Allen Center





90

92

Graph-SLAM Summary Adresses full SLAM problem Constructs link graph between poses and poses/landmarks • Graph is sparse: number of edges linear in number of nodes Inference performed by building information matrix and vector (linearized form) Map recovered by reduction to robot poses, followed by conversion to moment representation, followed by estimation of landmark positions ML estimate by minimization of J_{GraphSLAM} Data association by iterative greedy search