CSE-571
Robotics

Mapping

Types of SLAM-Problems

Grid maps or scans
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Problems in Mapping

® Sensor interpretation

e How do we extract relevant information
from raw sensor data?

e How do we represent and integrate this
information over time?

® Robot locations have to be known

e How can we estimate them during
mapping?

Occupancy Grid Maps

¢ Introduced by Moravec and Elfes in 1985
® Represent environment by a grid.

e Estimate the probability that a location is
occupied by an obstacle.

e Key assumptions
e Occupancy of individual cells is independent

Bel(m,)=P(m, |u,,z, ...,u, ,,z
= HBeZ(ml["y])
X,y

e Robot positions are known!
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Inverse Sensor Model
for Occupancy Grid Maps

Combination of linear function and Gaussian:

Occupancy peobatilty Qccupancy probability

Incremental Updating
of Occupancy Grids (Example)
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Alternative for Lidar: Counting

e For every cell count
e hits(x,y): number of cases where a beam ended
at <x,y>

e misses(x,y): number of cases where a beam
passed through <x,y>

hits(x, y)

Bel(m™") = — ;
hits(x, y) + misses(x, )

e Assumption: P(occupied(x,y)) = P(reflects(x,y))

Occupancy Grids: From scans to maps
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Tech Museum, San Jose

occupancy grid map
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Robots in 3D Environments
Outdoor navigation
«
Humanoid robots Flying robots
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OctoMap
£ A Probabilistic, Flexible, and Compact 3D
g Map Representation for Robotic Systems
i
S&

K.M. Wurm, A. Hornung,

Autonomous

#
AIS i M. Bennewitz, C. Stachniss, W. Burgard

Humanoid
Robots Lab

M e University of Freiburg, Germany

http://octomap.sf.net
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3D Map Requirements

= Full 3D Model

= Volumetric representation

= Free-space

= Unknown areas (e.g. for exploration)
= Can be updated

= Probabilistic model

(sensor noise, changes in the environment)

= Update of previously recorded maps
= Flexible

= Map is dynamically expanded

= Multi-resolution map queries
= Compact

= Memory efficient

= Map files for storage and exchange
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Map Representations
Pointclouds
= Pro:

* No discretization of data
* Mapped area not limited

= Contra:
* Unbounded memory usage

* No direct representation of free or
unknown space

Map Representations
3D voxel grids
= Pro:

* Probabilistic update
= Constant access time

= Contra:
= Memory requirement
= Extent of map has to be known
= Complete map is allocated in memory
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Map Representations
Octrees

= Tree-based data structure

= Recursive subdivision of
space into octants

= VVolumes allocated
as needed

= Multi-resolution

Map Representations

Octrees

* Pro:
= Full 3D model
= Probabilistic

» Flexible, multi-resolution
= Memory efficient

= Contra:

» Implementation can be tricky
(memory, update, map files, ...)

= Open source implementation as C++ library available at http://octomap.sf.net
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Probabilistic Map Update

*= Clamping policy ensures updatability [vguel ‘07]
L(n) € [lmin, Imax]
= Update of inner nodes enables multi-
resolution queries

L(n) = max L(n;)
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Examples

= Cluttered office environment

Map resolution: 2 cm

Examples: Office Building
* Freiburg, building 079
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Examples: Large Outdoor Areas

* Freiburg computer science campus
(292 x 167 x 28 m3, 20 cm resolution)
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Examples: Tabletop

Memory Usage

Mapped Resolution Memory consumption [MB] File size [MB]
Map dataset
area [m3] [m] | Full grid No compr. Lossless compr. | All data Binary
. 0.05 80.54 73.64 41.70 15.80 0.67
FR-079 corridor | 43.8 x 18.2 x 3.3
0.1 10.42 10.90 7.25 2.71 0.14
. 0.20 | 654.42 188.09 130.39 49.75 2.00
Freiburg outdoor | 292 x 167 x 28
0.80 10.96 4.56 4.13 1.53 0.08
New College 0.20 637.48 91.43 50.70 18.71 0.99
250 x 161 x 33
(Epoch C) 0.80 10.21 2.35 1.81 0.64 0.05
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CSE-571
Robotics

SLAM: Simultaneous
Localization and Mapping

Many slides courtesy of Ryan Eustice,
Cyrill Stachniss, John Leonard

Given:
= The robot’s controls
= Observations of nearby features
Estimate:
= Map of features

= Path of the robot

The SLAM Problem

Arobot is exploring an
unknown, static environment.

v
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SLAM Applications

Indoors Undersea
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Illustration of SLAM
without Landmarks

* *
With only dead reckoning,
vehicle pose uncertainty
> 4 * grows without bound

Courtesy J. Leon|
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Illustration of SLAM
without Landmarks

With only dead reckoning,
vehicle pose uncertainty
4 * grows without bound
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Courtesy J. Leon|

Illustration of SLAM
without Landmarks

With only dead reckoning,
vehicle pose uncertainty

grows without bound
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Courtesy J. Leon|
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Illustration of SLAM
without Landmarks

/Vyb/ With only dead reckoning,

vehicle pose uncertainty
* grows without bound

Courtesy J. Leon|
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Illustration of SLAM
without Landmarks

4*.
D 3 /’%ﬁfﬂt
D
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/Vyb/ With only dead reckoning,

vehicle pose uncertainty
* grows without bound

Courtesy J. Leon|
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Illustration of SLAM
without Landmarks

/Vyb/ With only dead reckoning,

vehicle pose uncertainty
7 * grows without bound

Courtesy J. Leon|
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Mapping with Raw Odometry
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Repeat, with Measurements of
Landmarks
3 *
@ ¥
= First position: two features
bserved
\ 4 %* °
Courtesy J. Leon|
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Illustration of SLAM with
Landmarks

vAs
@ 4‘,:

/ = Re-observation of first two

features results in improved
estimates for vehicle and

Illustration of SLAM with
Landmarks

* *

o
/% = Second position: two new

features observed
7 *

Courtesy J. Leon|

feature Courtesy J. Leon
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Illustration of SLAM with
Landmarks

* @ O
"
/ = Third position: two

4 #* additional features added
to map

Courtesy J. Leon|
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Illustration of SLAM with
Landmarks

®

features results in im
« i)

and all features

/ = Re-observation of first four

location estimates for vehicle

3

proved

Courtesy J. Leon|
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SLAM Using Landmarks

Odometry Profie of the Robot Locations
T T T T

mmmmm

Courtesy J. Leon|

Illustration of SLAM with

Landmarks
) <)
/
@ / &

/ = Process continues as the

7 vehicle moves through the
*® environment

Courtesy J. Leon|
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Test Environment (Point Landmarks)

Courtesy J. Leon|
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View from Vehicle

Courtesy J. Leon|
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odommetry

501

Comparison with Ground
Truth

D o ey

B0 ety

20kt

SLAM result

Courtesy J. Leon|
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SLAM Using Landmarks

1. Move
2. Sense
3. Associate measurements with known features

4. Update state estimates for robot and previously mapped
features

5. Find new features from unassociated measurements
6. Initialize new features

time step20, time=1 61

7. Repeat
P B
iy
=
MIT Indoor Track WA e
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Simultaneous Localization and

Mapping (SLAM)

* Building a map and locating the robot in the
map at the same time

* Chicken-and-egg problem

Courtesy: Cyrill Stachn
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Definition of the SLAM Problem

Given
= The robot’s controls
ur.T = {ul, U2, U3y - .., UT}
= Observations
1.7 = {21, Ry Ry e e ,ZT}
Wanted

= Map of the environment
m

= Path of the robot

Zo.T = {1’07501,%27 s 790T}

Courtesy: Cyrill Stachn

Two Main Paradigms

Kalman  Graph-
filter based
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EKF SLAM

Application of the EKF to SLAM

= Estimate robot’s pose and locations of
landmarks in the environment

= Assumption: known correspondences

State space (for the 2D plane) is

_ T
rr=( 2,9,0 M1z, My, .., My, Mny)
—_—— —,——T —_—————

robot’s pose landmark 1 landmark n

Courtesy: Cyrill Stachn
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Courtesy: Cyrill Stachn
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EKF SLAM: State Representation

= Map with n landmarks: (3+2n)-dimensional
Gaussian

» Belief is represented by

@ T 0oy 0z0 [T Tommny 000 @ Goimping
y Oya Tyy Tyo Tymy Tyma,y gac Omyp,e Omy .y
0 T Ty ] Tom, o T0m, ooo TOm, T,y
mia Omyzx Omioy 00 Omyomi. Omigmiy -0 Omyomne  Omiama,
mi,y Omiyz  Omiyy 90 Omyymie Tmigmiy, -0 Imigmae Omagymag,
Mn,z Omnex Ompoy 08 Omnomie Omnemiy 0 Omnemasz  Tmnemay
M,y Ompyz Ompyy 00 Omyymie Omupymiy -+ Ompymaz  Ompgyma,
Y v v y v,y v uMn,y
H z

Courtesy: Cyrill Stachn
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EKF SLAM: State Representation

= More compactly

TR Yrnzr [

mi EmlxR Zmlml Emlmn

Moy, PR D - Xmom,
w >

Courtesy: Cyrill Stachn
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EKF SLAM: Filter Cycle

1. State prediction

. Measurement prediction
. Measurement

. Data association

. Update

u b~ W N

Courtesy: Cyrill Stachn

EKF SLAM: State Representation

= Even more compactly (note: )
rp — %
X Zx:c Z:cm
m Yimz  Mmm
A\ _J/ N\ _J/
Vv VvV
7! by

Courtesy: Cyrill Stachn
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EKF SLAM: State Prediction

51

TR Domom  Dommpn 000 Dmmis
mi Ympwn  Smami e Dmim,
mp Eman Emnml LR Emnmn
N
17 » Courtesy: Cyrill Stachn

52




EKF SLAM: Measurement
Prediction

TR Yopzr Xzpmy -+ Dzpma
mi Ymizr  Zmimg o Zmam,
My, Ynrr  Dmami - Dmpmn
I » Courtesy: Cyrill Stachn
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EKF SLAM: Data Association and
Difference Between h(x) and z

X 4

o4

TR Yoper  Dapmy o+ Dzpm,
my EmlxR Zmlml . . Emlmn
My, Ymnzr  Zmami - Dmpmn
I » Courtesy: Cyrill Stachn

EKF SLAM: Obtained
Measurement

TR Z.TZRJZR Emle Emamn
mi Emle Em1m1 Emlmn
mp EmnacR Emnml Emnmn
~
17 » Courtesy: Cyrill Stachn
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EKF SLAM: Update Step

o

e

TR EszR Emle ZmRmn
mi Emle Emlml Emlmn
mp EmnmR Emnml Emnmn
N
17 » Courtesy: Cyrill Stachn
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EKF SLAM Correlations

1 s
AR L

= true path Red path = estimated path Black path = odometry

= Approximate the SLAM posterior with a high-
dimensional Gaussian (smith & cheesman, 19867 ...

» Single hypothesis data association
Courtesy: M. Montéme
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Loop-Closing

» Loop-closing means recognizing an already
mapped area

= Data association under
= high ambiguity
= possible environment symmetries

* Uncertainties collapse after a loop-closure
(whether the closure was correct or not)

Courtesy: Cyrill Stachn

Data Association in SLAM
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= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences
= EKF SLAM is brittle in this regard

= Pose error correlates data associations
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Online SLAM Example
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Before the Loop-Closure
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Courtesy: K. Arras
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After the Loop-Closure
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Courtesy: K. Arras

Example: Victoria Park Dataset

Courtesy: E. Neb
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Victoria Park: Data Acquisition

Courtesy: E. Neb
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Victoria Park: EKF Estimate

Courtesy: E.6Neb
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Victoria Park: Landmarks

Courtesy: E. Neb

Victoria Park: EKF Estimate

250

200

150

100

: :
-150 -100 -50 0 50 100 150

Courtesy: E. Neb
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Victoria Park: Landmark Covariance

deviation (meters)
o
&

1 12 14 16 18 2 22 24 2B 28 Al
states.
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Courtesy: E.6Reb
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Andrew Davison: MonoSLAM

EKF SLAM Summary

* Quadratic in the number of landmarks:
O(n?)

= Can if nonlinearities are large!
= Have been applied successfully in large-
scale environments.

= Approximations reduce the computational
complexity.
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EKF Algorithm

1. Extended_Kalman_filtery,_ .2 _.u,.z ):

2. Prediction:

3. B=glusmn) #, = A, +Bu,

4 %=G3.GI+R =43, AT +R

5. Correction:

6. K =SH'HZH +0)" —— K =%C(CECT+0)"

7o m=0+K (2~ k(@) =1, +K,(z,~Cn)

8. 3 =(I-KH)% 3, =(I-K,C)%:

9. Return gy > —

B g JOME) 8 H)
0ox, ox,,
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Literature

EKF SLAM
» “Probabilistic Robotics”, Chapter 10

= Smith, Self, & Cheeseman: “Estimating
Uncertain Spatial Relationships in Robotics”

» Dissanayake et al.: “A Solution to the
Simultaneous Localization and Map Building
(SLAM) Problem”

* Durrant-Whyte & Bailey: "SLAM Part 1” and
“SLAM Part 2” tutorials

Courtesy: Cyrill Stachn
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Graph-SLAM

Full SLAM technique

Generates probabilistic links

Computes map only occasionally

Based on Information Filter form

Information Form

® Represent posterior in canonical form

Q=3" Information matrix
£=3%"4 Information vector
® One-to-one transform between
canonical and moment representation
="
p=Q7¢

73
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Information vs. Moment Form

Correlation matrix

Information matrix

Graph-SLAM Idea

LAY 1%, = 8y, x))" R[4y = g (145, x,)] [z, — h(my, )" Q7' [z, —h(my, x,)]

[x, = g G x )1 R™ [ — g (uy, %))

{:‘-h(mwx‘)] Q [z, —h(m,. x)] %

[z, = h(myx )V Q7' [z = himy, x )] =%,

{ = h(my, x) Q 'z, = h(my,x,))

[, = g x)T R [x, ~ gy, x,)]

Sum of all constraints:

Jn.npnsx.m =x<§ Qoxo+z[x/ —gu,.x, ;)17 R“[x,—g(u,,x, ,)]+Z[z,—h(mq,x‘)|f Q_‘{Z/ _h(mr,’xr)]
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Graph-SLAM Idea (1)

=

my = [l
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Graph-SLAM Idea (3)

Graph-SLAM Idea (2)
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Graph-SLAM Inference (1)

X, Xy Xy X, m,

w2 . \
\ ,
NP2 :
/ \\ | "
>—p—p N
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Graph-SLAM Inference (2) Graph-SLAM Inference (3)
\ 4 X B X
\\\\ * f ﬁs
P —p DY \ w—p—b—b
Xq Xy X3 X4 m, \\\\ > X1 Xy X3 Xy
81 82
Mine Mapping Mine Mapping: Data Associations
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Efficient Map Recovery

= Information matrix inversion can be avoided
if only best map estimate is required

= Minimize constraint function Jgrpnsiam USING
standard optimization techniques (gradient
descent, Levenberg Marquardt, conjugate gradient)

3D Outdoor Mapping

108 features, 105 poses, only few secs using cg.
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Map Before Optimization

86

Map After Optimization

87

88
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® Successive robot poses

® |aser scan matching

Robot Poses and Scans (. and mitios

1997]

connected by
odometry N =D, +0,

yields constraints
between poses

Loop closure based on

map patches created
from multiple scans [ 3

Loop Closure

e Use scan patches to detect loop closure
® Add new position constraints
e Deform the network based on covariances of matches

Before loop closure After loop closure
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Mapping the Allen Center
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Graph-SLAM Summary

Adresses full SLAM problem

Constructs link graph between poses and
poses/landmarks

Graph is sparse: number of edges linear in number
of nodes

Inference performed by building information
matrix and vector (linearized form)

Map recovered by reduction to robot poses,
followed by conversion to moment representation,
followed by estimation of landmark positions

ML estimate by minimization of Jgrapnsiam
Data association by iterative greedy search
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