CSE-P590a
Robotics

Bayes Filter Implementations

Particle filters

Density Approximation

Particle sets can be used to approximate densities
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The more particles fall into an interval, the higher
the probability of that interval

How to draw samples form a function/distribution? 5

Rejection Sampling

Let us assume that fix)<=1 for all x
Sample x from a uniform distribution
Sample ¢ from [0,1]

if f(x) > c keep the sample
otherwise reject the sampe

f(x)
samples

probability / weight

Importance Sampling Principle

We can even use a different distribution g to
generate samples from f

By introducing an importance weight w, we can
account for the “differences between g and '~

w=[/g

. proposal(x)
fis often called = target(x)
ta rg et .:_)” samples
g is often called >
proposal =
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Resampling

® Given: Set S of weighted samples.
e Wanted : Random sample, where the

probability of drawing x; is given by w;.

® Typically done n times with replacement to
generate new sample set S”.

Resampling

e Stochastic universal sampling
e Roulette wheel e Systematic resampling
e Binary search, nlog n e Linear time complexity
e Easy to implement, low variance

Particle Filters

Sensor Information: Importance Sampling
Bel(x) <« o p(z|x)Bel (x)
a p(z|x) Bel (x)

w « Bel (0 = ap(z|x)




Robot Motion

Bel (x) <« j p(x|u.x") Bel(x') dx]
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Sensor Information: Importance Sampling

Bel(x) <« o p(z|x)Bel (x)
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Robot Motion

Bel (x) <« j p(x|u.x") Bel(x') dx]
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Particle Filter Algorithm

Bel (x) = 1 p(z, 1) [ p(x |5,0.) Bel (x,) .,

L draw x’,_; from Bel(X,-1)
draw x/, from p(x; | Xir-1,r-1)

Importance factor for xi:

target distribution

" proposal distribution
_n p(z,1x) p(x, | X, u,.,) Bel (x,,)
p(x, | x,,u,,) Bel (x,;)
o« p(z,|x,)
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Particle Filter Algorithm

1. Algorithm particle_filter( S;.;, Ut: Z:):
2. 8=, n=0
3. For i=1...n Generate new samples

4 Sample index j(i) from the discrete distribution given by w;.;
5 Sample X! from px, | x,_u,) using x:}{) and u.,
6. w = p(z,|x) Compute importance weight
7. n=n+ wf Update normalization factor
8 S, =8, Ul<x, W >) Insert
9. For j=1...n

1. wi=w/p Normalize weights

Recovery from Failure
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KLD-Sampling Sonar KLD-Sampling Laser

Adapt number of particles on the fly based
on statistical approximation measure
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ORIENTATION UNCERTAINTY

Depends on context, shape, sensor

6D OBJECT POSE ESTIMATION

6D Object Pose

3D 3D
Translation Orientation

Texture breaks
symmetry

Shape symmetry

View-based uncertainty

nvioia
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[Sundermeyer-Marton-Durner-Brucker-Triebel: ECCV-18]

TEACHING A DEEP NETWORK WHAT AN OBJECT LOOKS LIKE

Randomly Sample Views onto the Textured Object Model

e

Bottleneck encodes viewpoint information

nvioia
w
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YCB-Video RGB(-D)

1, ADD-S: 78.4]

PoseRBPF: 6D PARTICLE FILTER

Xi = {T0, P(Ri|T;, Z1.4)}

ADD-S: 75.9|

3D Translation Orientation Distribution

T; P(Ri|T; Z1:4)

191,808 bins

5 deg resolution

IDeng-Mousavian-Xiang-Xia-Bretl-F: R$S-19,T-R0O-21]

nvioia
w

FROM VIEW ENCODER TO VIEW SIMILARITY

Sample Views onto the Textured Object Model

I
v Vv

128 dim H H E

v

Codebook (5 deg discretization; 191,808 views)
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EXAMPLE RESULTS
Tracked bounding
boxes
Orientation
uncertainty
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GLOBAL LOCALIZATION EXAMPLE

Sample Uniformly in Translation Space

1st frame: 5,000 particles, then 500 particles until strong match, then 50 particles
500 particles: 2.6 fps; 50 particles: 20 fps

nvioia
w
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