CSE 571
Robotics

Recap and Discussion



Goal of this course

"= Provide an overview of fundamental problems /
techniques in robotics

= Understanding of estimation and decision making in
dynamical systems

=  Probabilistic modeling and filtering
= Deterministic and non-deterministic planning
= Learning for perception and modeling

=  Augment model-based understanding with hands-
on experience in deep learning
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Bayesian Filtering, Models

ESTIMATION



Bayes Filters x = state.

Bel(x,) = P(x, |u,z, ...,u,,z,)

.., t’ t

Bayes =n P(z, |x,u,z,...,u) P(x |u,z,...,u)
Markov :77 P(Zt ,X,'t) P(.Xt |M1,Zl, ...,Mt)
Total prob. =17} P(Zt xt)jP(xt U,z ...,ut,xt_l)

P(x,_ |u,z,...,u)dx,

=1 P(z, %) [ P(x, 1 %,) P(x, [ t,2, o) dx
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Markov

=17 P(Zt |xt) P(xt |ut9xt—l) Bel(xt—l) dxl‘—l




Parametric Sensor Model
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Parametric Kinematics Model

e Robot moves from <)_CJ,§ > to<3‘c',7,§'>.
e Odometry information v = <5,,0ﬂ,5,,0t2,5tm >

8 = J (z‘c'—fc)z ¥ (?'—?)2 )




Loss functions are the key!

Just a function! Want to find argmineignhts(LOSS Function)

model parameters
(weights)

Loss Function

labels
data 7

predictions
features

model

/) loss




Stochastic gradient descent (SGD)

Estimate VL(w) with only some of the data

Before:
W, =W, -n2VL(w), for all i in |data]

Wi 1 = W - N 2;VLi(w), for some subset j

Maybe even:
W = W, - n VL (w), for some random k

# of points used for update is called batch size




The Prediction-Correction-Cycle
of Kalman Filters
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EKF Linearization
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Particle Filter Projection

Py — Function gt |
— Samples
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Importance Sampling Principle

" We can use a different distribution g to generate samples
from f

" By introducing an importance weight w, we can account for
the “differences between g and 1”

w=f/g

proposal(x)
target(x)
samples

probability / weight
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SLAM

ESTIMATION
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Why is SLAM a hard problem?

*SLAM: robot path and map are both unknown

A
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*‘Robot path error correlates errors in the map |



EKF-SLAM

e Map with N landmarks:(3+2N)-dimensional

Gaussian
x) (o o, 0,
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Bel(x,,m,) =

® Can handle hundreds of dimensions



FastSLAM

Robot Pose
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Graph-SLAM Idea
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3D Outdoor Mapping

108 features, 10- poses, only few secs using cg. s



PLANNING / CONTROL



Deterministic, fully observable




Planning via Cell Decomposition

 Graph construction:
- lattice graph
- pros: sparse graph, feasible paths
- cons: possible incompleteness Sﬂ% %

action template

! g

- W
C(s,S,) = 100

. ., C(s;,85) =5
replicate it

online

CSE-571: Courtesy of Maxim Likhachev, CMU



Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01



Stochastic, Fully Observable
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Manipulator Control Path

State space Configuration space



Inverse Optimal Control

Cost Map

e

Learning | Fiey




COOKING WITH JULIA




GRAVITY AND ONIONS




TELEOPERATION OF
DEXTEROUS MANIPULATION




INTUITIVE PHYSICS

PEOPLE HAVE INTUITIVE UNDERSTANDING OF HOW THINGS EVOLVE OVER TIME, AND
HOW TO ACHIEVE DESIRED CHANGE

QUALITATIVELY RELATED TO PHYSICS UNDERLYING A SCENE: GRAVITY, FORCES,
FRICTION, MASS, SIZE, PERSISTENCE, RIGID AND NON-RIGID MOTION, ...

GOOD ENOUGH FOR CONTROL SINCE TIGHTLY COUPLED TO PERCEPTION --> CLOSED
LOOP CONTROL

PHYSICS BASED MODELS IN ROBOTICS GENERALIZE WELL BUT ARE NOT TIGHTLY
COUPLED TO PERCEPTION

CAN WE LEARN INTUITIVE PHYSICS MODELS FOR ROBOTS ¢
* |DEALLY SUITED FOR CLOSED-LOOP CONTROL SINCE FULLY GROUNDED IN PERCEPTUAL EXPERIENCE
* APPLICABLE ACROSS A WIDE RANGE OF TASKS

¢ Dieter Fox, University of Washington * CSE-571: Robotics




DEEP LEARNING FOR ROBOTICS

EXTREMELY FLEXIBLE AND EXPRESSIVE FRAMEWORK FOR LEARNING FROM RAW
DATA

* WILL DOMINATE MANY RECOGNITION / CONTROL TASKS, ESPECIALLY WELL SUITED FOR
CLOSED-LOOP CONTROL WITH COMPLEX PERCEPTION AND STATE SPACES

* |IN ROBOTICS, FUTURE DATA PROVIDES SUPERVISORY SIGNALS

CHALLENGES

* HOW TO GET TRAINING DATA (SCALABILTIY, SAFETY, OVERFITTING, SIMULATION) 2
e HOW TO BEST COMBINE MODELS AND DEEP LEARNING?

 HOW TO EXTRACT / MODEL UNCERTAINTY AND GUARANTEESS

* UNDERSTANDING OF NETWORK STRUCTURES, TRAINING REGIMES, GENERALIZATION
CAPABILITIES

NNE
e STUDENTS DEGRADED TO NETWORK AND DATA ENGINEERS
« COMPANY OR LAB WITH MOST GPU'S WINS

A TOOLBOX TO TRY NEW THINGS AND REVISIT TASKS FROM NEW PERSPECTIVES

¢ Dieter Fox, University of Washington *CSE-571: Robotics




[Narang, Storey, Akinola, Macklin, Reist, Wawryzniak, Guo, State, Moravanszky, Lu, Handa, Fox: RSS 2022]

CONTACT-RICH TASKS: NIST BENCHMARK ENVIRONMENT

High Relevance to Applications in Industrial Assembly

Recent advances in real world RL

[Lian, Kelch, Holz, Norton, Schaal, 2021]

. ) [Luo, Sushkov, Pevceviciute, Lian, Su, Vecerik,
Established real-world benchmark: Ye, Schaal, Scholz, 2021]

Round and rect. pegs/holes
Nuts/bolts

Gear assembly
Electrical connectors

31 INVIDIA.



CONTACT-RICH SIMULATION

Simulation has accelerated robotics, but contact-rich simulation is a grand challenge.

Simulation in robotics

Contact-rich simulation

. g

PyBullet, 1/20 real-time [Gissler, et al., 2018]

1/350 real-time [Ferguson, et al., 2020],

*32
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Based on [Macklin, Erleben, Mueller, Chentanez, Jeschke, Corse: ACM Comput. Graph. Interact. Tech. 2020]
[Moravanszky, Terdiman: Game Programming Gems, 2004]

SDF-BASED COLLISIONS AND CONTACT REDUCTION

Clustering algorithm based on

Bolt: SDF values stored 16k contacts generated in <1 ms similarity-of-normals and depth-of-contact:
as 300 contacts (1.9%).
3D texture With Jacobi solver (inherently
Nut: Mesh parallel), max 20 nuts/bolts. With Gauss-Seidel solver (fast convergence),

max 35k nuts/bolts.

°33 INVIDIA.



- mam- - R . G R 00, ey gy W .
[Narang-Akinola-Guo-Handa-Lu-Macklin-Moravanszky-Reist-State-Storey-Wawrzyniak-F: RSS-22]

1024 nuts-and-bolts in parallel environments at real-time (14 ms/frame)




All rigid parts of NIST board simulated in real-time or faster




Tube deformation

Deformable objects and granular media

DefGraspSim: dataset on 34 deformable objects
along with deformations, stress fields, grasp successes

Simulation matches real world behavior very well
(w/ off the shelf material parameters)

Sim parameters can be adjusted to real world data

Pouring granular media

36
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GENERATING SCENES FOR RQBQT: MANIRLH AT QNI ASKS objects




TASK GENERATION

Diversity in Initial States, Manipulation Skills, and Goal Conditions

Logical goal conditions
describe sets of scene states

On(A, B) := A at a pose
that is supported by
surface B

Use planner to generate
reachable state/goal pairs

Open(drawerT)

Scale task complexity

Obstacles and clutter In(green_block, cabinet4)

Diverse manipulation skills

Closed(cabinet4
Compound goals osed(cabinet4)

Long time horizons

°38 @ANVIDIA.



[Garrett-Paxton-Lozano-Perez-Kaelbling-Fox: ICRA-20]

SOLUTION GENERATION

TAMP to Generate Motion Data for Completing Complex Tasks

239 NVIDIA



