CSE-571 Robotics

Fast-SLAM Mapping

Particle Representation

\square A set of weighted samples

$$
\mathcal{X}=\left\{\left\langle x^{[i]}, w^{[i]}\right\rangle\right\}_{i=1, \ldots, N}
$$

\square Think of a sample as one hypothesis about the state
\square For feature-based SLAM:

Dimensionality Problem

Particle filters are effective in low dimensional spaces as the likely regions of the state space need to be covered with samples.

$$
x=\left(x_{1: t}, m_{1, x}, m_{1, y}, \ldots, m_{M, x}, m_{M, y}\right)^{T}
$$

Can We Exploit Dependencies Between the Different Dimensions of the State Space?

$$
x_{1: t}, m_{1}, \ldots, m_{M}
$$

If We Know the Poses of the Robot, Mapping is Easy!
$x_{1: t}, m_{1}, \ldots, m_{M}$

Key Idea

$$
x_{1: t}, m_{1, \ldots, m_{M}}^{n}
$$

If we use the particle set only to model the robot's path, each sample is a path hypothesis. For each sample, we can compute an individual map of landmarks.

Rao-Blackwellization

\square Factorization to exploit dependencies between variables:

$$
p(a, b)=p(b \mid a) p(a)
$$

\square If $p(b \mid a)$ can be computed efficiently, represent only $p(a)$ with samples and compute $p(b \mid a)$ for every sample

Rao-Blackwellization for SLAM

\square Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

Rao-Blackwellization for SLAM

\square Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

FastSLAM

\square Proposed by Montemerlo et al. in 2002
\square Each landmark is represented by a 2×2 EKF
\square Each particle therefore has to maintain M individual EKFs

FastSLAM - Motion Update

Particle \#2

Particle \#3

FastSLAM - Sensor Update

Particle \#2

Particle \#3

FastSLAM - Sensor Update

Weight $=0.8$

Weight $=0.4$

Weight $=0.1$

Courtesy: M. Montemerlo

FastSLAM - Sensor Update

Update map of particle 1

Update map of particle 2

Update map of particle 3

Key Steps of FastSLAM 1.0

\square Extend the path posterior by sampling a new pose for each sample

$$
x_{t}^{[k]} \sim p\left(x_{t} \mid x_{t-1}^{[k]}, u_{t}\right)
$$

\square Compute particle weight

$$
w^{[k]}=|2 \pi Q|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(z_{t}-\hat{z}^{[k]}\right)^{T} Q^{-1}\left(z_{t}-\hat{z}^{[k]}\right)\right\}
$$

innovation covariance
\square Update belief of observed landmarks (EKF update rule)
\square Resample

FastSLAM in Action

FastSLAM - Video - All Maps

FastSLAM - Video - "Best" particle in

 terms of Cum Log Prob

Data Association Problem

\square Which observation belongs to which landmark?

\square More than one possible association
\square Potential data associations depend on the pose of the robot

Particles Support for Multi-Hypotheses Data Association

\square Decisions on a per-particle娍 basis

\square Robot pose error is factored : : out of data association decisions

Per-Particle Data Association

Was the observation generated by the red or by the blue landmark?
$\mathrm{P}($ observation | red $)=0.3 \mathrm{P}($ observation | blue $)=0.7$

Per-Particle Data Association

Was the observation generated by the red or by the blue landmark?
$\mathrm{P}($ observation | red $)=0.3 \mathrm{P}($ observation \mid blue $)=0.7$

- Two options for per-particle data association
- Pick the most probable match
- Pick a random association weighted by the observation likelihoods
- If the probability for an assignment is too low, generate a new landmark

Results - Victoria Park

4 km traverse$\square<2.5 \mathrm{~m}$ RMS position error
$\square 100$ particles

Blue = GPS
 Yellow = FastSLAM

Courtesy: M. Montemerlo

Results - Victoria Park (Video)

Results (Sample Size)

Results (Motion Uncertainty)

Techniques to Reduce the Number of Particles Needed

- Better proposals (put the particles in the right place in the prediction step).
- Avoid particle depletion (re-sample only when needed).

Generating better Proposals

- Use scan-matching to compute highly accurate odometry measurements from consecutive range scans.
- Use the improved odometry in the prediction step to get highly accurate proposal distributions.

Motion Model for Scan Matching

Rao-Blackwellized Mapping with Scan-Matching

Loop Closure Example

map of particle 1

map of particle 3

Rao-Blackwellized Mapping with Scan-Matching

[^0]
Rao-Blackwellized Mapping with Scan-Matching

Example (Intel Lab)

- 15 particles
- four times faster than real-time P4, 2.8 GHz
- 5 cm resolution during scan matching
- 1 cm resolution in final map

Work by Grisetti et al.

Outdoor Campus Map

- 30 particles
- $250 \times 250 \mathrm{~m}^{2}$
- 1.088 miles (odometry)
- 20 cm resolution during scan matching
- 30 cm resolution in final map

Work by Grisetti et al.

FastSLAM Summary

\square Particle filter-based SLAM
\square Rao-Blackwellization: model the robot's path by sampling and compute the landmarks given the poses
\square Allow for per-particle data association
\square Complexity $\mathcal{O}(N \log M)$

Literature

FastSLAM

\square Thrun et al.: "Probabilistic Robotics", Chapter 13.1$13.3+13.8$ (see errata!)
\square Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, 2002
\square Montemerlo and Thrun: Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM, 2003

6D OBJECT POSE ESTIMATION

POSE-CNN

Handles symmetric, texture-less objects under partial occlusions

Centers and masks

6D poses

Provides object mask and 3D position and orientation of object relative to camera Operates at 10 Hz , sufficient to initialize a tracker

With ICP, state of the art results on LineMod and YCB-Video

RELATED WORK

Single image

- Object symmetries ignored or special cases
" Tremblay et al. CoRL 2018 (DOPE)
- Tekin et al. CVPR 2018
- Xiang et al. RSS 2018 (PoseCNN)
- Li et al. ECCV 2018 (DeepIM)
- Manhardt et al. ECCV 2018

Techniques aim at a unique pose estimate

6D object pose tracking

- Unimodal tracking
- Kehl et al. CVPR 2018
- Tjaden et al. ICCV 2017
- Prisacariu et al. IJCV 2017 (PWP3D)
- Srivatsan et al. RSS 2017
- 6D particle filter
- Choi et al. IROS 2013

Not designed to estimate multi-modal distributions

ORIENTATION UNCERTAINTY

Depends on context, shape, sensor

TRAINING VIEW-BASED SIMILARITY

Randomly Sample Views onto the Textured Object Model

TRAINING AN ENCODER IN SIMULATION

Randomly Sample Views onto the Textured Object Model

PoseRBPF: 6D PARTICLE FILTER

PoseRBPF: Observation Update

EXAMPLE RESULTS

GLOBAL LOCALIZATION EXAMPLE

Sample Uniformly in Translation Space

$1^{\text {st }}$ frame: 5,000 particles, then 500 particles until strong match, then 50 particles
500 particles: 2.6 fps ; 50 particles: 20 fps

[^0]: Map: Intel Research Lab Seattle

