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Particle Representation

¨ A set of weighted samples

¨ Think of a sample as one hypothesis about the state
¨ For feature-based SLAM:

poses landmarks

Courtesy: C. Stachniss



Dimensionality Problem
Particle filters are effective in low dimensional spaces 
as the likely regions of the state space need to be 
covered with samples.

high-dimensional
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Can We Exploit Dependencies Between 
the Different Dimensions of the State 

Space?
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If We Know the Poses of the Robot, 
Mapping is Easy!

Courtesy: C. Stachniss



Key Idea

If we use the particle set only to model the robot’s path, 
each sample is a path hypothesis. For each sample, we 
can compute an individual map of landmarks.

Courtesy: C. Stachniss



Rao-Blackwellization

¨ Factorization to exploit dependencies between 
variables:

¨ If                can be computed efficiently, represent 
only           with samples and compute                for 
every sample

Courtesy: C. Stachniss



Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

poses map observations & movements

Courtesy: C. Stachniss
K. Murphy, Bayesian map learning in dynamic environments, In Proc. 
Advances in Neural Information Processing Systems, 1999



Rao-Blackwellization for SLAM

¨ Factorization of the SLAM posterior
poses map observations & movements

path posterior map posterior

Courtesy: C. Stachniss

First introduced for SLAM by Murphy in 1999
K. Murphy, Bayesian map learning in dynamic environments, In Proc. Advances 
in Neural Information Processing Systems, 1999



FastSLAM
¨ Proposed by Montemerlo et al. in 2002
¨ Each landmark is represented by a 2x2 EKF
¨ Each particle therefore has to maintain M individual 

EKFs

Landmark 1 Landmark 2 Landmark M…
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Particle
1

Landmark 1 Landmark 2 Landmark M…
Particle
2

Particle
N

…



FastSLAM – Motion Update

Particle #1

Particle #2

Particle #3

Landmark 1
2x2 EKF

Landmark 2
2x2 EKF
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark 1
2x2 EKF

Landmark 2
2x2 EKF
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Update map 
of particle 1

Update map 
of particle 2

Update map 
of particle 3
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Key Steps of FastSLAM 1.0

¨ Extend the path posterior by sampling a new pose 
for each sample 

¨ Compute particle weight

¨ Update belief of observed landmarks
(EKF update rule)

¨ Resample 

innovation covariance

exp. observation

Courtesy: C. Stachniss



FastSLAM  in Action

Courtesy: M. Montemerlo



FastSLAM – Video – All Maps



FastSLAM – Video – “Best” particle in 
terms of Cum Log Prob



Data Association Problem

¨ Which observation belongs to which landmark?

¨ More than one possible association
¨ Potential data associations depend on the pose of 

the robot 

Courtesy: M. Montemerlo



Particles Support for Multi-Hypotheses 
Data Association

¨ Decisions on a per-particle 
basis

¨ Robot pose error is factored 
out of data association 
decisions

Courtesy: M. Montemerlo



Per-Particle Data Association

Was the observation
generated by the red
or by the blue
landmark?

P(observation | red) = 0.3 P(observation | blue) = 0.7

Courtesy: M. Montemerlo



Per-Particle Data Association

P(observation | red) = 0.3 P(observation | blue) = 0.7

§ Two options for per-particle data association
§ Pick the most probable match
§ Pick a random association weighted by the observation likelihoods

§ If the probability for an assignment is too low, generate a new 
landmark

Was the observation
generated by the red
or by the blue
landmark?

Courtesy: M. Montemerlo



Results – Victoria Park

¨ 4 km traverse
¨ < 2.5 m RMS 

position error
¨ 100 particles

Blue = GPS
Yellow = FastSLAM

Courtesy: M. Montemerlo



Results – Victoria Park (Video)

Courtesy: M. Montemerlo



Results (Sample Size)

Courtesy: M. Montemerlo



Results (Motion Uncertainty)

Courtesy: M. Montemerlo



Techniques to Reduce the 
Number of Particles Needed

• Better proposals (put the particles in 
the right place in the prediction 
step).

• Avoid particle depletion (re-sample 
only when needed). 



Generating better Proposals

•Use scan-matching to compute highly 
accurate odometry measurements 
from consecutive range scans. 

•Use the improved odometry in the 
prediction step to get highly accurate 
proposal distributions.



Motion Model for Scan Matching

a'

b'

d'

final pose
a

d

measured pose
b

initial pose

path

Raw Odometry
Scan Matching



Rao-Blackwellized Mapping with 
Scan-Matching
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Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles



Rao-Blackwellized Mapping with 
Scan-Matching
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Rao-Blackwellized Mapping with 
Scan-Matching
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Example (Intel Lab)
§ 15 particles
§ four times faster 

than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map

Work by Grisetti et al.



Outdoor Campus Map
§ 30 particles
§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

Work by Grisetti et al.

§ 30 particles
§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map



FastSLAM Summary

¨ Particle filter-based SLAM
¨ Rao-Blackwellization: model the robot’s path by 

sampling and compute the landmarks given the 
poses

¨ Allow for per-particle data association
¨ Complexity 

Courtesy: C. Stachniss



Literature

FastSLAM
¨ Thrun et al.: “Probabilistic Robotics”, Chapter 13.1-

13.3 + 13.8 (see errata!)
¨ Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A 

Factored Solution to the Simultaneous Localization 
and Mapping Problem, 2002

¨ Montemerlo and Thrun: Simultaneous Localization and 
Mapping with Unknown Data Association Using 
FastSLAM, 2003

Courtesy: C. Stachniss
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6D OBJECT POSE ESTIMATION

x

y

z6D Object Pose

3D 
Translation

3D 
Orientation
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POSE-CNN
Handles symmetric, texture-less objects under partial occlusions

§ Provides object mask and 3D position and 
orientation of object relative to camera

§ Operates at 10Hz, sufficient to  initialize a 
tracker

§ With ICP, state of the art results on LineMod
and YCB-Video

Centers and masks 6D poses

[Xiang-Schmidt-Narayanan-Fox: RSS-18]      

21 YCB objects, 92 Videos, 133,827 frames
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RELATED WORK

Single image

§ Object symmetries ignored or special cases

§ Tremblay et al. CoRL 2018 (DOPE)

§ Tekin et al.  CVPR 2018

§ Xiang et al. RSS 2018 (PoseCNN)

§ Li et al. ECCV 2018 (DeepIM)

§ Manhardt et al. ECCV 2018

Techniques aim at a unique pose 
estimate

6D object pose tracking

§ Unimodal tracking

§ Kehl et al. CVPR 2018

§ Tjaden et al. ICCV 2017

§ Prisacariu et al. IJCV 2017 (PWP3D)

§ Srivatsan et al. RSS 2017

§ 6D particle filter

§ Choi et al. IROS 2013

Not designed to estimate 
multi-modal distributions



41

ORIENTATION UNCERTAINTY
Depends on context, shape, sensor

Observation

Orientation
uncertainty

Shape symmetry Texture breaks  
symmetry View-based uncertainty
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TRAINING VIEW-BASED SIMILARITY
Randomly Sample Views onto the Textured Object Model

Encoder Decoder

Network output
1 training epoch

Input view Target Network output
50 training epochs

128 dim

Bottleneck encodes viewpoint information

[Sundermeyer-Marton-Durner-Brucker-Triebel: ECCV-18]
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TRAINING AN ENCODER IN SIMULATION
Randomly Sample Views onto the Textured Object Model

Encoder

…

…

Codebook (5 deg discretization; 191,808 views)

Cosine Similarity

…

128 dim 128 
dim
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191,808 bins
5 deg resolution

PoseRBPF: 6D PARTICLE FILTER

3D Translation
𝑇!

Orientation Distribution
𝑷 𝑹𝒊 𝑻𝒊, 𝒁𝟏:𝒌)

RoI

Encoder

Rotations

Codebook

Particle
Code

Rotation Likelihood

…

…

…

𝑋" = {𝑇" , P 𝑅" 𝑇" , 𝑍#:% }

YCB-Video RGB(-D)
§ PoseRBPF: 

ADD: 62.1, ADD-S: 78.4
§ PoseCNN:

ADD: 53.7, ADD-S: 75.9 
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PoseRBPF: Observation Update 

Encoder

Particle
Code

Encoder

Encoder

Normalizer

WeightsCompute posterior

Particle
RoIs

Orientation Distribution

…

…

…

…

…

…

Observation likelihood
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EXAMPLE RESULTS
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GLOBAL LOCALIZATION EXAMPLE
Sample Uniformly in Translation Space

1st frame: 5,000 particles, then 500 particles until strong match, then 50 particles
500 particles: 2.6 fps; 50 particles: 20 fps


