CSE-571 Robotics

SLAM: Simultaneous Localization and Mapping

Many slides courtesy of Ryan Eustice, Cyrill Stachniss, John Leonard

The SLAM Problem

A robot is exploring an unknown, static environment.

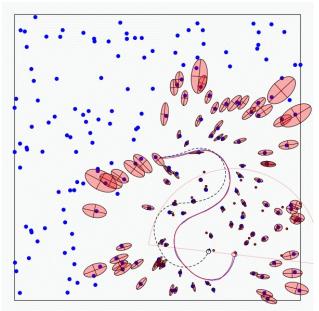
Given:

The robot's controls

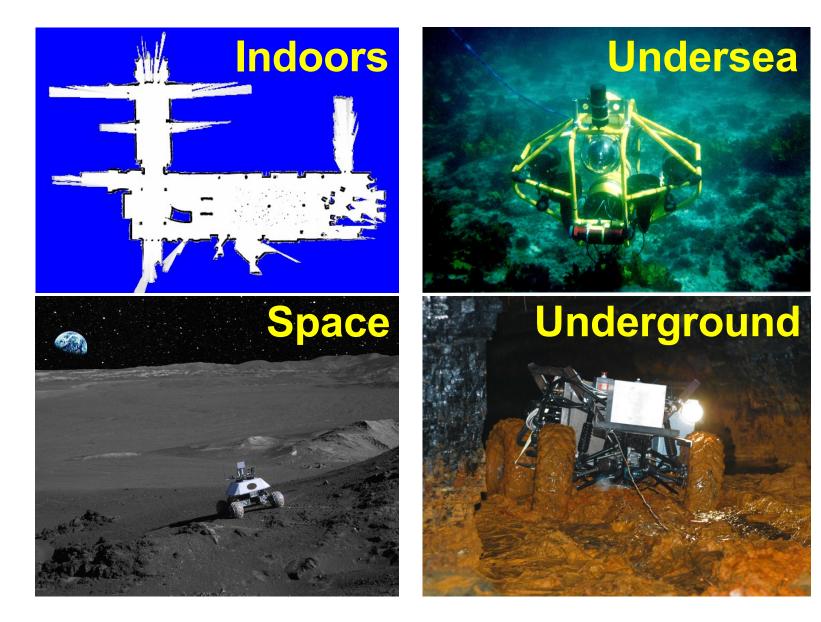
Observations of nearby features

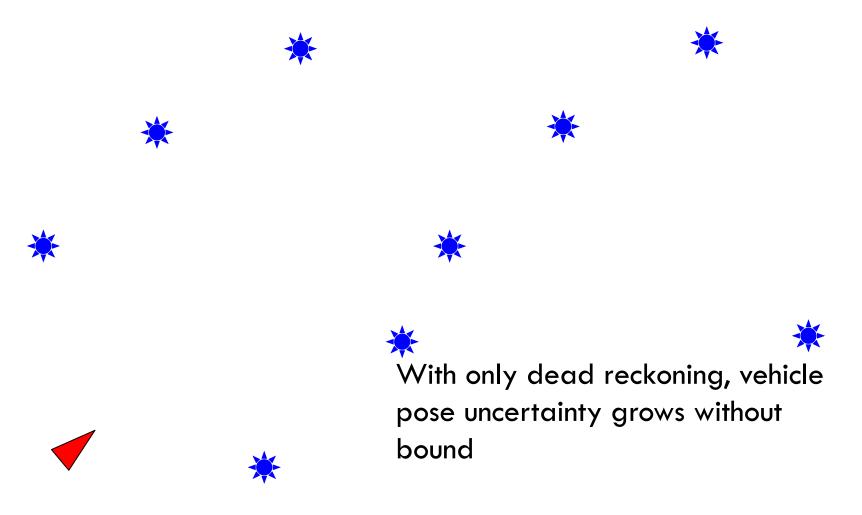
Estimate:

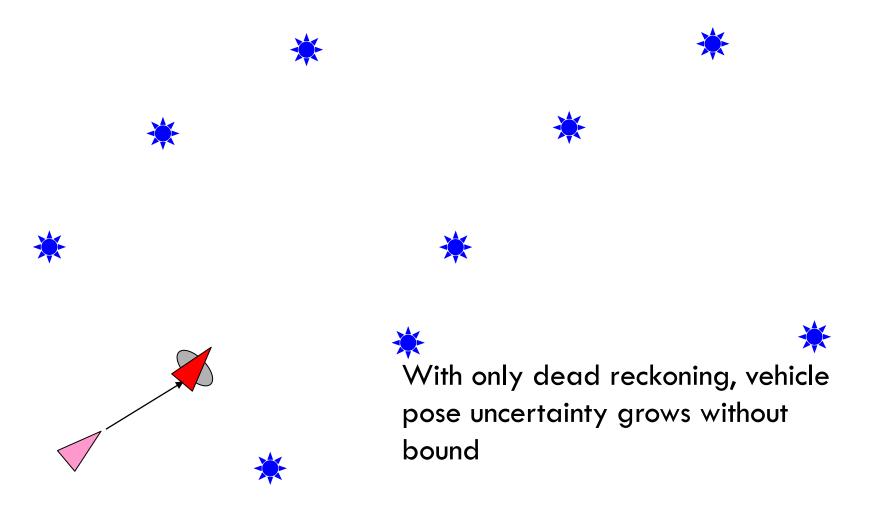
- Map of features
- Path of the robot

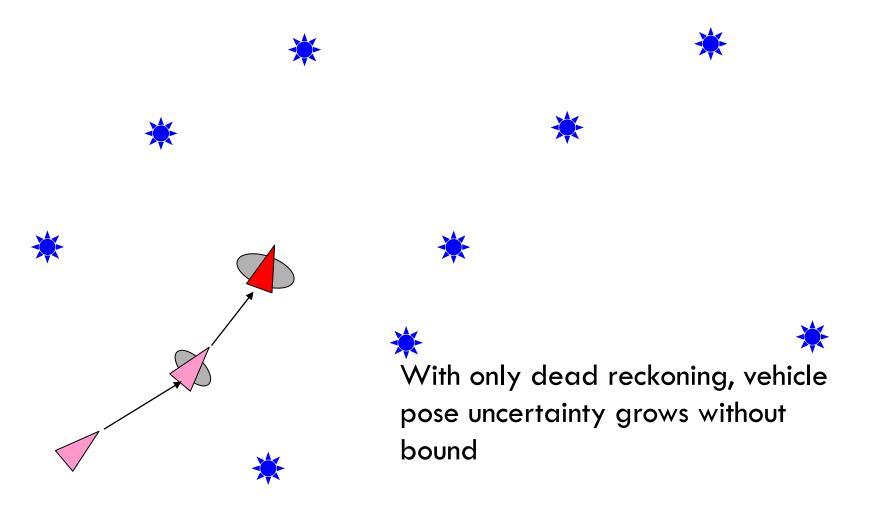


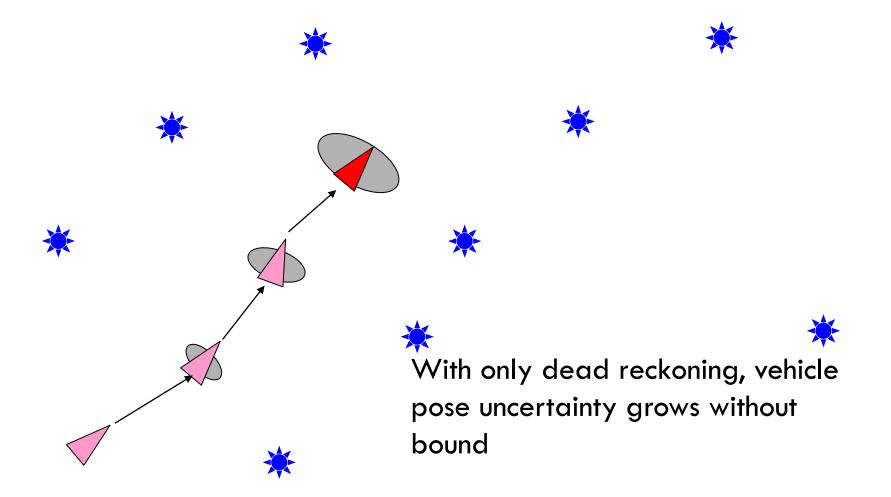
SLAM Applications

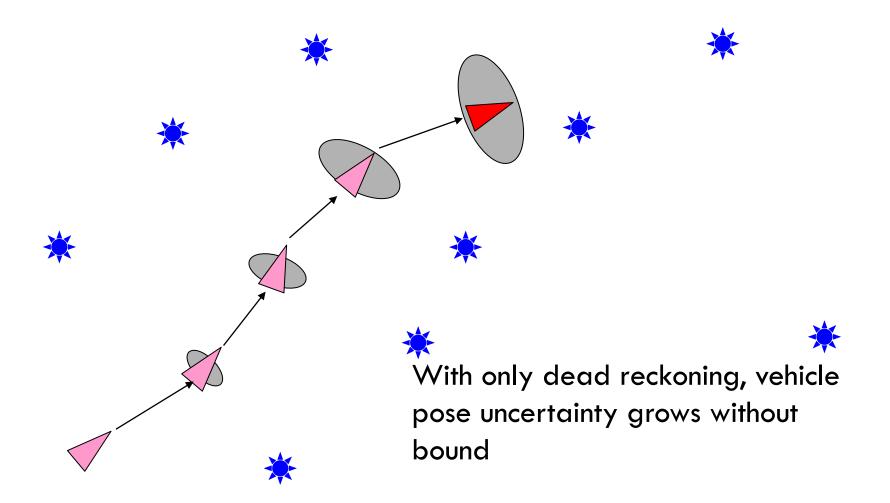


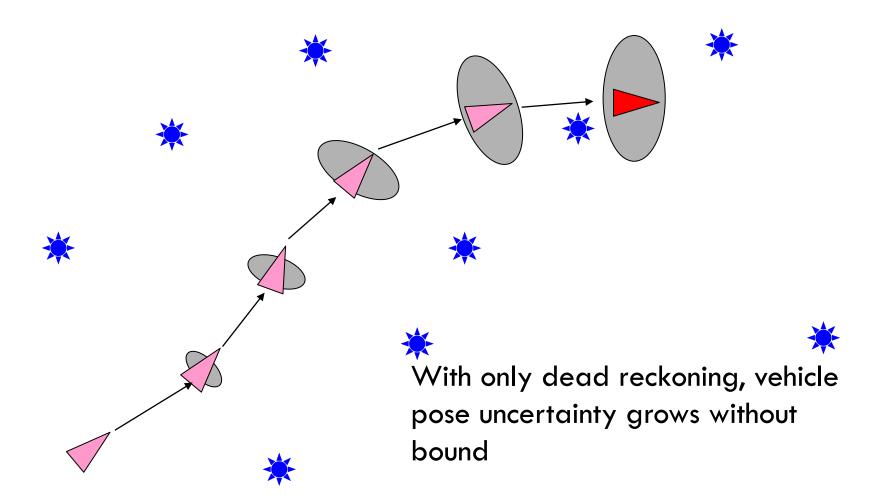




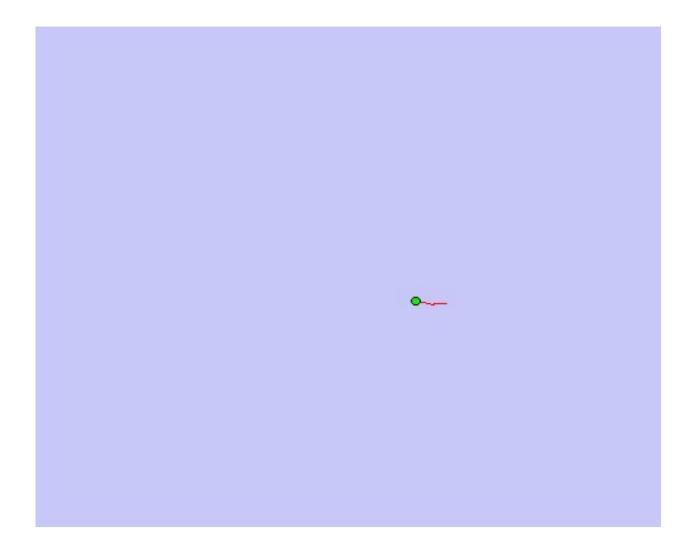




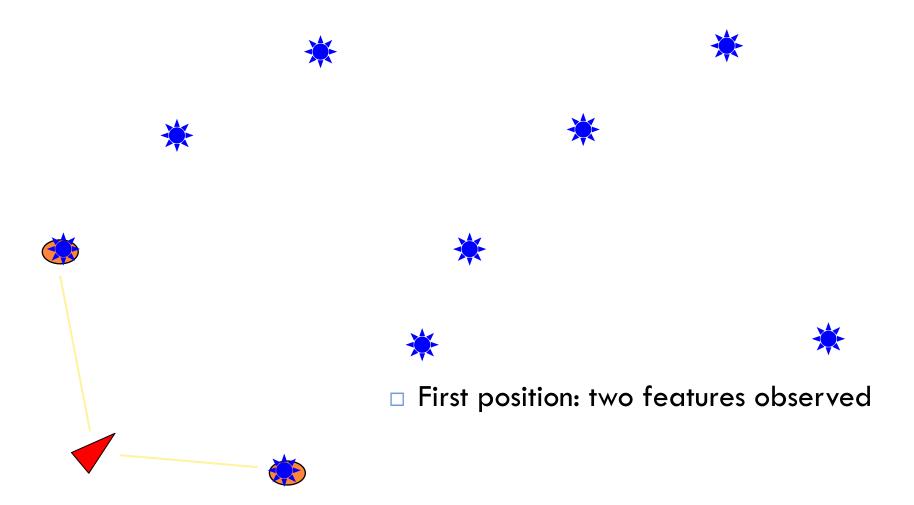


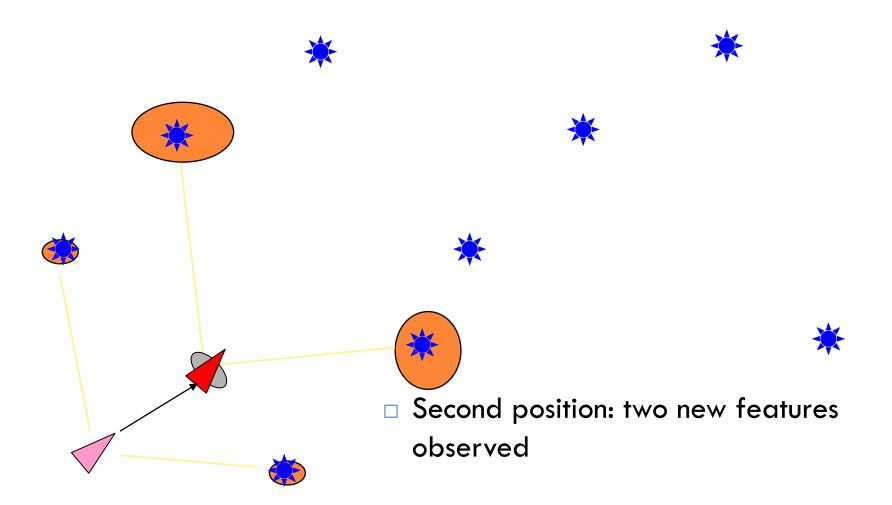


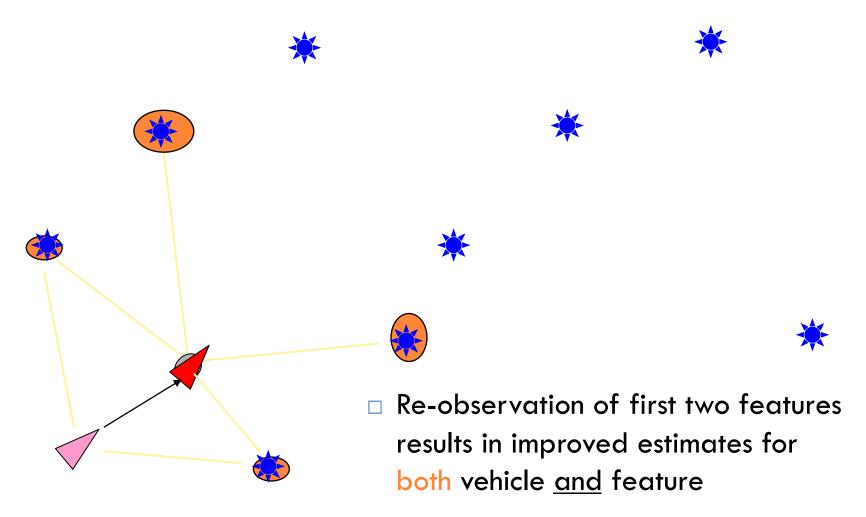
Mapping with Raw Odometry

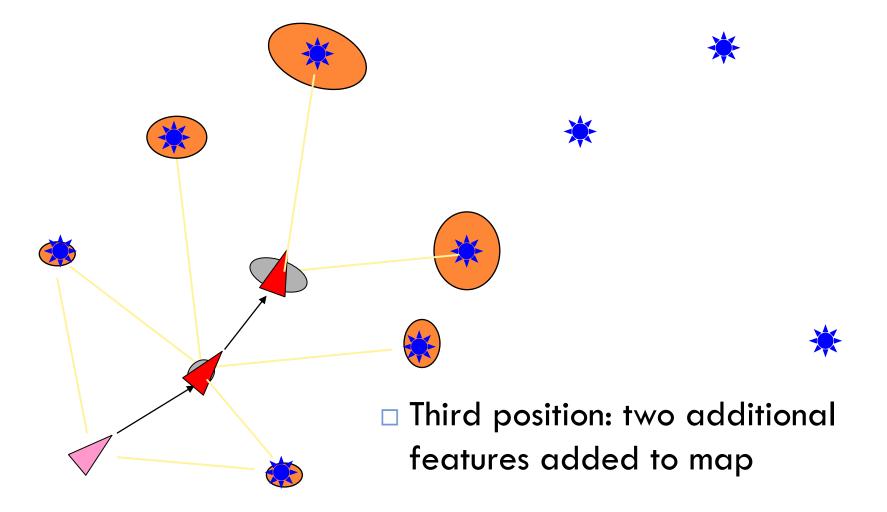


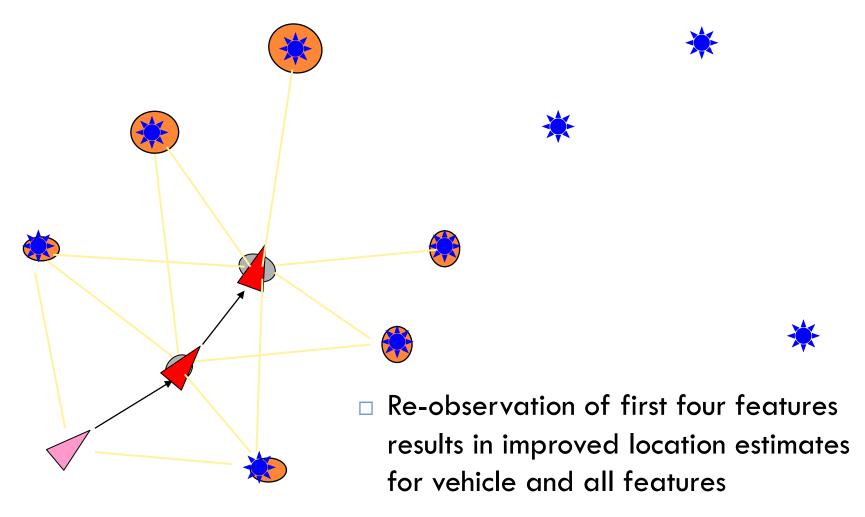
Repeat, with Measurements of Landmarks

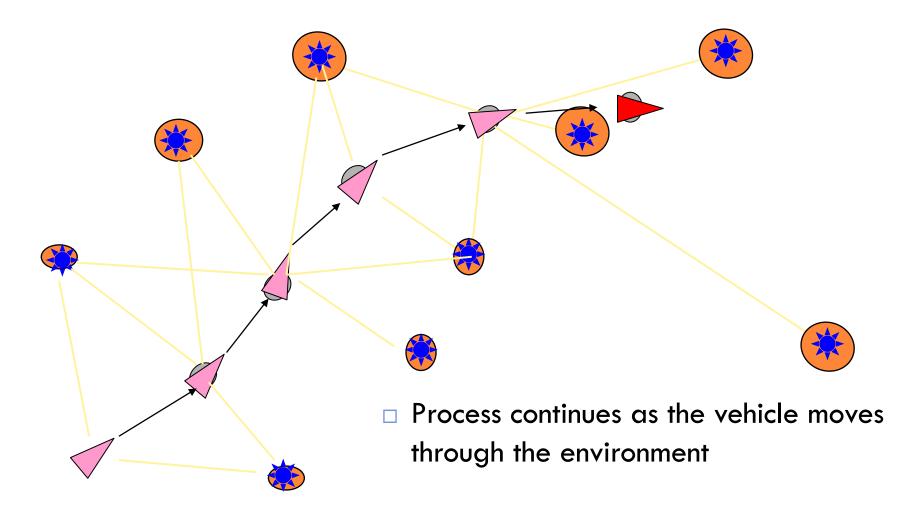




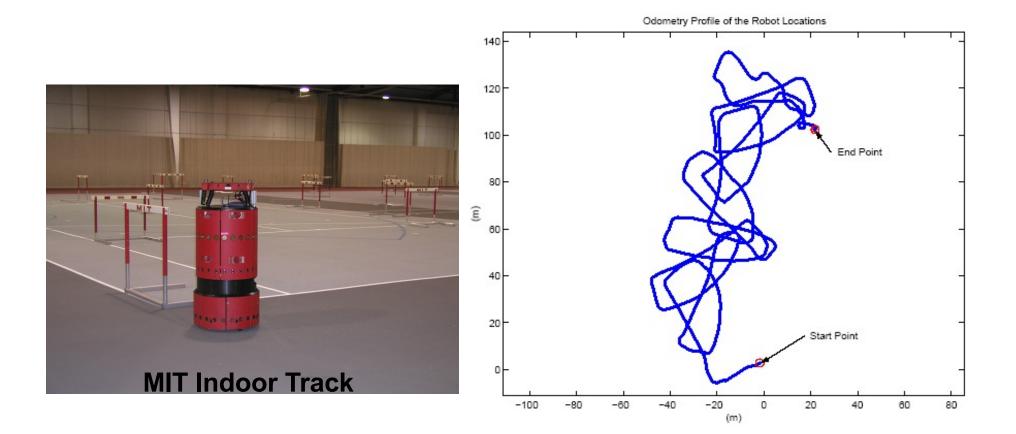








SLAM Using Landmarks



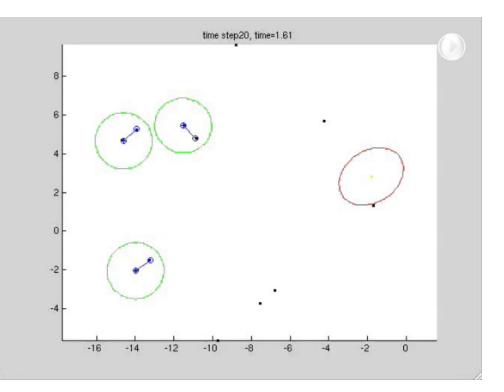
Test Environment (Point Landmarks)

View from Vehicle

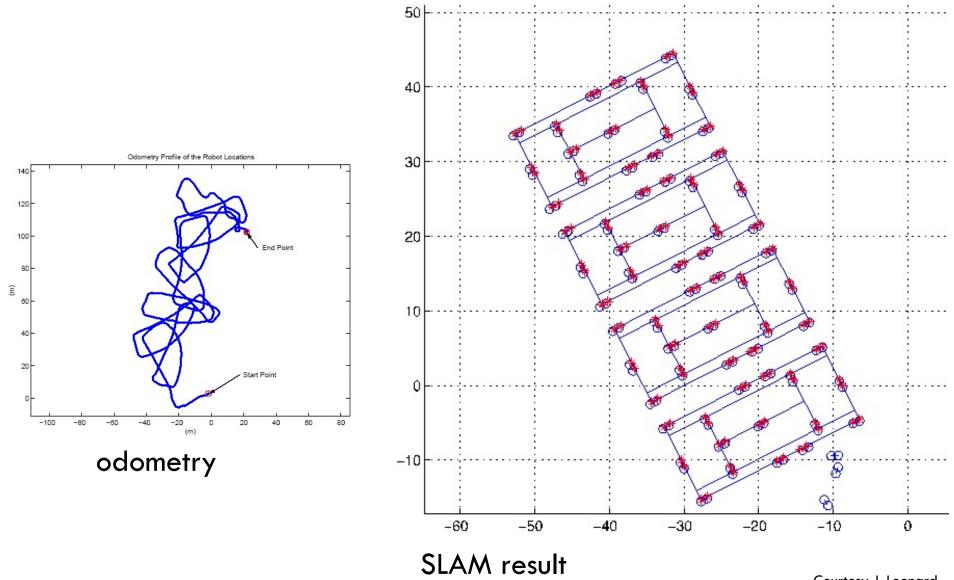
SLAM Using Landmarks

- 1. Move
- 2. Sense
- 3. Associate measurements with known features
- 4. Update state estimates for robot and previously mapped features
- 5. Find new features from unassociated measurements
- 6. Initialize new features
- 7. Repeat

MIT Indoor Track



Comparison with Ground Truth



Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-and-egg problem

Courtesy: Cyrill Stachniss

Definition of the SLAM Problem

Given

• The robot's controls $u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$

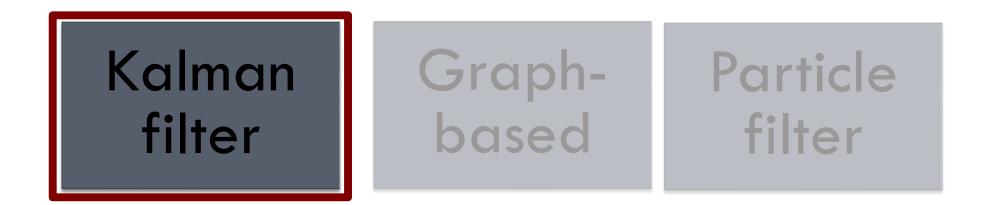
Observations $z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$ Wanted

Map of the environment m

Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Three Main Paradigms



Courtesy: Cyrill Stachniss

Bayes Filter

Recursive filter with prediction and correction step

Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction

 $bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$

Courtesy: Cyrill Stachniss

EKF SLAM

- □ Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose}}, \underbrace{m_{1,x}, m_{1,y}}_{\text{landmark 1}}, \dots, \underbrace{m_{n,x}, m_{n,y}}_{\text{landmark n}})^T$$

EKF SLAM: State Representation

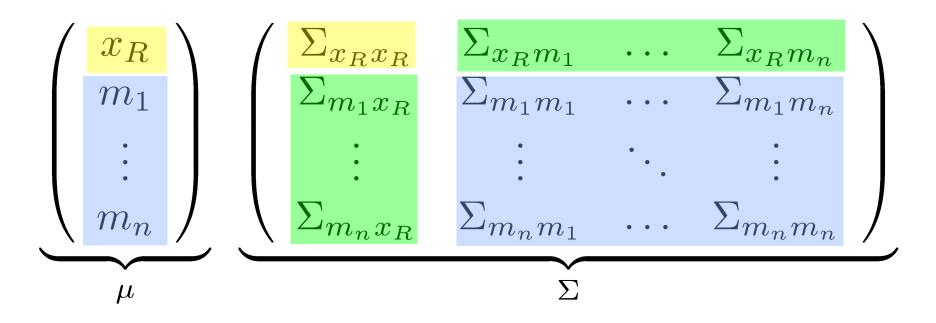
Map with n landmarks: (3+2n)-dimensional Gaussian

Belief is represented by

(x	\setminus ((σ_{xx}	σ_{xy}	$\sigma_{x heta}$	$\sigma_{xm_{1,x}}$	$\sigma_{xm_{1,y}}$	•••	$\sigma_{xm_{n,x}}$	$\sigma_{xm_{n,y}}$
	y	1 1		σ_{yx}	σ_{yy}	$\sigma_{y heta}$	$\sigma_{ym_{1,x}}$	$\sigma_{ym_{1,y}}$	•••	$\sigma_{m_{n,x}}$	$\sigma_{m_{n,y}}$
	θ			$\sigma_{ heta x}$	$\sigma_{ heta y}$	$\sigma_{ heta heta}$	$\sigma_{ heta m_{1,x}}$	$\sigma_{ heta m_{1,y}}$	•••	$\sigma_{ heta m_{n,x}}$	$\sigma_{ heta m_{n,y}}$
	$m_{1,x}$		σ_{i}	$m_{1,x}x$	$\sigma_{m_{1,x}y}$	$\sigma_{ heta}$	$\sigma_{m_{1,x}m_{1,x}}$	$\sigma_{m_{1,x}m_{1,y}}$	• • •	$\sigma_{m_{1,x}m_{n,x}}$	$\sigma_{m_{1,x}m_{n,y}}$
	$m_{1,y}$		σ_{i}	$m_{1,y}x$	$\sigma_{m_{1,y}y}$	$\sigma_{ heta}$		$\sigma_{m_{1,y}m_{1,y}}$		$\sigma_{m_{1,y}m_{n,x}}$	$\sigma_{m_{1,y}m_{n,y}}$
	• •			• •	•	• • •	• •	• •	•	• •	:
	$m_{n,x}$		σ_{i}	$n_{n,x}x$	$\sigma_{m_{n,x}y}$	$\sigma_{ heta}$	$\sigma_{m_{n,x}m_{1,x}}$	$\sigma_{m_{n,x}m_{1,y}}$	• • •	$\sigma_{m_{n,x}m_{n,x}}$	$\sigma_{m_{n,x}m_{n,y}}$
\mathcal{L}	$m_{n,y}$,							$\sigma_{m_{n,y}m_{1,y}}$		$\sigma_{m_{n,y}m_{n,x}}$	$\sigma_{m_{n,y}m_{n,y}}$ /
	$\widetilde{\mu}$							Σ			

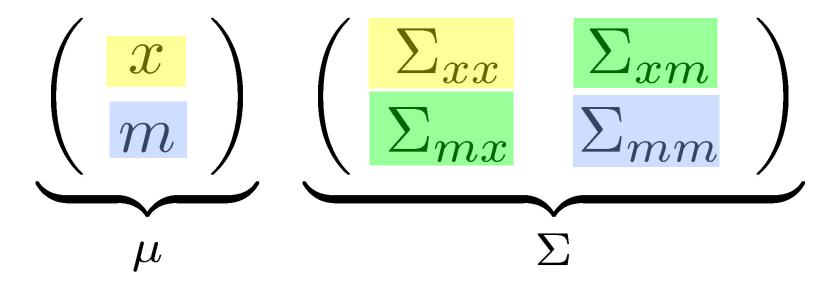
EKF SLAM: State Representation

More compactly



EKF SLAM: State Representation

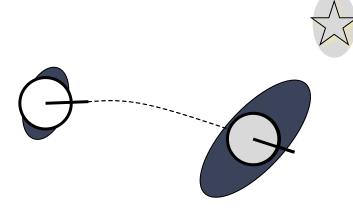
 \square Even more compactly (note: $x_R o x$)

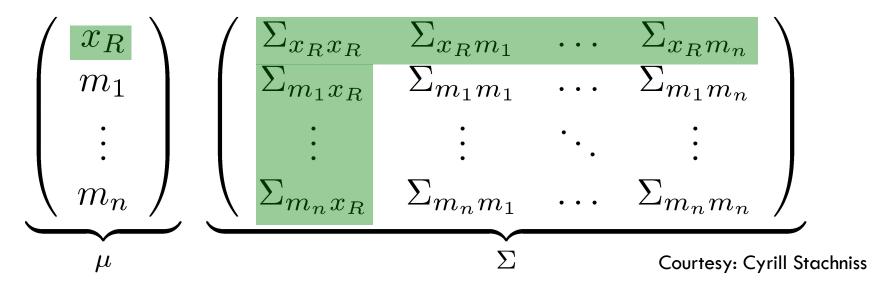


EKF SLAM: Filter Cycle

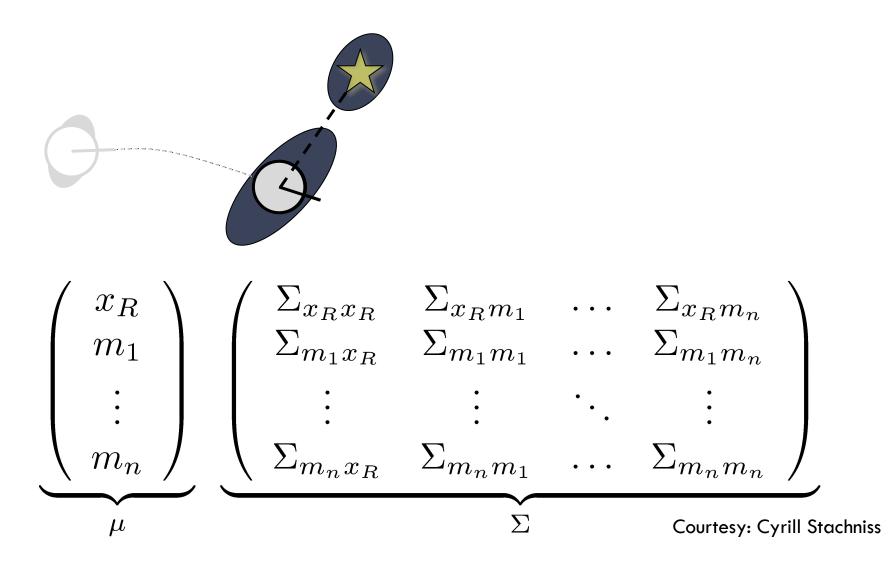
- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

EKF SLAM: State Prediction

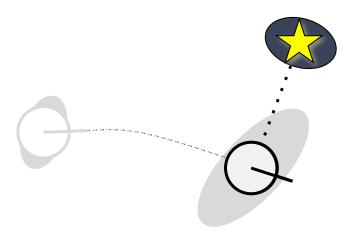


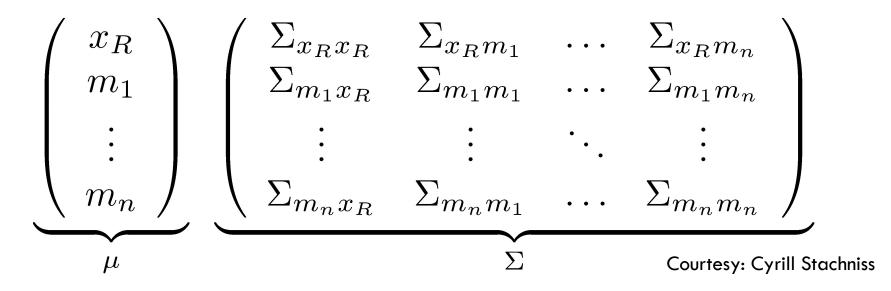


EKF SLAM: Measurement Prediction

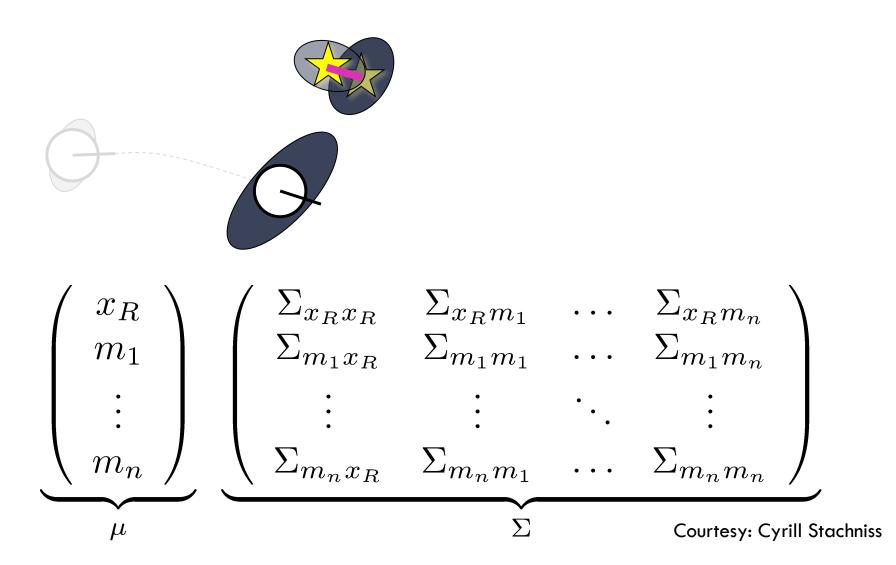


EKF SLAM: Obtained Measurement

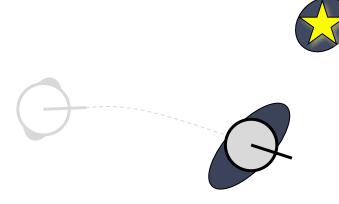


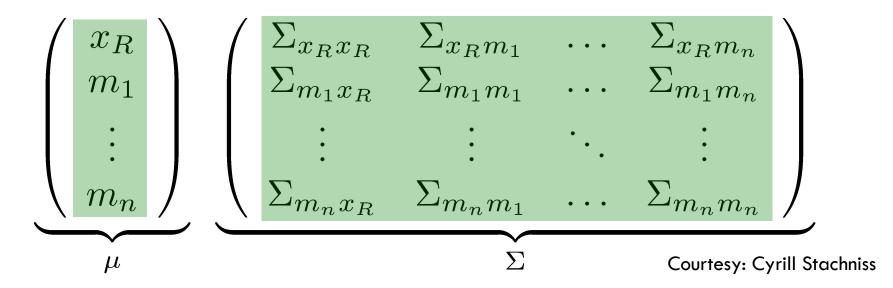


EKF SLAM: Data Association and Difference Between h(x) and z



EKF SLAM: Update Step





EKF SLAM: Concrete Example

Setup

- Robot moves in the 2D plane
- Velocity-based motion model
- Robot observes point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

Initialization

 Robot starts in its own reference frame (all landmarks unknown)

□ 2N+3 dimensions

 $\mu_{0} = (0 \ 0 \ 0 \ \dots \ 0)^{T}$ $\Sigma_{0} = \begin{pmatrix} 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ \infty \ \dots \ 0 \\ \vdots \ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ 0 \ \dots \ \infty \end{pmatrix}$

Extended Kalman Filter Algorithm

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$
3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t

Prediction Step (Motion)

- Goal: Update state space based on the robot's motion
- Robot motion in the plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t) \\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t) \\ \omega_t\Delta t \end{pmatrix}$$

$$g_{x,y,\theta}(u_t, (x, y, \theta)^T)$$

 \square How to map that to the 2N+3 dim space?

Update the State Space

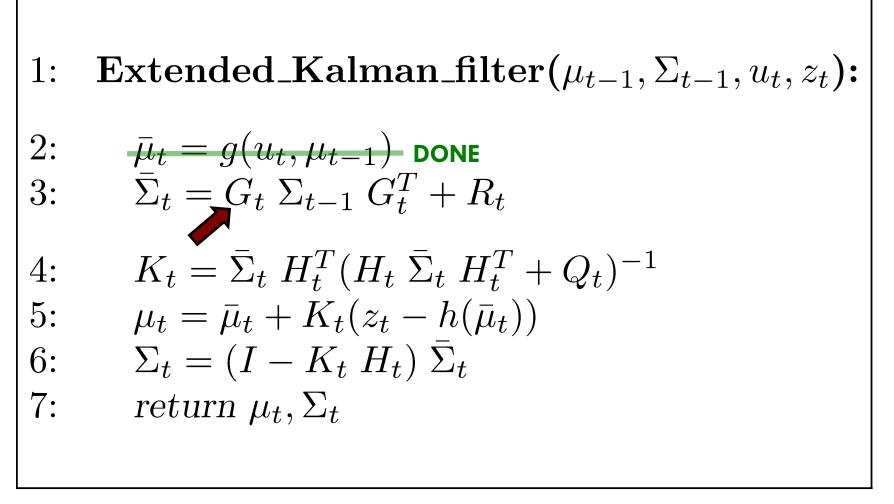
□ From the motion in the plane

$$\begin{pmatrix} x'\\ y'\\ \theta' \end{pmatrix} = \begin{pmatrix} x\\ y\\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t)\\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t)\\ \omega_t\Delta t \end{pmatrix}$$

 \square to the 2N+3 dimensional space

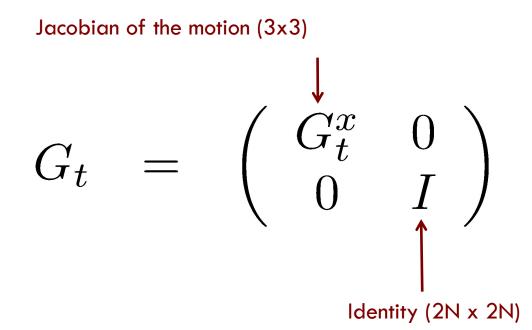
$$\begin{pmatrix} x'\\y'\\\theta'\\\vdots \end{pmatrix} = \begin{pmatrix} x\\y\\\theta\\\vdots \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 \dots 0\\0 & 1 & 0 & 0 \dots 0\\0 & 0 & 1 & 0 \dots 0\\0 & 0 & 1 & 0 \dots 0\\g(u_t,x_t) \end{pmatrix}^T \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t)\\\frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t)\\\omega_t\Delta t \end{pmatrix}$$

Extended Kalman Filter Algorithm



Update Covariance

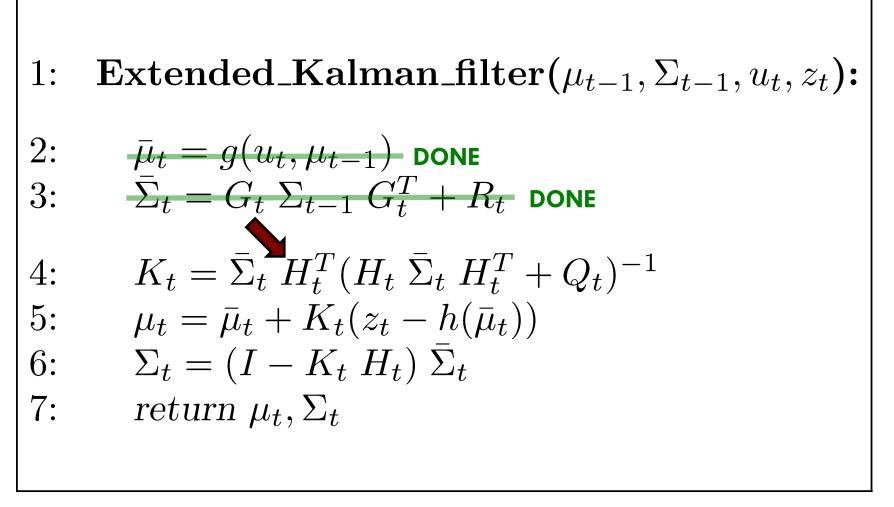
The function g only affects the robot's motion and not the landmarks



This Leads to the Time Propagation

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ Apply & DONE
3: $\rightarrow \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $= \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix} \begin{pmatrix} (G_t^x)^T & 0 \\ 0 & I \end{pmatrix} + R_t$
 $= \begin{pmatrix} G_t^x \Sigma_{xx} (G_t^x)^T & G_t^x \Sigma_{xm} \\ (G_t^x \Sigma_{xm})^T & \Sigma_{mm} \end{pmatrix} + R_t$

Extended Kalman Filter Algorithm



EKF SLAM: Correction Step

- Known data association
- $\Box c_t^i = j : i$ -th measurement at time t observes the landmark with index j
- Initialize landmark if unobserved
- Compute the expected observation
- \square Compute the Jacobian of h
- Proceed with computing the Kalman gain

Range-Bearing Observation

- \square Range-Bearing observation $\ z^i_t = (r^i_t, \phi^i_t)^T$
- If landmark has not been observed

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

observed estimated location of robot's landmark j location

relative measurement

Jacobian for the Observation

$$\square \text{ Based on } \qquad \delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$
$$q = \delta^T \delta$$
$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

Compute the Jacobian

$${}^{\text{low}}H_t^i = \frac{\partial h(\bar{\mu_t})}{\partial \bar{\mu}_t} \\ = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Jacobian for the Observation

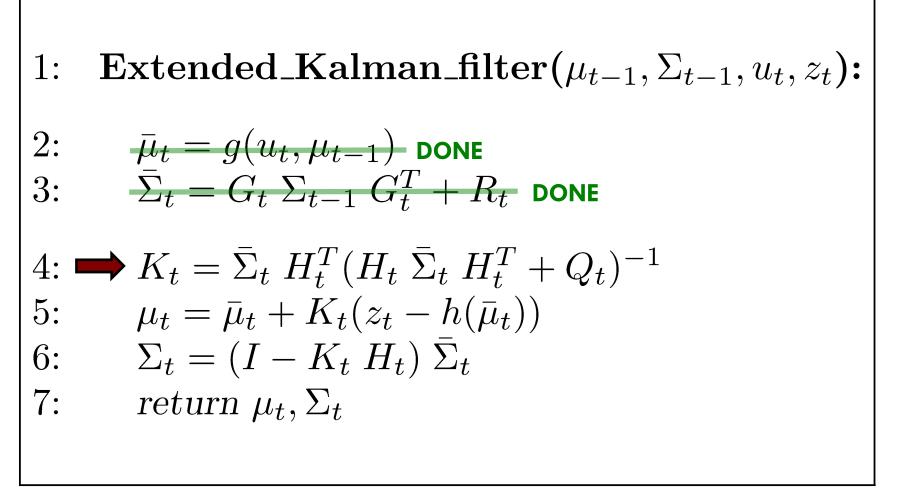
Use the computed Jacobian

$${}^{\text{low}}H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

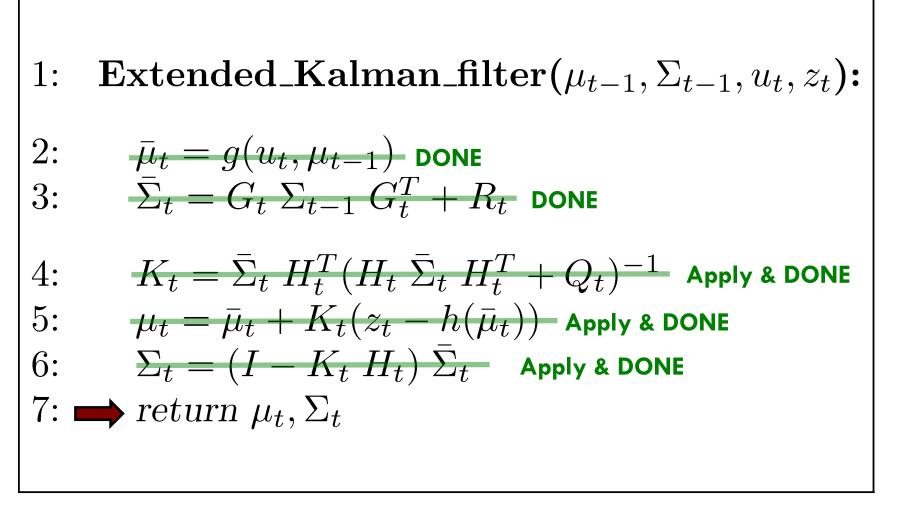
map it to the high dimensional space

$$H_t^i = {}^{\text{low}} H_t^i F_{x,j} \\ \downarrow \\ F_{x,j} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \cdots & 0 \\ & & & 2j-2 & & & 2N-2j \end{pmatrix}$$

Next Steps as Specified...



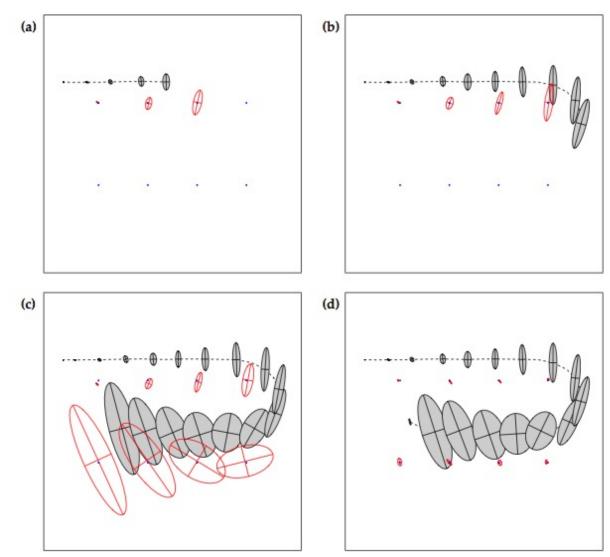
Extended Kalman Filter Algorithm



EKF SLAM Complexity

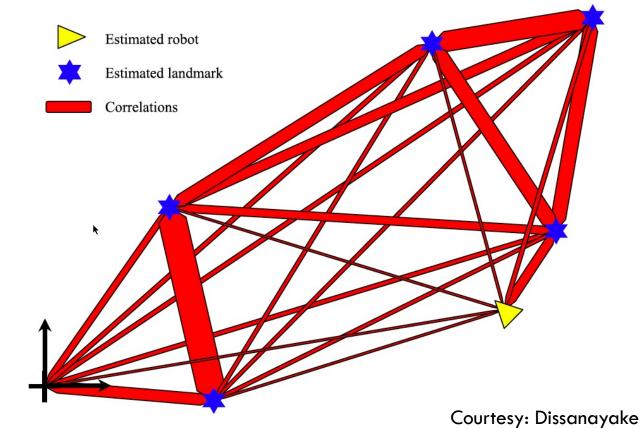
- Cubic complexity depends only on the measurement dimensionality
- \square Cost per step: dominated by the number of landmarks: $O(n^2)$
- \square Memory consumption: $O(n^2)$
- The EKF becomes computationally intractable for large maps!

Online SLAM Example

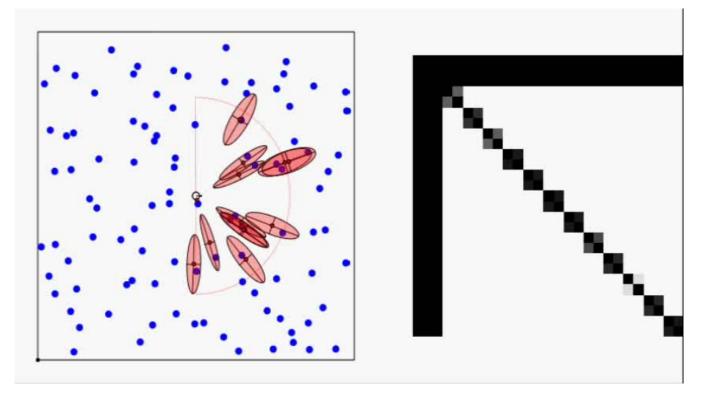


EKF SLAM Correlations

In the limit, the landmark estimates become fully correlated



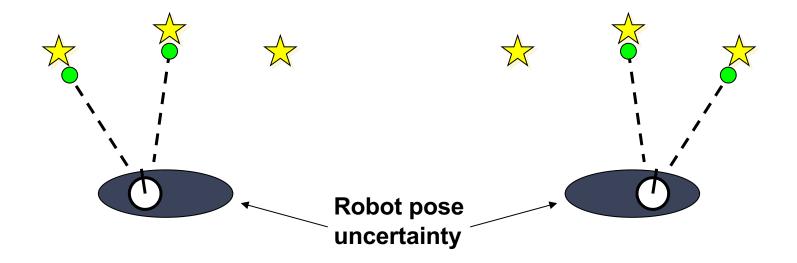
EKF SLAM Correlations



Blue path = true path **Red path** = estimated path **Black path** = odometry

- Approximate the SLAM posterior with a high-dimensional Gaussian [Smith & Cheesman, 1986] ...
- Single hypothesis data association

Data Association in SLAM

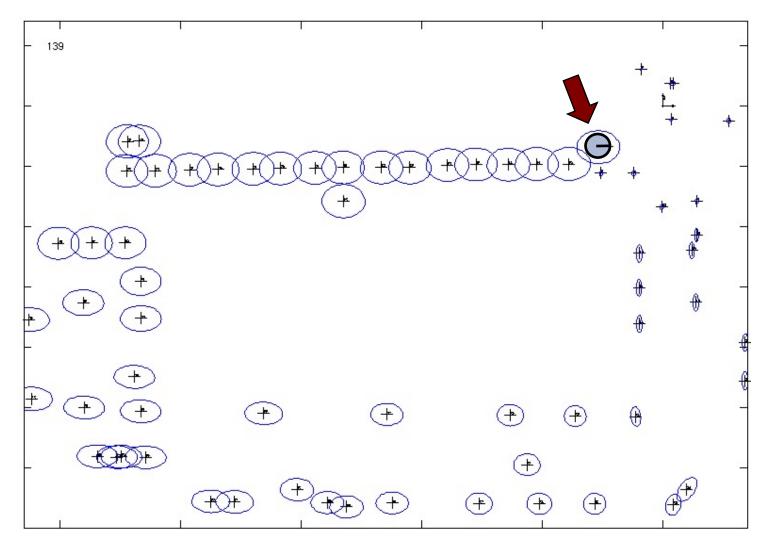


- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
 - **EKF SLAM is brittle in this regard**
- Pose error correlates data associations

Loop-Closing

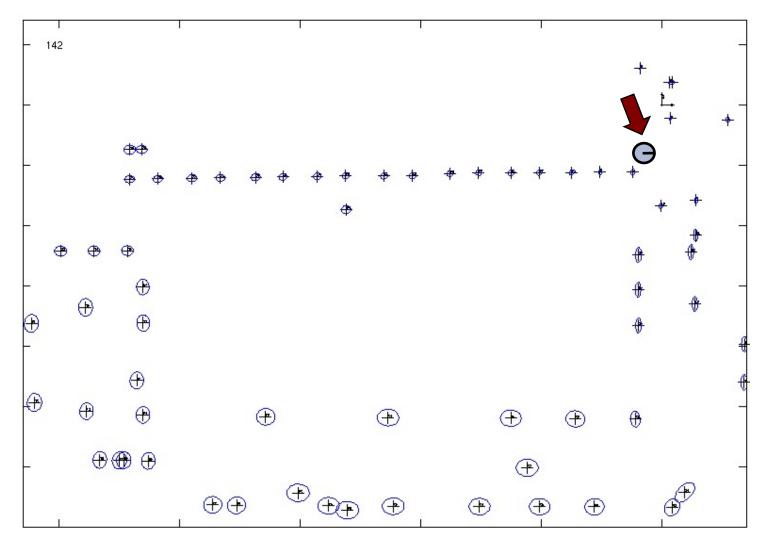
- Loop-closing means recognizing an already mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop-closure (whether the closure was correct or not)

Before the Loop-Closure



Courtesy: K. Arras

After the Loop-Closure

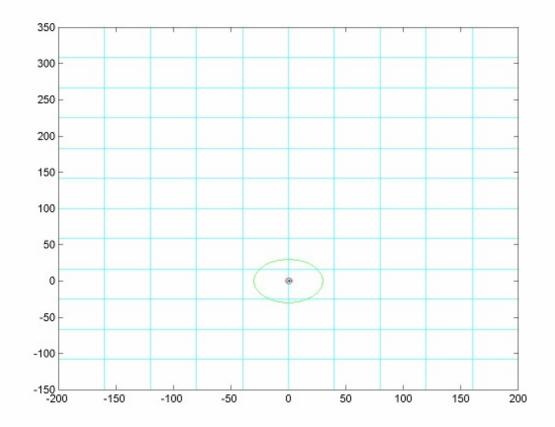


Courtesy: K. Arras

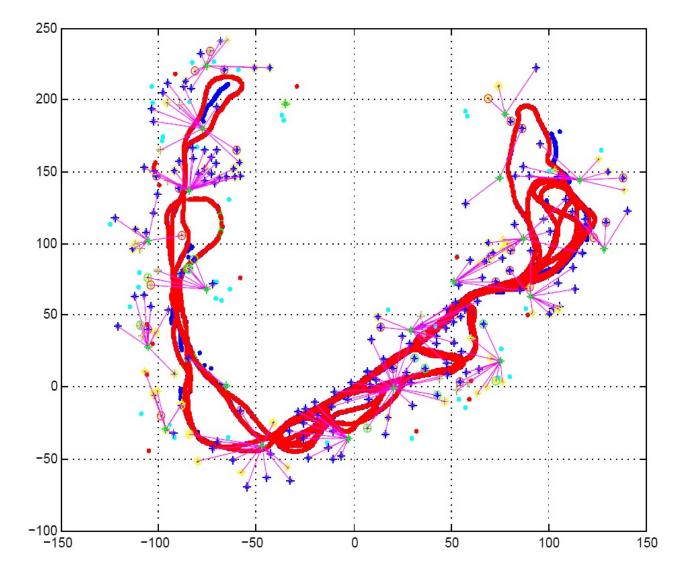
Example: Victoria Park Dataset

Victoria Park: Data Acquisition

Victoria Park: EKF Estimate



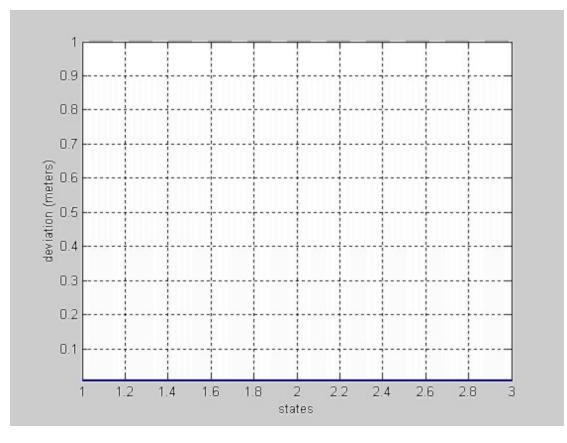
Victoria Park: EKF Estimate



Courtesy: E. Nebot

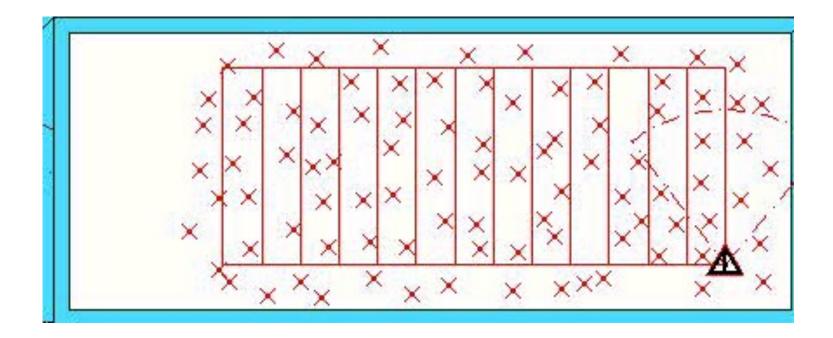
Victoria Park: Landmarks

Victoria Park: Landmark Covariance



Andrew Davison: MonoSLAM

Sub-maps for EKF SLAM



[Leonard et al 1998]

EKF SLAM Summary

- □ Quadratic in the number of landmarks: $O(n^2)$
- □ Convergence results for the linear case.
- □ Can diverge if nonlinearities are large!
- Have been applied successfully in large-scale environments.
- Approximations reduce the computational complexity.

Literature

EKF SLAM

- "Probabilistic Robotics", Chapter 10
- Smith, Self, & Cheeseman: "Estimating Uncertain Spatial Relationships in Robotics"
- Dissanayake et al.: "A Solution to the Simultaneous Localization and Map Building (SLAM) Problem"
- Durrant-Whyte & Bailey: "SLAM Part 1" and "SLAM Part 2" tutorials

Graph-SLAM

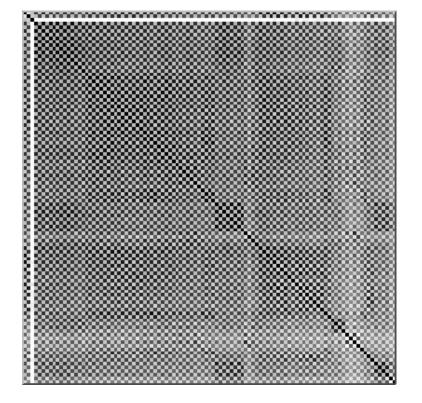
- Full SLAM technique
- Generates probabilistic links
- Computes map only occasionally
- Based on Information Filter form

Information Form

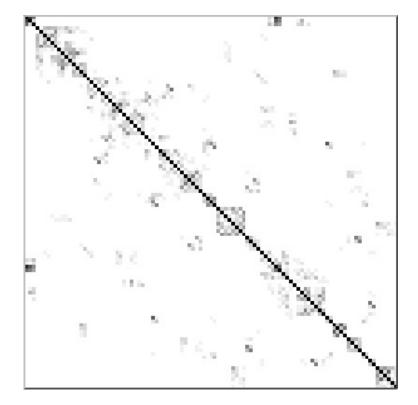
- Represent posterior in canonical form
 - $\Omega = \Sigma^{-1}$ Information matrix
 - $\xi = \Sigma^{-1} \mu$ Information vector
- One-to-one transform between canonical and moment representation

$$\Sigma = \Omega^{-1}$$
$$\mu = \Omega^{-1} \xi$$

Information vs. Moment Form

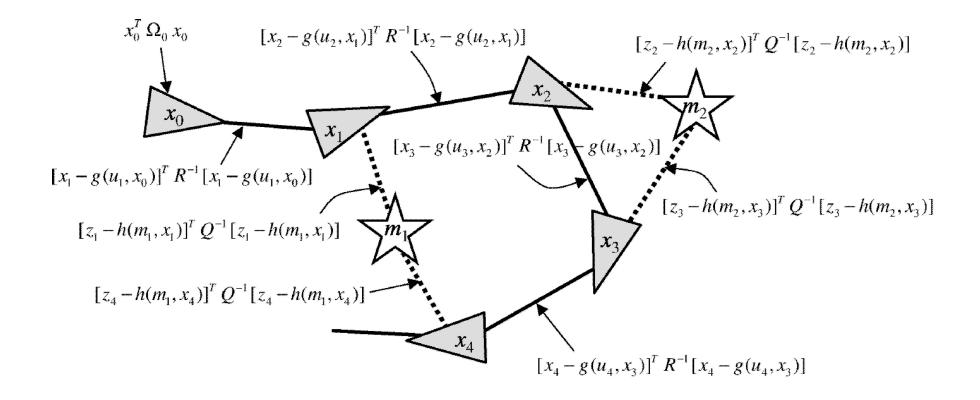


Correlation matrix



Information matrix

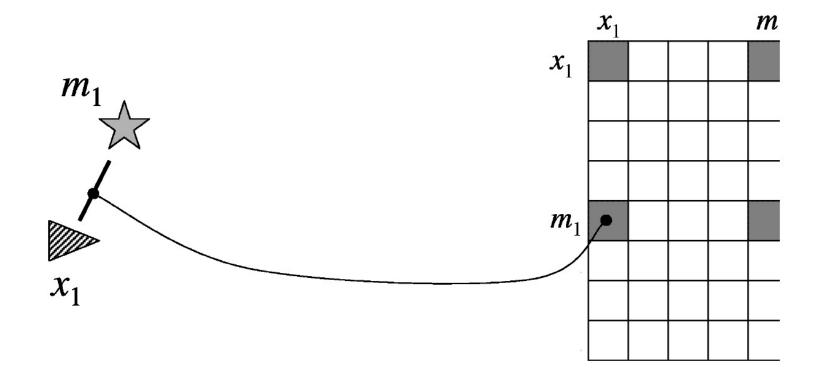
Graph-SLAM Idea



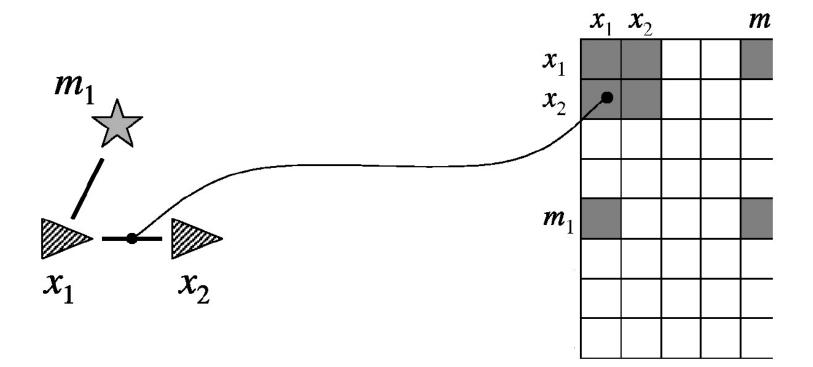
Sum of all constraints:

$$\boldsymbol{J}_{\text{GraphSLAM}} = \boldsymbol{x}_{0}^{T} \, \boldsymbol{\Omega}_{0} \, \boldsymbol{x}_{0} + \sum_{t} \left[\boldsymbol{x}_{t} - \boldsymbol{g}(\boldsymbol{u}_{t}, \boldsymbol{x}_{t-1}) \right]^{T} \, \boldsymbol{R}^{-1} \left[\boldsymbol{x}_{t} - \boldsymbol{g}(\boldsymbol{u}_{t}, \boldsymbol{x}_{t-1}) \right] + \sum_{t} \left[\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{m}_{c_{t}}, \boldsymbol{x}_{t}) \right]^{T} \, \boldsymbol{Q}^{-1} \left[\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{m}_{c_{t}}, \boldsymbol{x}_{t}) \right]^{T}$$

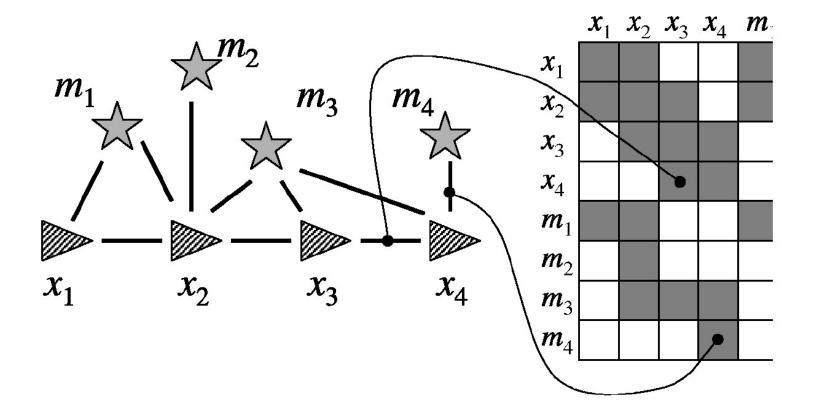
Graph-SLAM Idea (1)



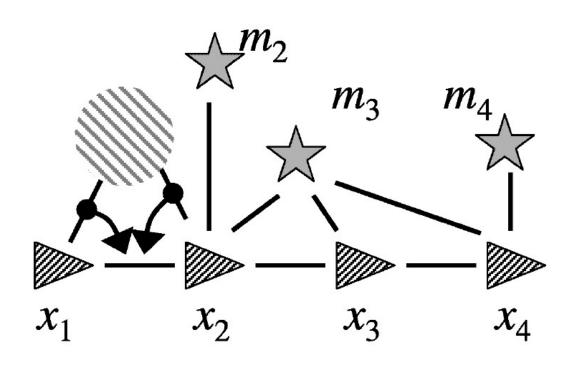
Graph-SLAM Idea (2)

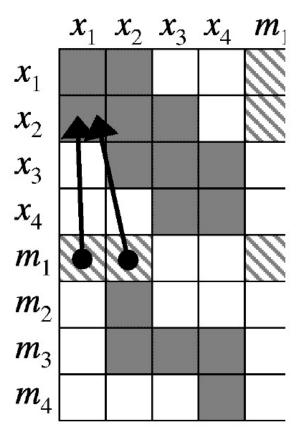


Graph-SLAM Idea (3)

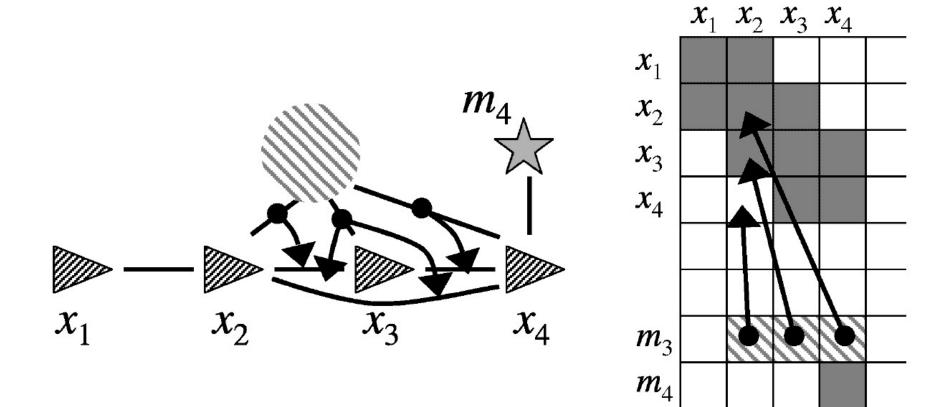


Graph-SLAM Inference (1)

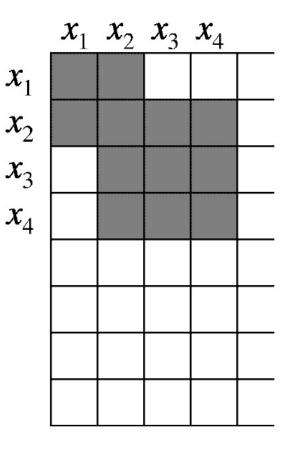


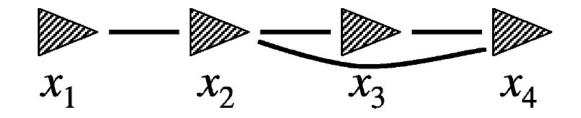


Graph-SLAM Inference (2)

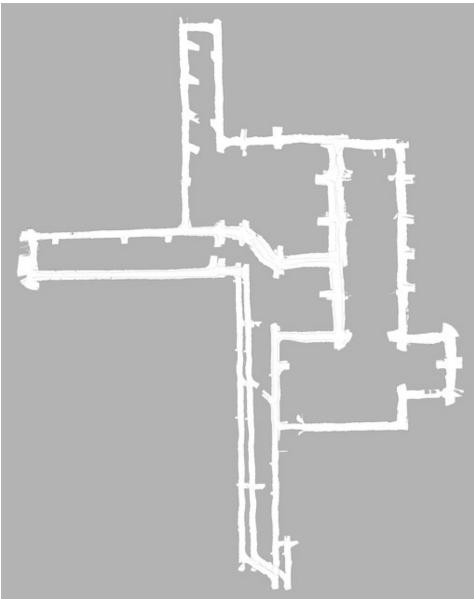


Graph-SLAM Inference (3)

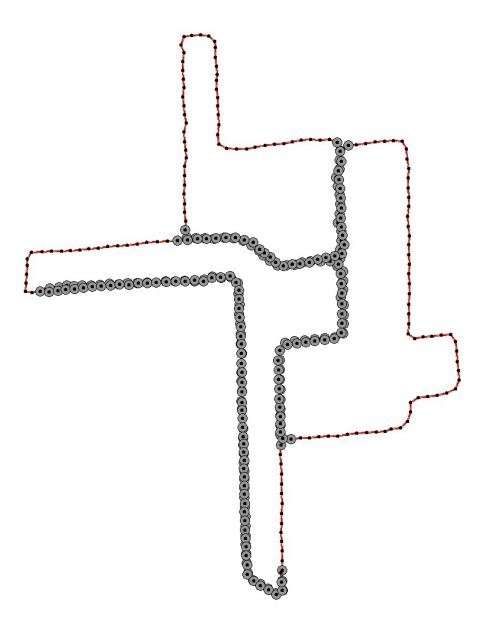




Mine Mapping



Mine Mapping: Data Associations



Efficient Map Recovery

- Information matrix inversion can be avoided if only best map estimate is required
- Minimize constraint function J_{GraphSLAM} using standard optimization techniques (gradient descent, Levenberg Marquardt, conjugate gradient)

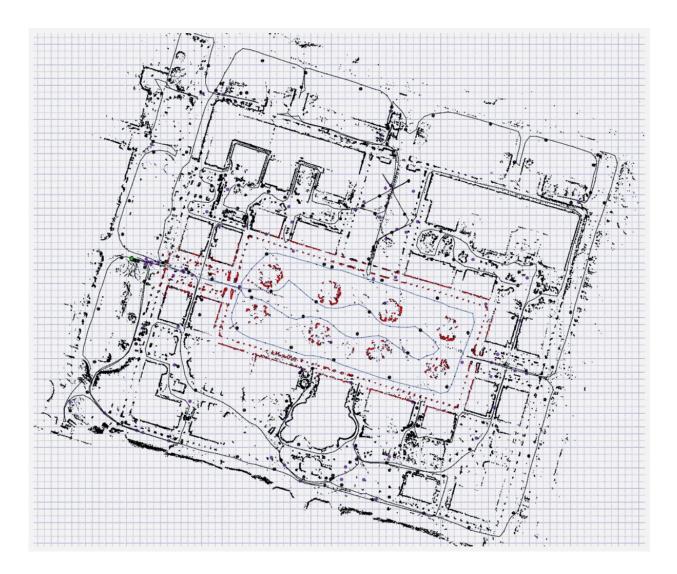
3D Outdoor Mapping

10⁸ features, 10⁵ poses, only few secs using cg.

Map Before Optimization

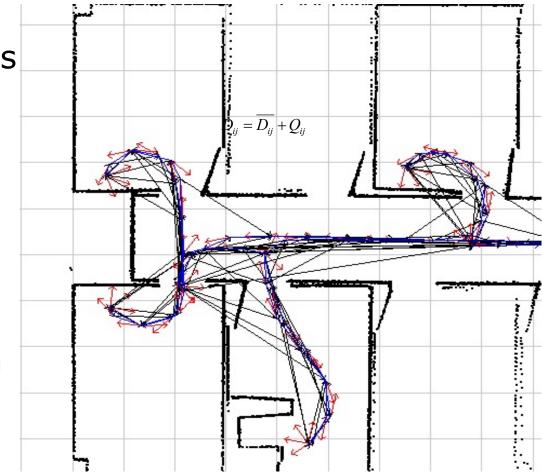


Map After Optimization



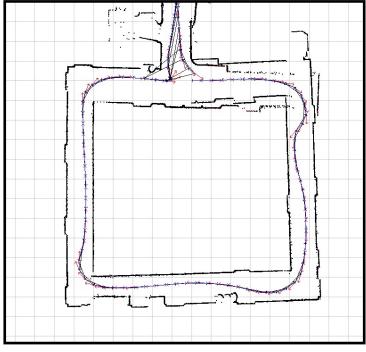
Robot Poses and Scans [Lu and Milios 1997]

- Successive robot poses connected by odometry
- Laser scan matching yields constraints between poses
- Loop closure based on map patches created from multiple scans

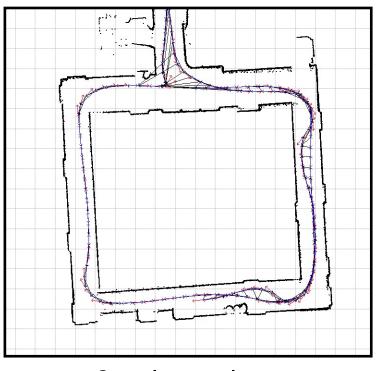


Loop Closure

- Use scan patches to detect loop closure
- Add new position constraints
- Deform the network based on covariances of matches



Before loop closure



After loop closure

Mapping the Allen Center

Graph-SLAM Summary

- Adresses full SLAM problem
- Constructs link graph between poses and poses/landmarks
- Graph is sparse: number of edges linear in number of nodes
- Inference performed by building information matrix and vector (linearized form)
- Map recovered by reduction to robot poses, followed by conversion to moment representation, followed by estimation of landmark positions
- ML estimate by minimization of $J_{GraphSLAM}$
- Data association by iterative greedy search