CSE 571: Robotics

Motion Planning

Tapomayukh Bhattacharjee 28th January 2019

Many slides courtesy of Maxim Likhachev, Howie Choset, Siddhartha Srinivasa, and Seth Teller

Motion Planning in Robotics

Planning: Process of thinking about and organizing the activities required to achieve a desired goal

Motion Planning: Convert high-level task specification to low-level descriptions of how to move

Specification

Motion Planning Problem

Model of the Robot (states and actions) Model of the world Current state of the robot Current state of the world Cost function (Optional) Desired state(s) of the robot

Solution

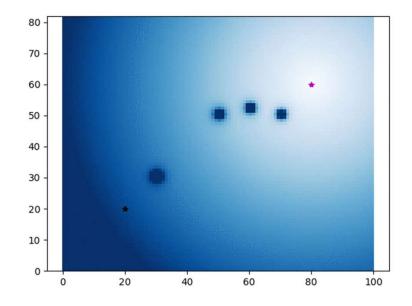
Plan that prescribes a sequence of actions Plan terminates at the desired state Optionally minimizes the cost of executing the actions

Omnidirectional Robot

Motion Planning Problem

States and Actions? World specification? Current state of the robot Current state of the world Possible cost functions? Desired state(s) of the robot

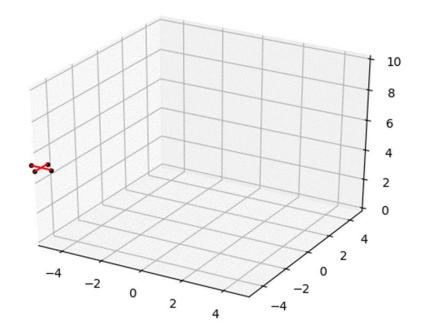
Examples?



Drones

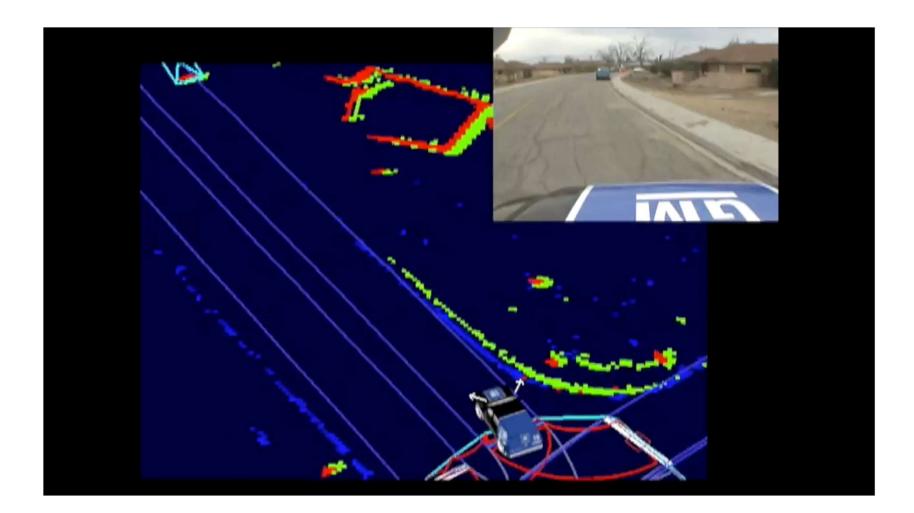
Motion Planning Problem

States and Actions? World specification? Current state of the robot Current state of the world Possible cost functions? Desired state(s) of the robot



Drones

Autonomous Driving

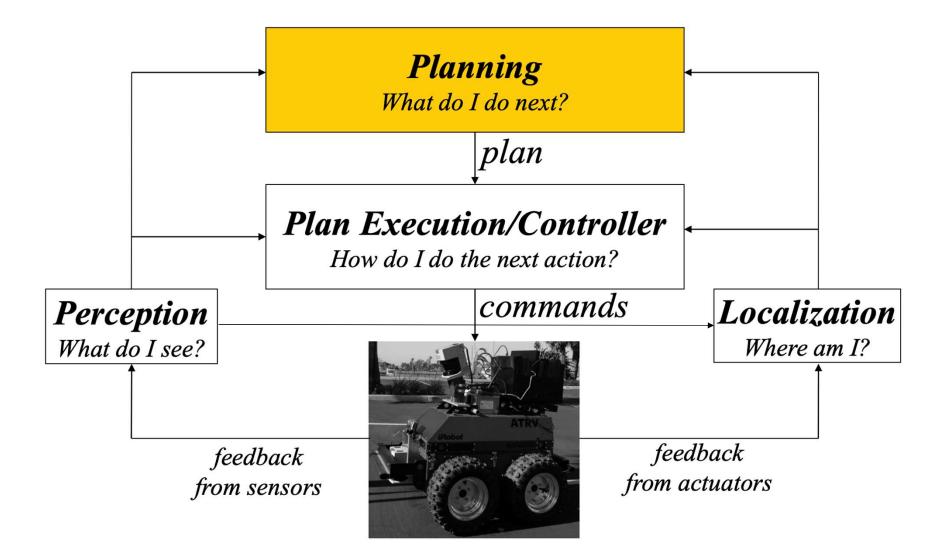


Urban Challenge Race, CMU Team, Planning with Anytime D* (A* with Replan)

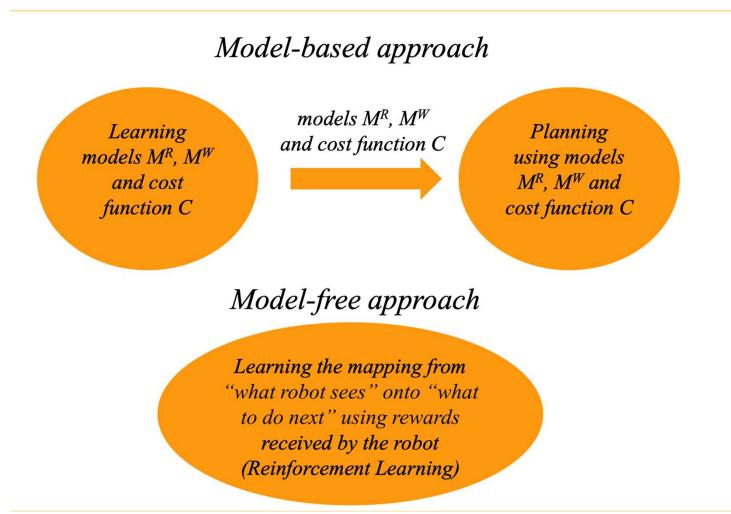
Manipulation

Food Manipulation: Pick up fork using planning with LRA* (Lazy variant of A*)

Where does Planning fit?

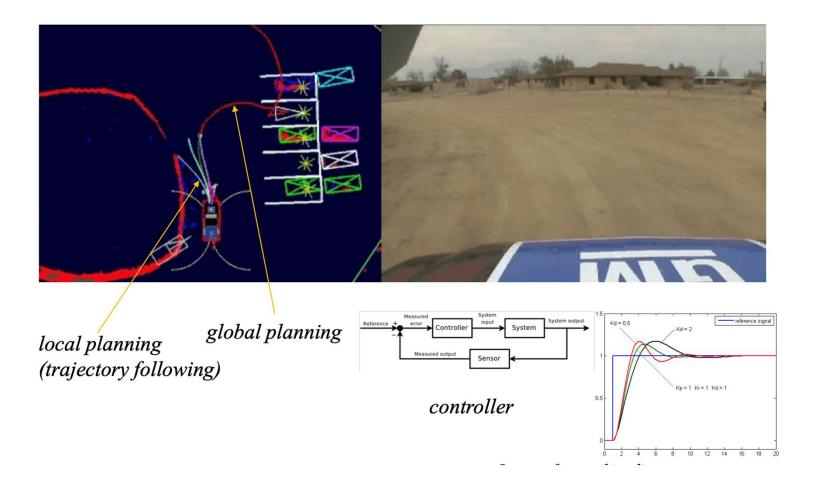


Planning and Learning

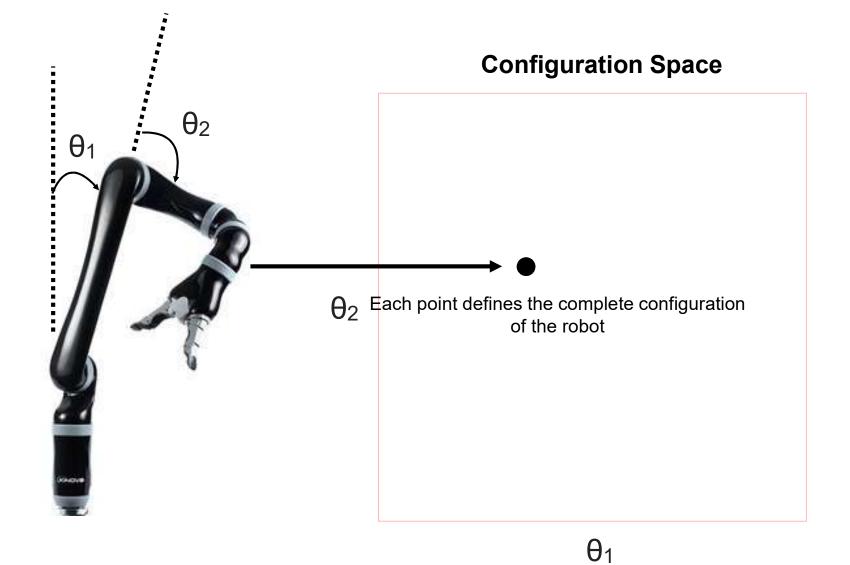


Deterministic vs. Under Uncertainty

Planning and Control



What space to plan in?



Configuration Space

A configuration is legal if

- it is not in collision
- is valid (within limits)

A configuration space is the set of legal configurations

Legal configurations for the base of the robot:

What is the dimensionality of the configuration space of the base?

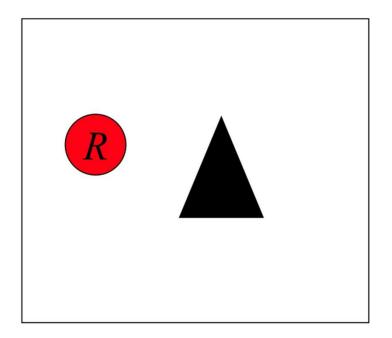
Configuration space for a robot base in 2D world is:

- 2D if the robot is circular (symmetric in all directions)
- Why?

- 3D if the robot is non-circular (asymmetric)

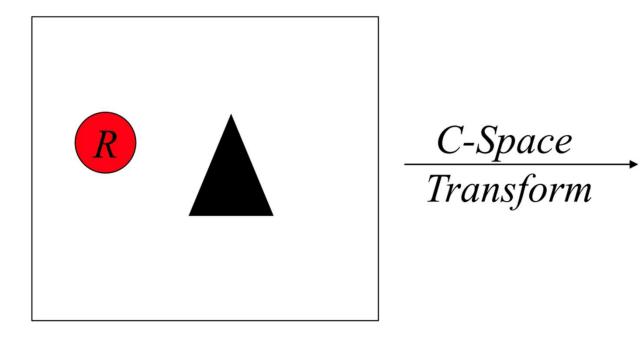
Configuration space for a robot base in 2D world is:

- 2D if the robot is circular (symmetric in all directions)



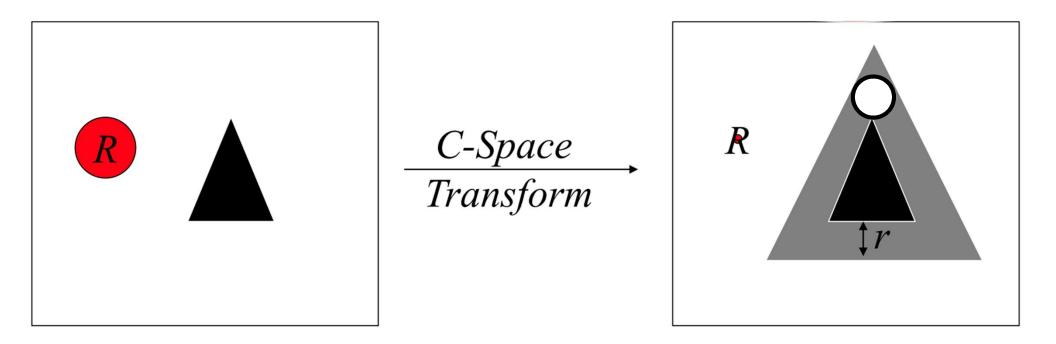
Configuration space for a robot base in 2D world is:

- 2D if the robot is circular (symmetric in all directions)



Configuration space for a robot base in 2D world is:

- 2D if the robot is circular (symmetric in all directions)

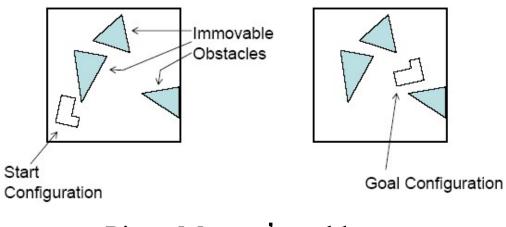


Is this a correct transformation?

Configuration Space

Mathematical Representation (See Notes)

Motion Planning: Piano Movers' Problem (See Notes)

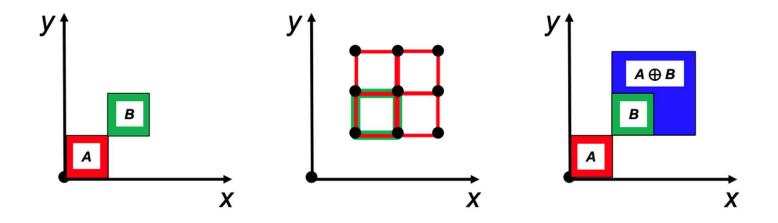


Piano Movers' problem

Notes courtesy of Siddhartha Srinivasa

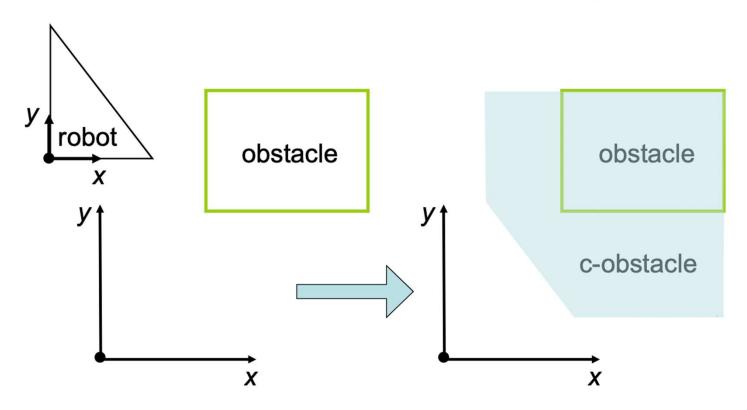
Minkowsky Sum

- Given two sets A, B ∈ R^d, their Minkowski sum, denoted A ⊕ B, is the set { a + b | a ∈ A, b ∈ B }
 Result of adding each element of A to each element of B
- If A & B convex, just add vertices & find convex hull:



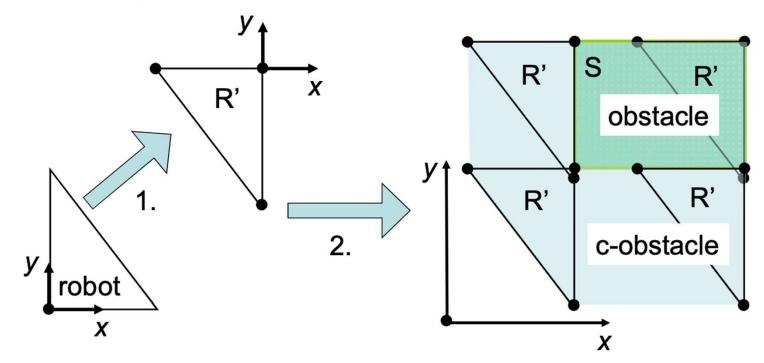
Computation of C-Obstacle: Minkowsky Difference

- Inputs: robot polygon R and obstacle polygon S
- Output: c-space obstacle c-obstacle(S, R)

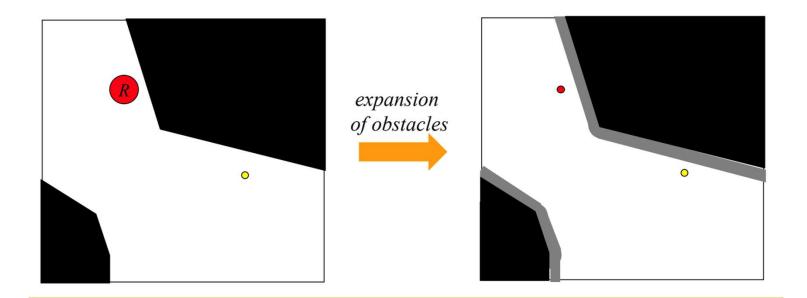


Computation of C-Obstacle: Minkowsky Difference

- 1. Reflect robot R about its origin to produce R'
- 2. Compute Minkowski sum of R' and obstacle S



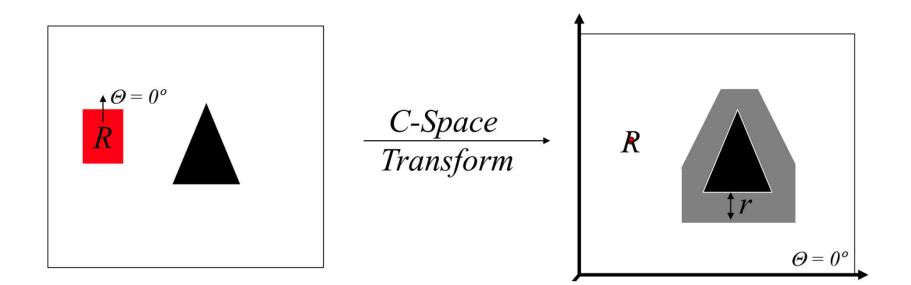
Configuration space for a robot base in 2D world is: - 2D if the robot is circular (symmetric in all directions)



Is it necessary to build c-space obstacles?

Configuration space for a robot base in 2D world is:

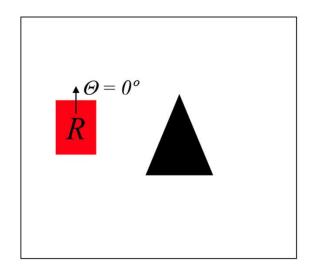
- 3D if the robot is asymmetric



Difficult to build in real-time! What do we do?

Configuration space for a robot base in 2D world is:

- 3D if the robot is asymmetric



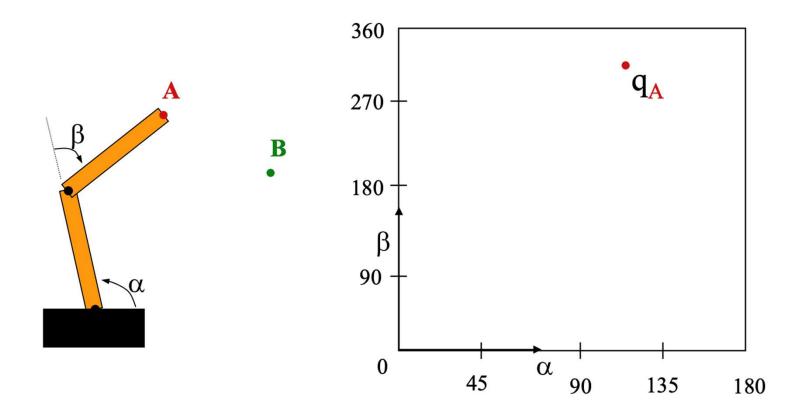
C-Space Transform Earlier methods like potential fields

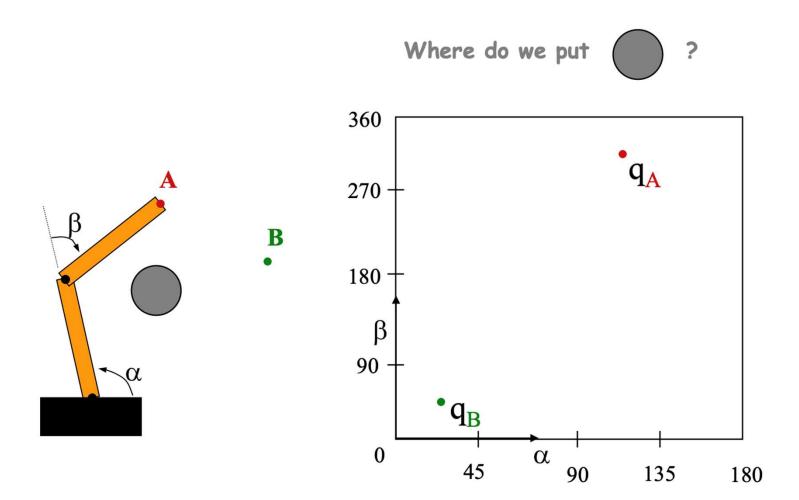
- Is it necessary to reason about c-space obstacles?

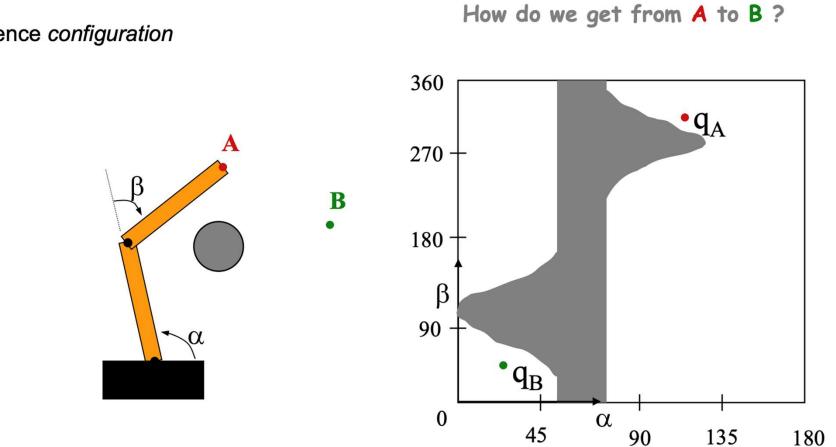
- Collision checking independent of setup of planner

Difficult to build in real-time! What do we do?

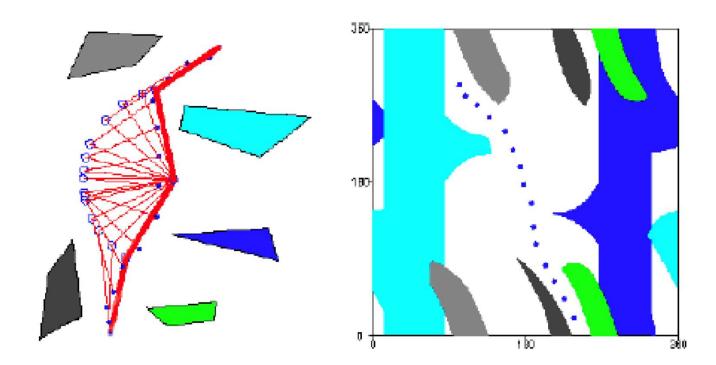
What is the C-Space?

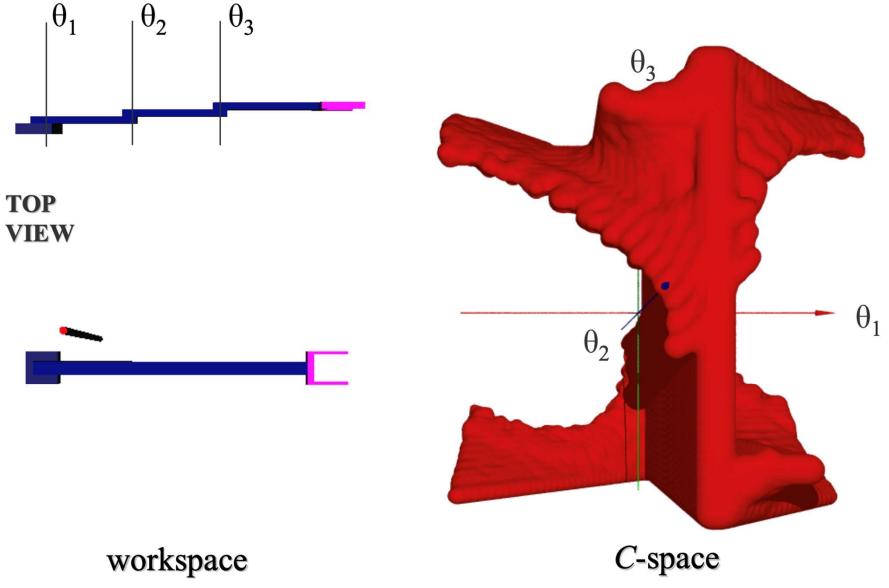






Reference configuration





Configuration Space

A configuration is legal if

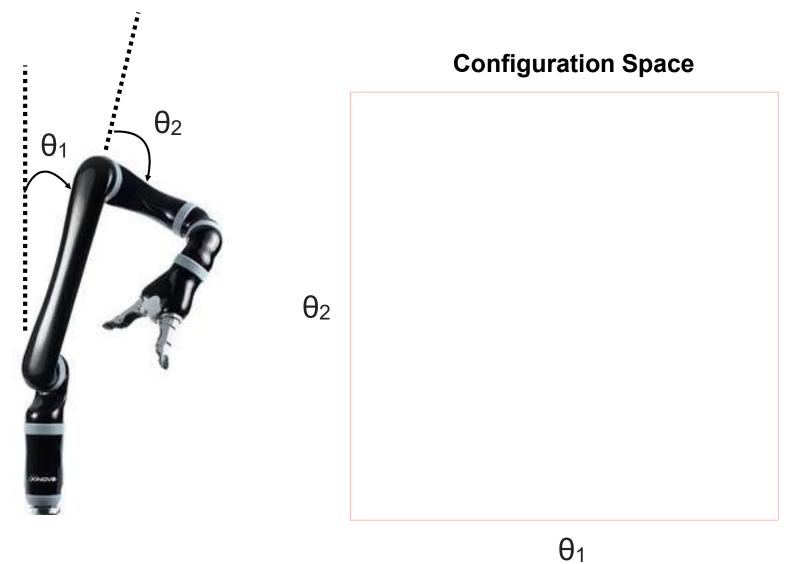
- it is not in collision
- is valid (within limits)

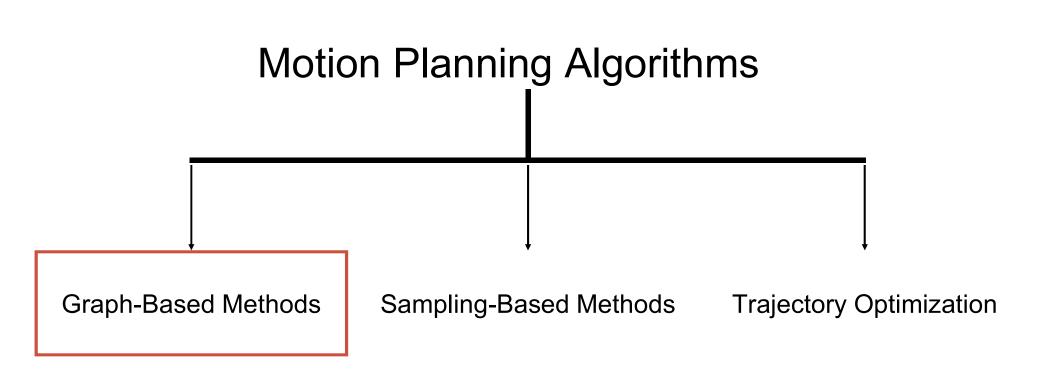
A configuration space is the set of legal configurations

Each point in the space -> configuration

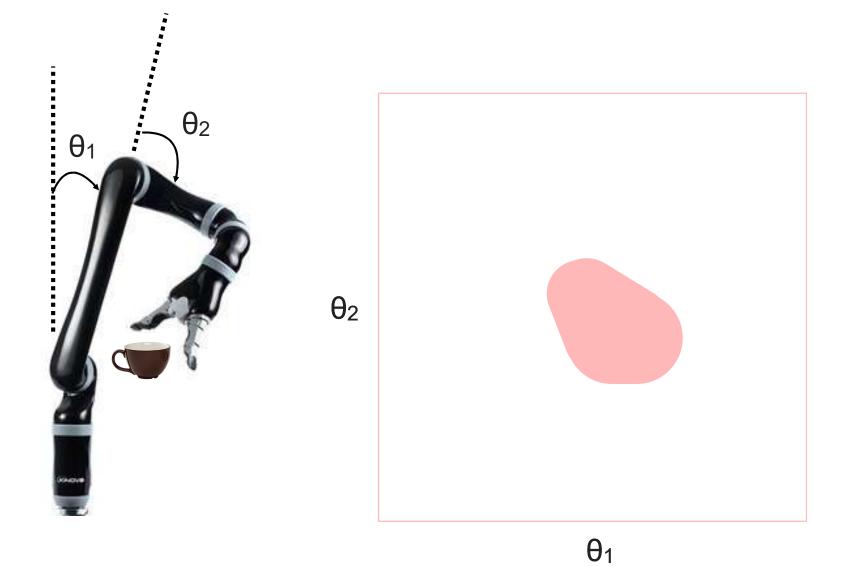
Obstacle representation is non-trivial - legality of configuration is determined when necessary

How do we plan in this continuous space?

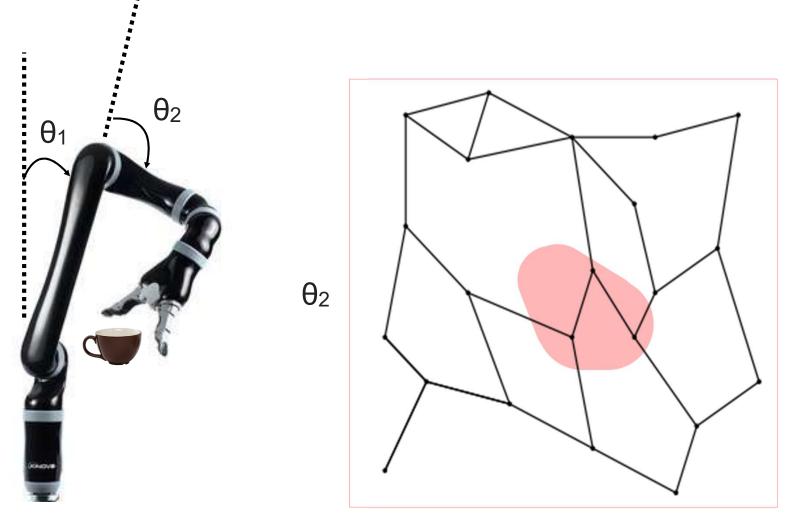




Planning in continuous space



Planning as Graph Search



Graph Representations

Skeletonization

- Visibility Graphs
 Voronoi Diagrams
- 3. Probabilistic Roadmaps

Cell Decomposition

θ2

2. Lattice-Based Graphs

1. X-Connected Grid

Properties of a good graph?

Connectivity

Coverage

What other characteristics define a good graph?

 θ_1

Graph Representations

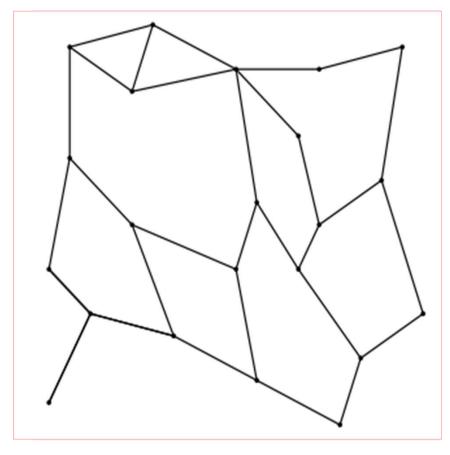
Skeletonization

Visibility Graphs
 Voronoi Diagrams

3. Probabilistic Roadmaps

Cell Decomposition 1. X-Connected Grid 2. Lattice-Based Graphs

- 1. What is the sampling strategy?
- 2. How do we connect vertices?
- 3. Pros and Cons?
- 4. Explicit or Implicit? See Notes



 θ_2

Graph Representations

Skeletonization

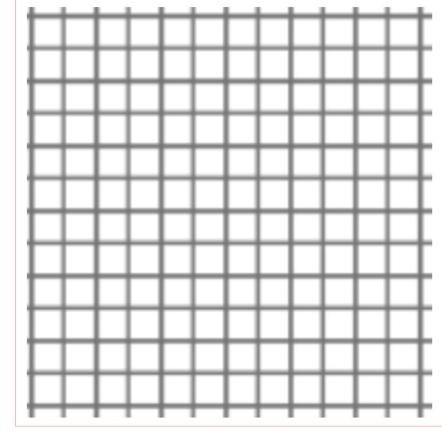
Visibility Graphs
 Voronoi Diagrams
 Probabilistic Roadmaps

Cell Decomposition

X-Connected Grid
 Lattice-Based Graphs

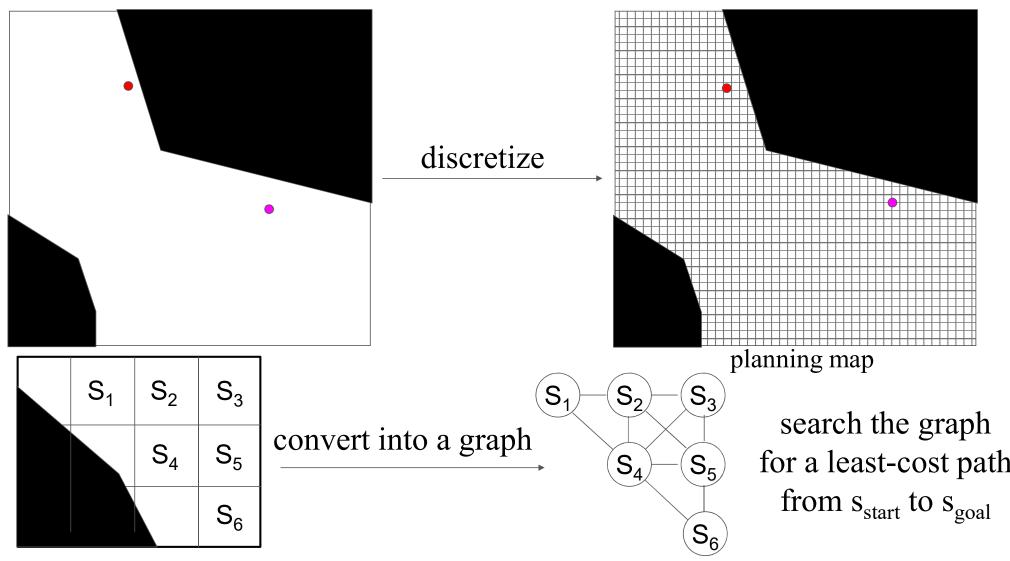
1. What should X be?

- 2. What are the pros and cons?
- 3. Explicit or Implicit?



Planning via Cell Decomposition

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path



Graph Representations

Skeletonization

Visibility Graphs
 Voronoi Diagrams
 Probabilistic Roadmaps

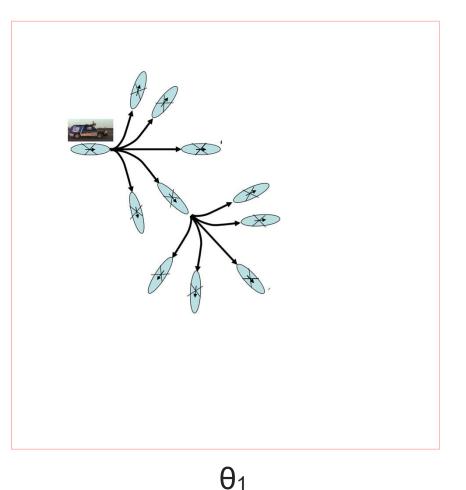
Cell Decomposition

θ2

2. Lattice-Based Graphs

1. X-Connected Grid

- 1. How are motion primitives defined?
- 2. How are cost of edges determined?
- 3. Explicit or Implicit?



Search for Least-Cost Path

Many searches work by computing optimal g-values for relevant states

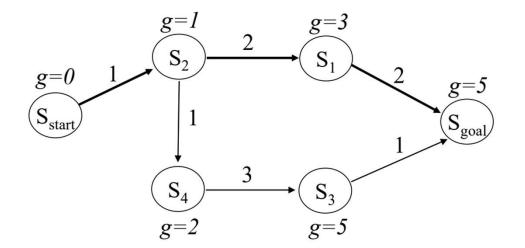
-g(s) – an estimate of the cost of a least-cost path from s_{start} to s

- optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$ Why? the cost $c(s_l, s_{goal})$ of an edge from s_1 to s_{goal} g=3 g=l2 S_2 S_1 g=0g=5S_{star} Sgoal 3 S_4 S_3 g=5g=2

Search for Least-Cost Path

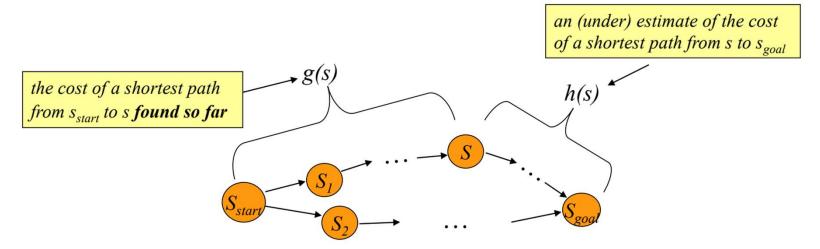
Least-cost path is a greedy path computed by backtracking:

- start with s_{goal} and from any state *s* move to the predecessor state *s*' such that $s' = \arg \min_{s'' \in pred(s)} (g(s'') + c(s'', s))$



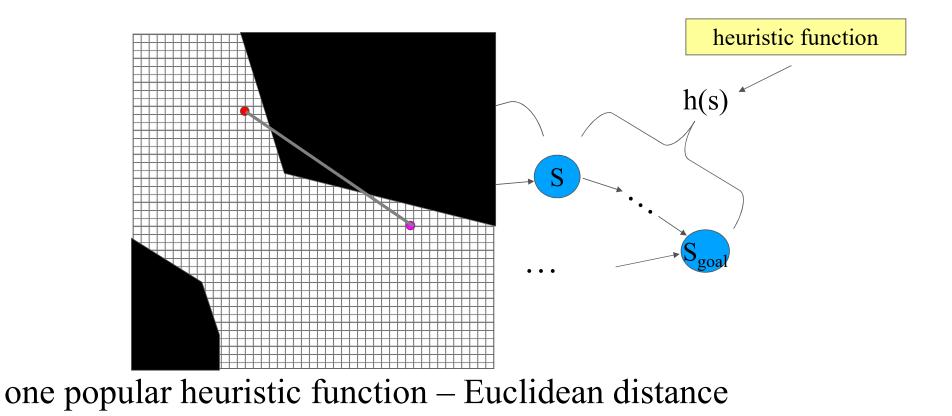
• Computes optimal g-values for relevant states

at any point of time:



Computes optimal g-values for relevant states

at any point of time:

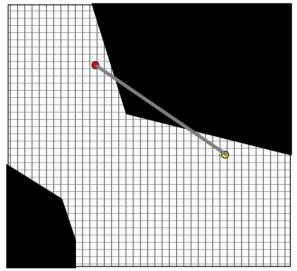


minimal cost from s to s_{goal}

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c^*(s, s_{goal})$
 - consistent (satisfy triangle inequality):

 $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$

admissibility <u>provably</u> follows from consistency and often (<u>not</u> <u>always</u>) consistency follows from admissibility



Computes optimal g-values for relevant states ComputePath function

while (s_{goal} is not expanded)

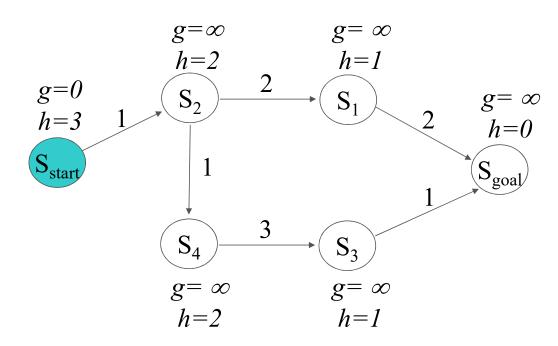
remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

$$CLOSED = \{\}$$
$$OPEN = \{s_{start}\}$$
next state to expand: s_{start}



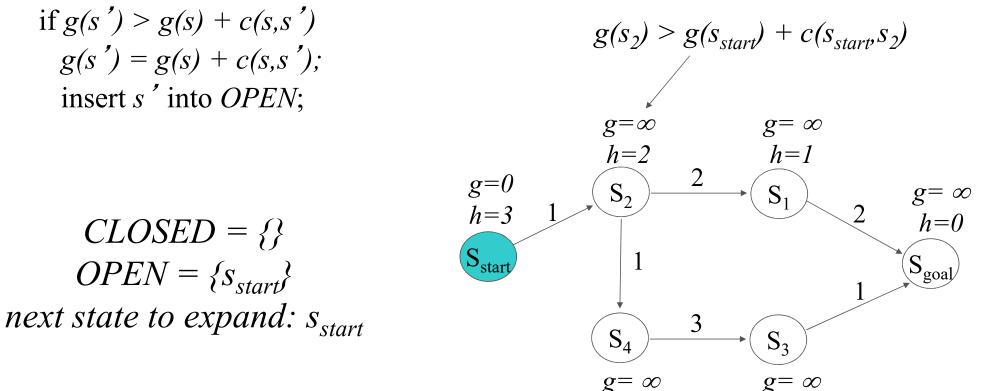
Computes optimal g-values for relevant states ComputePath function

while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED



h=2

h=1

Computes optimal g-values for relevant states ComputePath function

while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

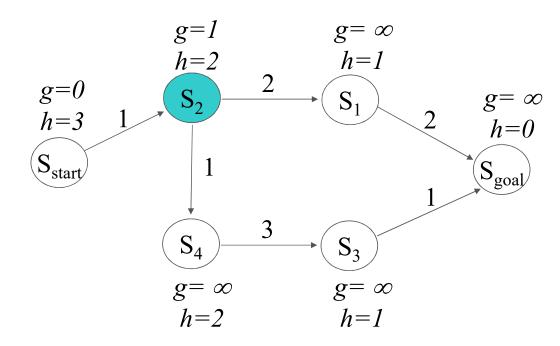
insert *s* into *CLOSED*;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

 $CLOSED = \{s_{start}\}$ $OPEN = \{s_2\}$ next state to expand: s_2



Computes optimal g-values for relevant states ComputePath function

while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

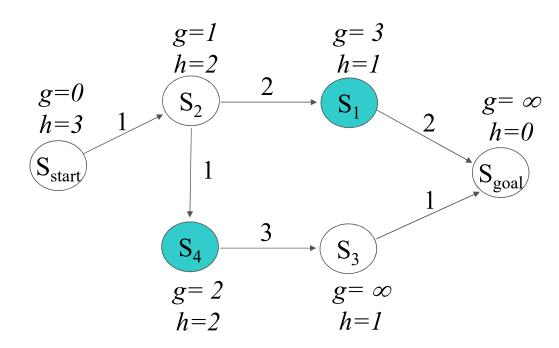
insert *s* into *CLOSED*;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ next state to expand: s_1



Computes optimal g-values for relevant states ComputePath function

while(s_{goal} is not expanded)

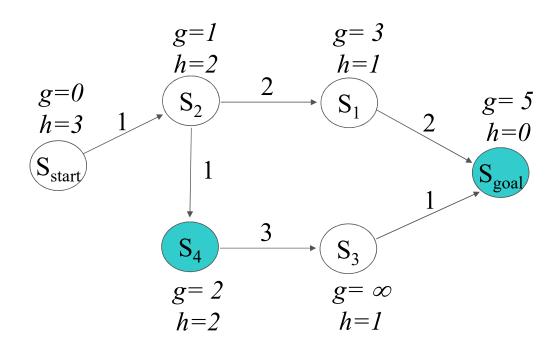
remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2, s_1\}$$
$$OPEN = \{s_4, s_{goal}\}$$
$$next state to expand: s_4$$



Computes optimal g-values for relevant states ComputePath function

while (s_{goal} is not expanded)

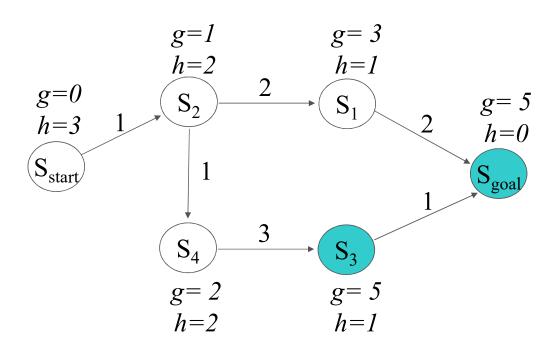
remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

$$CLOSED = \{s_{start}, s_2, s_1, s_4\}$$
$$OPEN = \{s_3, s_{goal}\}$$
$$next state to expand: s_{goal}$$



Computes optimal g-values for relevant states ComputePath function

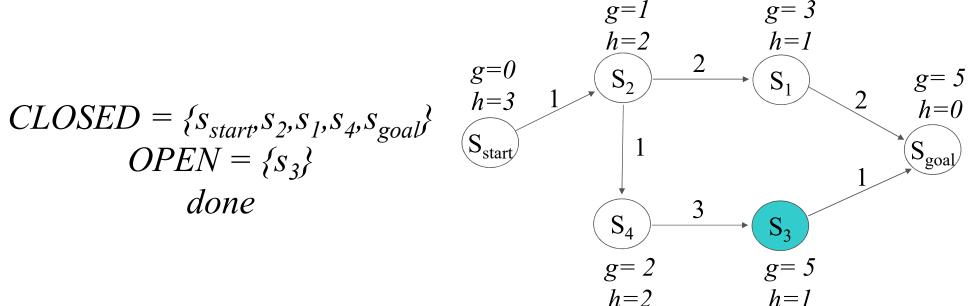
while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;



g=0

h=3

g=l

h=2

 S_2

 S_4

g=2

h=2

1

3

g=3

h=1

g=5

h=0

 $(S_{\underline{goal}})$

 S_1

 S_2

g=5

h=1

Computes optimal g-values for relevant states ComputePath function

while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

g=0

h=3

g=3

h=1

 S_1

 S_2

g=5

h=1

g= 5

h=0

Sgoal

g=l

h=2

 S_2

 S_4

g=2

h=2

1

3

Computes optimal g-values for relevant states ComputePath function

while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

insert *s* into *CLOSED*;

for every successor s' of s such that s' not in CLOSED

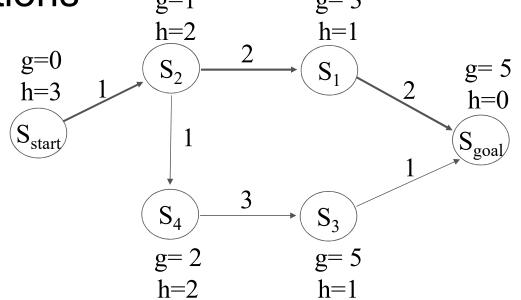
if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution

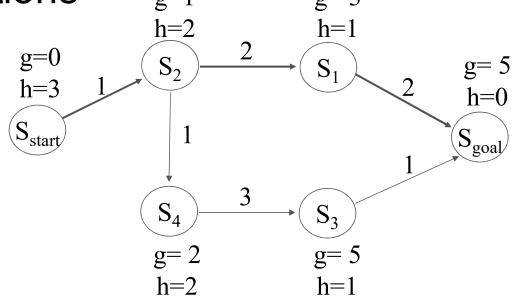
Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations g=1 g=3



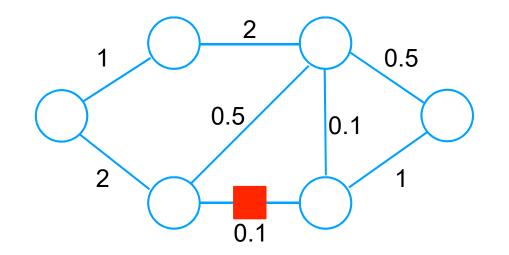
Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution

helps with robot deviating off its path if we search with A* backwards (from goal to start)

Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations g=1 g=3



A* Search: More interesting example (Try in Class)

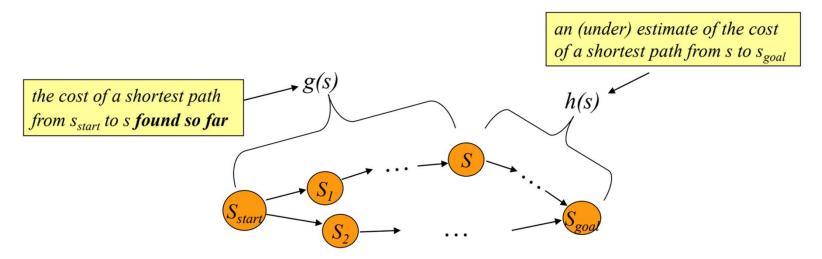


Correctness
 Completeness
 Optimality

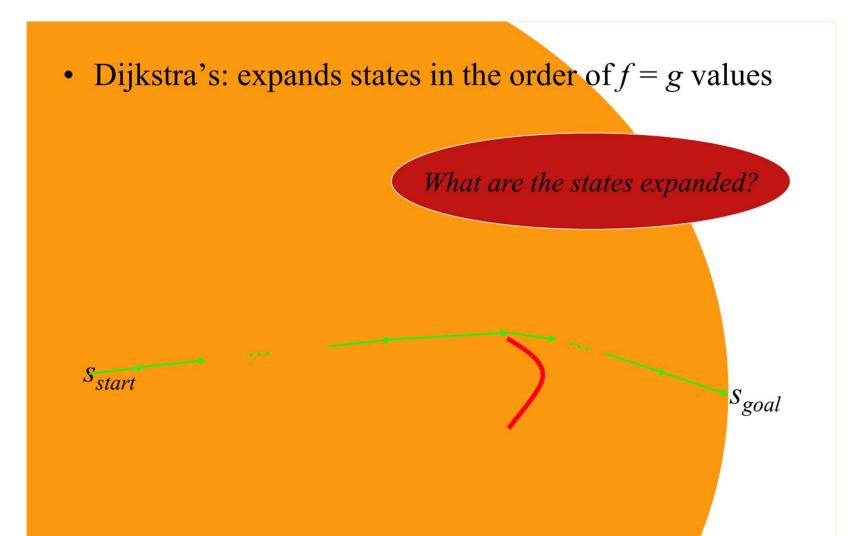
- Is guaranteed to return an optimal path (in fact, for every expanded state) optimal in terms of the solution
- Performs <u>provably minimal number of state expansions</u> required to guarantee optimality – optimal in terms of the computations

Role of Heuristic

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal



Role of Heuristic

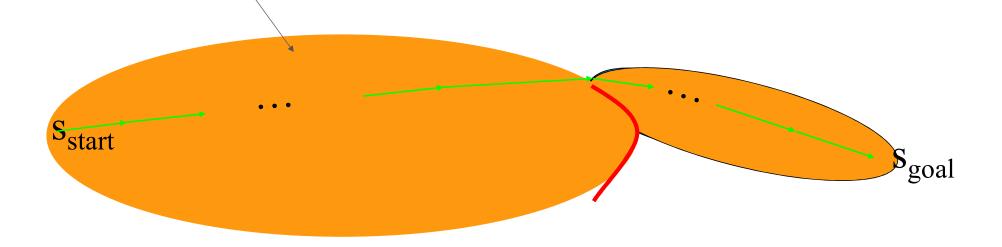


A* Search: expands states in the order of f = g+h values

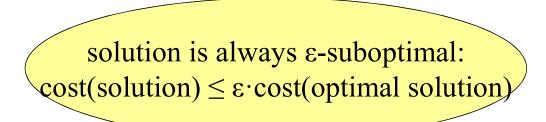


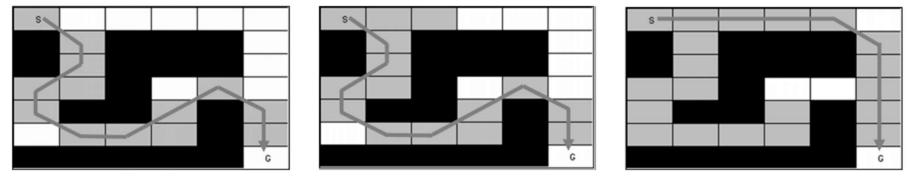
A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly running out of memory (memory: O(n))



Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal



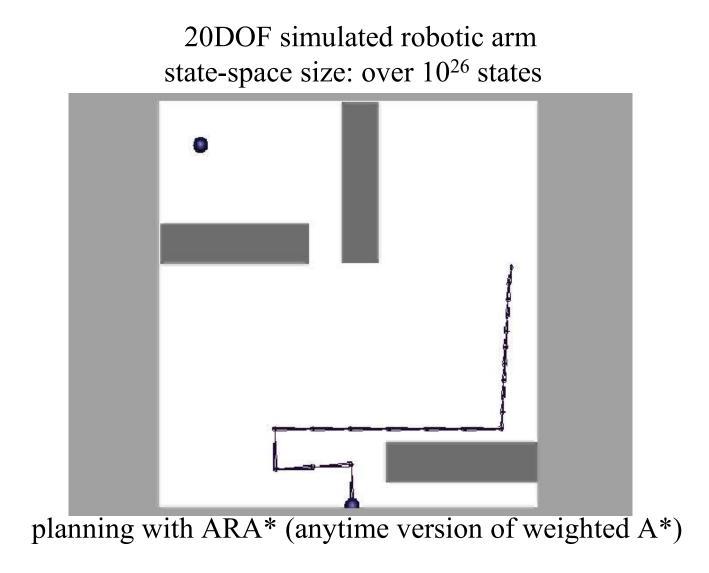


$$\epsilon = 2.5$$

 $\epsilon = 1.5$

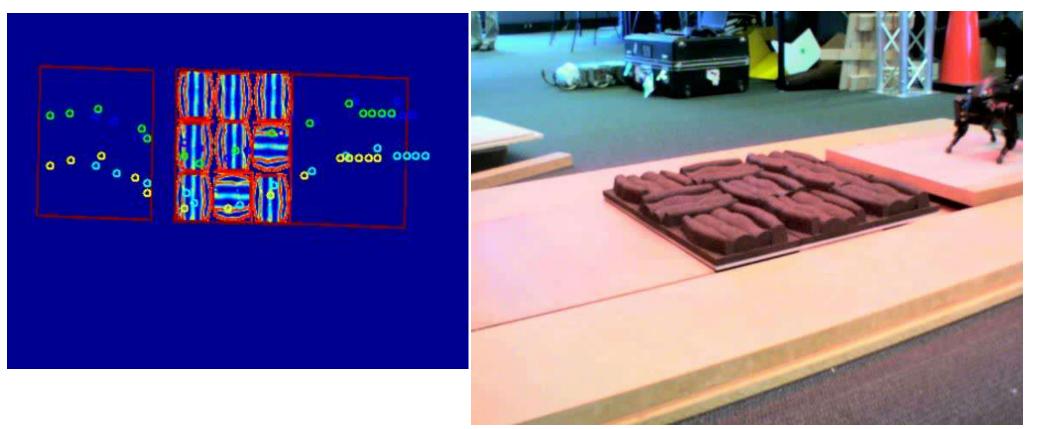
$\epsilon = 1.0$ (optimal search)

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal



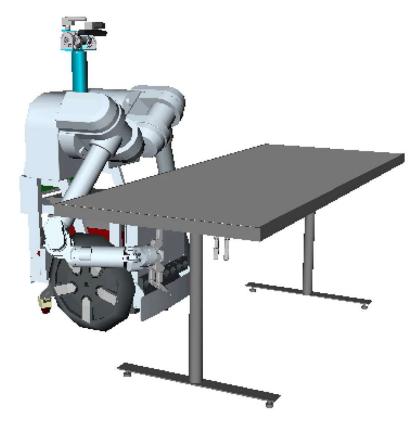
planning in 8D (<x,y> for each foothold)

- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds



Uses R* - A randomized version of weighted A* Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Another example of A* in Action



Did we solve motion planning?