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SS Introduction


•	 State space model: a representation of the dynamics of an N th order 
system as a first order differential equation in an N -vector, which is 
called the state. 

• Convert the N th order differential equation that governs the dy
namics into N first-order differential equations 

•	 Classic example: second order mass-spring system 

mp̈ + cṗ + kp = F 

• Let x1 = p, then x2 = ṗ = ẋ1, and 

ẋ2 = p̈ = (F − cṗ − kp)/m 

= (F − cx2 − kx1)/m � � �	 � � � � � 
ṗ 0 1 p 0 

=	 + u⇒ 
p̈ −k/m −c/m ṗ 1/m 

Let u = F and introduce the state 

x1 p 
x = = ẋ = Ax + Bu 

x2 ṗ 
⇒ 

• If the measured output of the system is the position, then we have 
that � � p � � x1 y = p = 1 0 = 1 0 = Cx 

ṗ	 x2 
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• Most general continuous-time linear dynamical system has form 

ẋ(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) + D(t)u(t) 

where: 

• t ∈ R denotes time 

• x(t) ∈ Rn is the state (vector) 

• u(t) ∈ Rm is the input or control 

• y(t) ∈ Rp is the output 

• A(t) ∈ Rn×n is the dynamics matrix 

• B(t) ∈ Rn×m is the input matrix 

• C(t) ∈ Rp×n is the output or sensor matrix 

• D(t) ∈ Rp×m is the feedthrough matrix 

• Note that the plant dynamics can be time-varying. 

• Also note that this is a multi-input / multi-output (MIMO) system. 

• We will typically deal with the time-invariant case 
⇒ Linear Time-Invariant (LTI) state dynamics 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

so that now A,B,C,D are constant and do not depend on t. 

September 21, 2010 
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Basic Definitions


Linearity – What is a linear dynamical system? A system G is linear • 
with respect to its inputs and output 

u(t) G(s) y(t)→ → 

iff superposition holds: 

G(α1u1 + α2u2) = α1Gu1 + α2Gu2 

So if y1 is the response of G to u1 (y1 = Gu1), and y2 is the 
response of G to u2 (y2 = Gu2), then the response to α1u1 + α2u2 

is α1y1 + α2y2 

A system is said to be time-invariant if the relationship between the • 
input and output is independent of time. So if the response to u(t) 
is y(t), then the response to u(t − t0) is y(t − t0) 

Example: the system • 

ẋ(t) = 3x(t) + u(t) 

y(t) = x(t) 

is LTI, but 

ẋ(t) = 3t x(t) + u(t) 

y(t) = x(t) 

is not. 

A matrix of second system is a function of absolute time, so re• 
sponse to u(t) will differ from response to u(t − 1). 

September 21, 2010 
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•	 x(t) is called the state of the system at t because: 

• Future output depends only on current state and future input 

• Future output depends on past input only through current state 

• State summarizes effect of past inputs on future output – like the 
memory of the system 

•	 Example: Rechargeable flashlight – the state is the current state of 
charge of the battery. If you know that state, then you do not need 
to know how that level of charge was achieved (assuming a perfect 
battery) to predict the future performance of the flashlight. 

• But to consider all nonlinear effects, you might also need to know 
how many cycles the battery has gone through 

• Key point is that you might expect a given linear model to ac
curately model the charge depletion behavior for a given number 
of cycles, but that model would typically change with the number 
cycles 
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Creating State-Space Models


•	 Most easily created from N th order differential equations that describe 
the dynamics 

This was the case done before. • 

• Only issue is which set of states to use – there are many choices. 

•	 Can be developed from transfer function model as well. 

Much more on this later • 

•	 Problem is that we have restricted ourselves here to linear state space 
models, and almost all systems are nonlinear in real-life. 

• Can develop linear models from nonlinear system dynamics 
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Equilibrium Points


•	 Often have a nonlinear set of dynamics given by 

ẋ = f(x, u) 

where x is once gain the state vector, u is the vector of inputs, and 
f(·, ) is a nonlinear vector function that describes the dynamics ·

•	 First step is to define the point about which the linearization will be 
performed. 

• Typically about equilibrium points – a point for which if the 
system starts there it will remain there for all future time. 

•	 Characterized by setting the state derivative to zero: 

ẋ = f(x, u) = 0 

• Result is an algebraic set of equations that must be solved for both 
xe and ue 

• Note that ẋe = 0 and u̇e = 0 by definition 

• Typically think of these nominal conditions xe, ue as “set points” 
or “operating points” for the nonlinear system. 

g¨ Example – pendulum dynamics: θ + rθ̇ + sin θ = 0 can be written •	 l 
in state space form as 

ẋ1	 x2 = 
ẋ2 −rx2 − g sin x1l 

• Setting f(x, u) = 0 yields x2 = 0 and x2 = − g sin x1, which rl 
implies that x1 = θ = {0, π} 
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Linearization


•	 Typically assume that the system is operating about some nominal 
state solution xe (possibly requires a nominal input ue) 

• Then write the actual state as x(t) = xe + δx(t)

and the actual inputs as u(t) = ue + δu(t)


• The “δ” is included to denote the fact that we expect the variations 
about the nominal to be “small” 

•	 Can then develop the linearized equations by using the Taylor series 
expansion of f(·, ) about xe and ue.·

•	 Recall the vector equation ẋ = f(x, u), each equation of which 

ẋi = fi(x, u) 

can be expanded as 

d 
(xei + δxi) = fi(xe + δx, ue + δu)

dt

fi(xe, ue) +

∂fi

∂x


δx +

∂fi

∂u0 

δu
≈

0


where 
∂fi ∂fi ∂fi 

= · · · 
∂x ∂x1
 ∂xn


and ·|0 means that we should evaluate the function at the nominal 
values of xe and ue. 

•	 The meaning of “small” deviations now clear – the variations in δx 
and δu must be small enough that we can ignore the higher order 
terms in the Taylor expansion of f(x, u). 
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Since d xei = fi(xe, ue), we thus have that • dt

δx +

∂fi


δu

d ∂fi

(δxi) ≈


dt
 ∂x
 ∂u0 0


• Combining for all n state equations, gives (note that we also set “≈” 
“=”) that →
 ⎡
 ⎡
⎤
 ⎤


∂f1
 ∂f1
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


δx +


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


∂x
 ∂u
0
 0


∂f2


∂x

∂f2


∂u
d

dt

δx
 =
 δu
0
 0


...
 ...


∂fn
 ∂fn


∂x
 ∂u0 0


= A(t)δx + B(t)δu 

where ⎤⎡⎤⎡ 
∂f1 ∂f1 ∂f1 ∂f1 ∂f1 ∂f1 · · · · · · ∂x1 ∂x2 ∂xn ∂u1 ∂u2 ∂um 

A(t) ≡


⎢⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎥⎦


and
 B(t) ≡


⎢⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎥⎦


∂f2 ∂f2 ∂f2 ∂f2 ∂f2 ∂f2 · · ·
 · · ·
∂x1 ∂x2 ∂xn ∂u1 ∂u2 ∂um 

...
 ...

∂fn ∂fn ∂fn ∂fn ∂fn ∂fn 
∂x1 ∂x2 ∂xn 0 ∂u1 ∂u2 ∂um 0

· · · · · · 
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•	 Similarly, if the nonlinear measurement equation is y = g(x, u) and 
y(t) = ye + δy, then ⎡
 ⎡
⎤
 ⎤


∂g1
 ∂g1


δy
 =


⎢⎢⎢⎢⎣


0

⎥⎥⎥⎥⎦

δx +


⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎦

δu


∂x
 ∂u
 0
.
 .
.. 
∂gp


.. 
∂gp


���� 
0
∂x
 ∂u0 

=	 C(t)δx + D(t)δu 

•	 Typically drop the “δ” as they are rather cumbersome, and (abusing 
notation) we write the state equations as: 

ẋ(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) + D(t)u(t) 

which is of the same form as the previous linear models 

•	 If the system is operating around just one set point then the partial 
fractions in the expressions for A–D are all constant LTI lin→
earized model. 

September 21, 2010 
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Linearization Example


•	 Example: simple spring. With a mass at the end of a linear spring 
(rate k) we have the dynamics 

mẍ = −kx 

but with a “leaf spring” as is used on car suspensions, we have a 
nonlinear spring – the more it deflects, the stiffer it gets. Good model 
now is 

mẍ = −k1x − k2x 3 

which is a “cubic spring”. 

Fig. 1: Leaf spring from http://en.wikipedia.org/wiki/Image:Leafs1.jpg 

• Restoring force depends on deflection x in a nonlinear way. 

Fig. 2: Response to linear k = 1 and nonlinear (k1 = k, k2 = −2) springs (code at 
the end) 

September 21, 2010 
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•	 Consider the nonlinear spring with (set m = 1) 

ÿ = −k1y − k2y 3 

gives us the nonlinear model (x1 = y and x2 = ẏ) 

d y	 ẏ

dt ẏ
= −k1y − k2y

⇒ ẋ = f(x)3 

• Find the equilibrium points and then make a state space model 

• For the equilibrium points, we must solve 

ẏ
f(x) = 3 = 0 −k1y − k2y

which gives 
ẏe = 0 and k1ye + k2(ye)

3 = 0 

• Second condition corresponds to ye = 0 or ye = ± −k1/k2, 
which is only real if k1 and k2 are opposite signs. 

• For the state space model, ⎡	 ⎤ 
∂f1 ∂f1 ⎡	 ⎤ 

A = ⎢⎢ ∂x1 ∂x2 ⎥⎥ 
= ⎣ 

0 1 ⎦ ⎣	 ⎦∂f2 ∂f2 −k1 − 3k2(y)2 0 
∂x1 ∂x2 0 

0 ⎡	 ⎤ 
0 1 

= ⎣ ⎦ 
0−k1 − 3k2(ye)2 

and the linearized model is δẋ = Aδx 

September 21, 2010 
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•	 For the equilibrium point ye = 0, ẏe = 0 ⎡ ⎤ 
0 1 

A0 = ⎣ ⎦ 
−k1 0 

which are the standard dynamics of a system with just a linear spring 
of stiffness k1 

• Stable motion about y = 0 if k1 > 0 

•	 Assume that k1 = −1, k2 = 1/2, then we should get an equilibrium 
point at ẏ = 0, y = ±

√
2, and since k1 + k2(ye)2 = 0 then ⎡ ⎤ 

0 1 
A1 = ⎣ ⎦ 

−2 0 

which are the dynamics of a stable oscillator about the equilibrium 
point 

Fig. 3: Nonlinear response (k1 = −1, k2 = 0.5). The figure on the right shows the 
oscillation about the equilibrium point. 

September 21, 2010 
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Time Response


•	 Can develop a lot of insight into the system response and how it is 
modeled by computing the time response x(t) 

• Homogeneous part


Forced solution
• 

•	 Homogeneous Part 

ẋ = Ax, x(0) known 

• Take Laplace transform 

X(s) = (sI − A)−1 x(0) 

so that 
x(t) = L−1 (sI − A)−1 x(0) 

But can show • 

I A A2 

(sI − A)−1 = + + + . . . 
2 3s s s� �	 1 

so	L−1 (sI − A)−1 = I + At + (At)2 + . . . 
2!

At =	 e 

⇒ x(t) = eAt x(0) 

•	 eAt is a special matrix that we will use many times in this course 

• Transition matrix or Matrix Exponential 

• Calculate in MATLAB using expm.m and not exp.m 1


Note that e(A+B)t = eAteBt iff AB = BA
• 

1MATLAB is a trademark of the Mathworks Inc. 

September 23, 2010 
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SS: Forced Solution


Forced Solution • 

Consider a scalar case: • 

ẋ = ax + bu, x(0) given 
t 

x(t) = eatx(0) + ea(t−τ)bu(τ )dτ⇒ 
0 

where did this come from? 

1. ẋ− ax = bu 

2. e−at [ẋ − ax] = d (e−atx(t)) = e−atbu(t)dt

3. t d e−aτx(τ )dτ = e−atx(t) − x(0) = t
e−aτbu(τ )dτ0 dτ 0 

Forced Solution – Matrix case: • 

ẋ = Ax + Bu 

where x is an n-vector and u is a m-vector 

• Just follow the same steps as above to get 
t 

x(t) = eAt x(0) + eA(t−τ)Bu(τ )dτ 
0 

and if y = Cx + Du, then 
t 

y(t) = CeAt x(0) + CeA(t−τ)Bu(τ )dτ + Du(t) 
0 

• CeAtx(0) is the initial response 

• CeA(t)B is the impulse response of the system. 

September 23, 2010 
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•	 Have seen the key role of eAt in the solution for x(t) 

• Determines the system time response 

• But would like to get more insight! 

•	 Consider what happens if the matrix A is diagonalizable, i.e. there 
exists a T such that ⎡	 ⎤ 

λ1 

T −1AT = Λ which is diagonal Λ = ⎣ . . . ⎦ 

λn 

Then 
eAt = TeΛtT −1 

where	 ⎡ ⎤
λ1te

Λt ⎣ . . . ⎦e	 = 
λnte

Follows since eAt = I + At + 1 (At)2 + . . . and that A = T ΛT −1, so •	 2!

we can show that 
1 

eAt = I + At + (At)2 + . . . 
2!

1 
=	 I + T ΛT −1t + (T ΛT −1t)2 + . . . 

2!
=	 TeΛtT −1 

•	 This is a simpler way to get the matrix exponential, but how find T 
and λ? 

• Eigenvalues and Eigenvectors 

September 23, 2010 
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Dynamic Interpretation


• Since A = T ΛT −1, then ⎡ ⎤⎡ ⎤⎡ ⎤ 
| | eλ1t − w

.
1 
T − 

eAt = TeΛtT −1 = ⎣ v1 vn ⎦⎣ . . . ⎦⎣ .. ⎦ · · · 
n| | eλnt − wT − 

where we have written ⎡ ⎤
T− w
.
1 − 

T −1 = ⎣ .. ⎦ 
T 
n− w − 

which is a column of rows. 

• Multiply this expression out and we get that 
n

At λit T e = e viwi 
i=1 

• Assume A diagonalizable, then ẋ = Ax, x(0) given, has solution 

x(t) = eAt x(0) = TeΛtT −1 x(0) 
n

= eλitvi{wi
T x(0)}

i=1 
n

λit = e viβi 
i=1 

• State solution is linear combination of the system modes vieλit 

eλit – Determines nature of the time response 

vi – Determines how each state contributes to that mode 

βi – Determines extent to which initial condition excites the mode 

September 23, 2010 
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•	 Note that the vi give the relative sizing of the response of each part 
of the state vector to the response. 

1 
v1(t) = e−t mode 1 

0 

0.5 
v2(t) = e−3t mode 2 

0.5 

•	 Clearly eλit gives the time modulation 

• λi real – growing/decaying exponential response 

• λi complex – growing/decaying exponential damped sinusoidal 

•	 Bottom line: The locations of the eigenvalues determine the pole 
locations for the system, thus: 

• They determine the stability and/or performance & transient be
havior of the system. 

• It is their locations that we will want to modify when we start the 
control work 

September 23, 2010 
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EV Mechanics


−1 1 
Consider A = •

−8 5 

s + 1 −1 
(sI − A) = 

8 s − 5 

det(sI − A) = (s + 1)(s − 5) + 8 = s 2 − 4s + 3 = 0 

so the eigenvalues are s1 = 1 and s2 = 3 

• Eigenvectors (sI − A)v = 0 

(s1I − A)v1 = 
s + 1 −1 v11 = 0 
8 s − 5 v21 

s=1 

2 −1 v11


8 v21 
= 0 2v11 − v21 = 0, ⇒ v21 = 2v11
−4


v11 is then arbitrary (= 0), so set v11 = 1


1 
v1 = 

2 

(s2I−A)v2 =
4 −1 v12 = 0 4v12−v22 = 0, v22 = 4v12 
8 −2 v22 

⇒ 

1 
v2 = 

4 

• Confirm that Avi = λivi 

September 23, 2010 
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Stability of LTI Systems


•	 Consider a solution xs(t) to a differential equation for a given initial 
condition xs(t0). 

• Solution is stable if other solutions xb(t0) that start near xs(t0) 
stay close to xs(t) ∀ t stable in sense of Lyapunov (SSL).⇒ 

• If other solutions are SSL, but the xb(t) do not converge to xs(t) 
⇒	solution is neutrally stable. 

• If other solutions are SSL and xb(t) → x(t) as t → ∞ ⇒ solution 
is asymptotically stable. 

• A solution xs(t) is unstable if it is not stable. 

•	 Note that a linear (autonomous) system ẋ = Ax has an equilibrium 
point at xe = 0 

• This equilibrium point is stable if and only if all of the eigenvalues 
of A satisfy Rλi(A) ≤ 0 and every eigenvalue with Rλi(A) = 0 
has a Jordan block of order one.1 

• Thus the stability test for a linear system is the familiar one of 
determining if Rλi(A) ≤ 0 

•	 Somewhat surprisingly perhaps, we can also infer stability of the orig
inal nonlinear from the analysis of the linearized system model 

1more on Jordan blocks on 6–??, but this basically means that these eigenvalues are not repeated. 

September 21, 2010 
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•	 Lyapunov’s indirect method2 Let xe = 0 be an equilibrium point 
for the nonlinear autonomous system 

ẋ(t) = f(x(t)) 

where f is continuously differentiable in a neighborhood of xe. As
sume 

∂f 
A	= 

∂x xe 

Then: 

• The origin is an asymptotically stable equilibrium point for the 
nonlinear system if Rλi(A) < 0 ∀ i 

• The origin is unstable if Rλi(A) > 0 for any i 

•	 Note that this doesn’t say anything about the stability of the nonlinear 
system if the linear system is neutrally stable. 

• A very powerful result that is the basis of all linear control theory.


2Much more on Lyapunov methods later too. 
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State-Space Model Features


•	 There are some key characteristics of a state-space model that we 
need to identify. 

• Will see that these are very closely associated with the concepts 
of pole/zero cancelation in transfer functions. 

x

x

•	 Example: Consider a simple system 

6 
G(s) = 

s + 2 
for which we develop the state-space model 

Model # 1	 ẋ = −2x + 2u 

y = 3x 

But now consider the new state space model ¯ T • 

¯

= [x x2]


−2 0
 2
˙̄x

y = 3 0 

Model # 2
 =
 +
 u 
1 

x̄ 

0 −1 

which is clearly different than the first model, and larger. 

But let’s looks at the transfer function of the new model: • 

Ḡ(s) = C(sI −� 
A)−1B � 

+ D ��−1 � � 

= 
� 
3 0 

� 
sI −

−2

0 −1

0 
1

2 

2� � s+2 6 
= 3 0	 = !! 

1 s + 2 
s+1 

September 30, 2010 
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•	 This is a bit strange, because previously our figure of merit when 
comparing one state-space model to another (page 6–??) was whether 
they reproduced the same same transfer function 

• Now we have two very different models that result in the same 
transfer function 

• Note that I showed the second model as having 1 extra state, but 
I could easily have done it with 99 extra states!! 

•	 So what is going on? 

• A clue is that the dynamics associated with the second state of 
the model x2 were eliminated when we formed the product 

Ḡ(s) = 
� 
3 0 

� 2 
s+2 
1 

s+1 

because the A is decoupled and there is a zero in the C matrix 

• Which is exactly the same as saying that there is a pole-zero 
cancelation in the transfer function G̃(s) 

6 6(s + 1) 
=	 � G̃(s) 

s + 2 (s + 2)(s + 1) 

Note that model #2 is one possible state-space model of G̃(s)• 
(has 2 poles) 

•	 For this system we say that the dynamics associated with the second 
state are unobservable using this sensor (defines C matrix). 

• There could be a lot “motion” associated with x2, but we would 
be unaware of it using this sensor. 

September 30, 2010 
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•	 There is an analogous problem on the input side as well. Consider: 

Model # 1 ẋ = −2x + 2u 

y = 3x


with ¯ T
x = [ x x2]


x̄
−2 0
 2


¯̇

y = 3 2 

xModel # 3
 =
 +
 u 
00 −1 

x̄


which is also clearly different than model #1, and has a different 
form from the second model. 

ˆ
� �� � 

−2 0 
��−1 � 

2 
� 

G(s) = 3 2 sI − 
0 −1 0 � � 2 6 

= 3 2 = !! s+2 s+1 0 s + 2 

•	 Once again the dynamics associated with the pole at s = −1 are 
canceled out of the transfer function. 

But in this case it occurred because there is a 0 in the B matrix• 

•	 So in this case we can “see” the state x2 in the output C = 3 2 , 
but we cannot “influence” that state with the input since 

2 
B = 

0 

• So we say that the dynamics associated with the second state are 
uncontrollable using this actuator (defines the B matrix). 

September 30, 2010 
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•	 Of course it can get even worse because we could have 

¯̇	 x̄x
−2 0
 2


=
 +
 u 
00 −1 

x̄y	 = 3 0 

So now we have • � � ��−1 � � 
� = 

� 
0 
� 

sI −
−2

0 −1

0 
0

2 
G(s) 3 

� � 2 6 
= 3 0 = !! s+2 s+1 0 s + 2 

•	 Get same result for the transfer function, but now the dynamics as
sociated with x2 are both unobservable and uncontrollable. 

•	 Summary: Dynamics in the state-space model that are uncon
trollable, unobservable, or both do not show up in the transfer 
function. 

•	 Would like to develop models that only have dynamics that are both 
controllable and observable 
�	called a minimal realization 

• A state space model that has the lowest possible order for the 
given transfer function. 

•	 But first need to develop tests to determine if the models are observ
able and/or controllable 
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Observability


•	 Definition: An LTI system is observable if the initial state x(0) 
can be uniquely deduced from the knowledge of the input u(t) and 
output y(t) for all t between 0 and any finite T > 0. 

• If x(0) can be deduced, then we can reconstruct x(t) exactly 
because we know u(t) � we can find x(t) ∀ t. 

• Thus we need only consider the zero-input (homogeneous) solution 
to study observability. 

y(t) = CeAt x(0) 

•	 This definition of observability is consistent with the notion we used 
before of being able to “see” all the states in the output of the de-
coupled examples 

• ROT: For those decoupled examples, if part of the state cannot 
be “seen” in y(t), then it would be impossible to deduce that part 
of x(0) from the outputs y(t). 
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•	 Definition: A state x� �= 0 is said to be unobservable if the 
zero-input solution y(t), with x(0) = x�, is zero for all t ≥ 0 

• Equivalent to saying that x� is an unobservable state if


CeAt x � = 0 ∀ t ≥ 0


•	 For the problem we were just looking at, consider Model #2 with 
x� = [ 0 1 ]T = 0� , then 

ẋ̄ = 
−2 0 

x̄ + 
2 

u 
0	 −1 1 

y	 = 3 0 x̄

so � � � � � � e−2t 0 0 
CeAt x � = 3 0 

0 e−t 1 � � 0 
= 3e−2t 0 = 0 ∀ t 

1 

So, x� = [ 0 1 ]T is an unobservable state for this system. 

• But that is as expected, because we knew there was a problem with 
the state x2 from the previous analysis 
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•	 Theorem: An LTI system is observable iff it has no unob
servable states. 

• We normally just say that the pair (A,C) is observable. 

Pseudo-Proof: Let x� = 0 be an unobservable state and compute 
the outputs from the initial conditions x1(0) and x2(0) = x1(0) + x� 

Then• 
y1(t) = CeAt x1(0) and y2(t) = CeAt x2(0) 

but 

y2(t) = CeAt(x1(0) + x �) = CeAt x1(0) + CeAt x � 

= CeAt x1(0) = y1(t) 

• Thus 2 different initial conditions give the same output y(t), so it 
would be impossible for us to deduce the actual initial condition 
of the system x1(t) or x2(t) given y1(t) 

•	 Testing system observability by searching for a vector x(0) such that 
CeAtx(0) = 0 ∀ t is feasible, but very hard in general. 

Better tests are available. • 
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Theorem: The vector x� is an unobservable state iff •
 ⎤⎡ 
C

CA
⎢⎢⎢⎢⎢⎣

CA2


... 
CAn−1 

⎥⎥⎥⎥⎥⎦

x
� = 0


•	 Pseudo-Proof: If x� is an unobservable state, then by definition, 

CeAt x � = 0 ∀ t ≥ 0 

But all the derivatives of CeAt exist and for this condition to hold, all 
derivatives must be zero at t = 0. Then �� 

=0t CeAt x �


d 
CeAt x � 

dt


= 0 Cx � = 0
⇒


CAeAt x �
 = CAx
� = 0
= 0
 ⇒

t=0


t=0


d2 

CeAt x � 

dt2

CA2 eAt x �
 = CA2 x � = 0
= 0
 ⇒


t=0

t=0


... 

dk 

CeAt x � 

dtk

CAkeAt x �
 = CAk x � = 0
= 0
 ⇒


t=0

t=0


• We only need retain up to the n − 1th derivative because of the 
Cayley-Hamilton theorem. 
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• Simple test: Necessary and sufficient condition for observability is 
that
 ⎤⎡ 

rank Mo
� rank


⎢⎢⎢⎢⎢⎣


C

CA

CA2


... 
CAn−1 

⎥⎥⎥⎥⎥⎦

= n


•	 Why does this make sense? 

The requirement for an unobservable state is that for x� = 0 

Mox � = 0 

• Which is equivalent to saying that x� is orthogonal to each row of 
Mo. 

• But if the rows of Mo are considered to be vectors and these span 
the full n-dimensional space, then it is not possible to find an 
n-vector x� that is orthogonal to each of these. 

• To determine if the n rows of Mo span the full n-dimensional 
space, we need to test their linear independence, which is equiv
alent to the rank test1 

1Let M be a m × p matrix, then the rank of M satisfies: 
1. rank M ≡ number of linearly independent columns of M 

2. rank	 M ≡ number of linearly independent rows of M 

3. rank	 M ≤ min{m, p} 
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Controllability


•	 Definition: An LTI system is controllable if, for every x�(t) and 
every finite T > 0, there exists an input function u(t), 0 < t ≤ T , 
such that the system state goes from x(0) = 0 to x(T ) = x� . 

• Starting at 0 is not a special case – if we can get to any state 
in finite time from the origin, then we can get from any initial 
condition to that state in finite time as well. 1 

•	 This definition of controllability is consistent with the notion we used 
before of being able to “influence” all the states in the system in the 
decoupled examples (page 9–??). 

• ROT: For those decoupled examples, if part of the state cannot 
be “influenced” by u(t), then it would be impossible to move that 
part of the state from 0 to x� 

•	 Need only consider the forced solution to study controllability. 
t 

xf (t) = eA(t−τ)Bu(τ )dτ 
0 

• Change of variables τ2 = t − τ , dτ = −dτ2 gives a form that is a 
little easier to work with: 

t 

xf (t) = eAτ2Bu(t − τ2)dτ2 
0 

• Assume system has m inputs. 

1This controllability from the origin is often called reachability. 
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•	 Note that, regardless of the eigenstructure of A, the Cayley-Hamilton 
theorem gives 

n−1

eAt = Aiαi(t) 
i=0 

for some computable scalars αi(t), so that 

n−1 � t	 n−1

xf (t) = (AiB) αi(τ2)u(t − τ2)dτ2 = (AiB)βi(t) 
0i=0	 i=0 

for coefficients βi(t) that depend on the input u(τ ), 0 < τ ≤ t. 

•	 Result can be interpreted as meaning that the state xf (t) is a linear 
combination of the nm vectors AiB (with m inputs). 

• All linear combinations of these nm vectors is the range space of 
the matrix formed from the AiB column vectors: 

Mc = B AB A2B An−1B· · · 

•	 Definition: Range space of Mc is controllable subspace of the 
system 

• If a state xc(t) is not in the range space of Mc, it is not a linear 
combination of these columns it is impossible for xf (t) to ever ⇒ 
equal xc(t) – called uncontrollable state. 

•	 Theorem: LTI system is controllable iff it has no uncontrol
lable states. 

• Necessary and sufficient condition for controllability is that 

rank Mc � rank B AB A2B An−1B = n· · · 
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Further Examples 

With Model # 2: • 

¯̇	 x̄x
−2 0
 2


+
=
 u 
10 −1 

y = 3 0 ¯

C 3 0 

x 

= =M0 CA −6 0 � �	

x

� � 2 −4 Mc = B AB =
1 −1 

• rank M0 = 1 and rank Mc = 2 

• So this model of the system is controllable, but not observable. 

x

With Model # 3: • 

¯̇	 ¯
−2 0
 2


+
=
 u 
00 −1 

y = 3 2 x̄ 

C 3 2 
= =M0 CA −� 

6 −2 � 

Mc = 
� 
B AB 

� 
=

2 −4 
0 0 

• rank M0 = 2 and rank Mc = 1 

• So this model of the system is observable, but not controllable. 

•	 Note that controllability/observability are not intrinsic properties of 
a system. Whether the model has them or not depends on the repre
sentation that you choose. 

• But they indicate that something else more fundamental is wrong. . . 
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Weaker Conditions 

•	 Often it is too much to assume that we will have full observability 
and controllability. Often have to make do with the following. System 
called: 

Detectable if all unstable modes are observable• 

Stabilizable if all unstable modes are controllable• 

•	 So if you had a stabilizable and detectable system, there could be 
dynamics that you are not aware of and cannot influence, but you 
know that they are at least stable. 

•	 That is enough information on the system model for now – will assume 
minimal models from here on and start looking at the control issues. 
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Full-state Feedback Controller


• Assume that the single-input system dynamics are given by 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

so that D = 0. 

• The multi-actuator case is quite a bit more complicated as we 
would have many extra degrees of freedom. 

• Recall that the system poles are given by the eigenvalues of A. 

• Want to use the input u(t) to modify the eigenvalues of A to 
change the system dynamics. 

K 

Assume a full-state feedback of the form: • 

u(t) = r − Kx(t) 

where r is some reference input and the gain K is R1×n 

• If r = 0, we call this controller a regulator 

• Find the closed-loop dynamics: 

ẋ(t) = Ax(t) + B(r − Kx(t)) 

= (A − BK)x(t) + Br 

= Aclx(t) + Br 

y(t) = Cx(t) 

A, B, C 

x(t) 

y(t)r u(t) 

− 
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•	 Objective: Pick K so that Acl has the desired properties, e.g., 

• A unstable, want Acl stable 

• Put 2 poles at −2 ± 2i 

•	 Note that there are n parameters in K and n eigenvalues in A, so it 
looks promising, but what can we achieve? 

•	 Example #1: Consider: 

1	 1 1 
ẋ(t) = x(t) + u 

1	 2 0 

• Then det(sI − A) = (s − 1)(s − 2) − 1 = s2 − 3s + 1 = 0 so the 
system is unstable. 

• Define u = − k1 k2 x(t) = −Kx(t), then 

1 1 1 � � 
Acl = A − BK = 

1 2 
− 

0 
k1 k2 

1 − k1 1 − k2 
= 

1 2 

which gives 

det(sI − Acl) = s 2 + (k1 − 3)s + (1 − 2k1 + k2) = 0 

• Thus, by choosing k1 and k2, we can put λi(Acl) anywhere in the 
complex plane (assuming complex conjugate pairs of poles). 
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•	 To put the poles at s = −5, − 6, compare the desired characteristic 
equation 

(s + 5)(s + 6) = s 2 + 11s + 30 = 0 

with the closed-loop one 

s 2 + (k1 − 3)s + (1 − 2k1 + k2) = 0 

to conclude that 

k1 − 3 = 11 k1 = 14 
1 − 2k1 + k2 = 30 k2 = 57 

so that K = 14 57 , which is called Pole Placement. 

•	 Of course, it is not always this easy, as lack of controllability might 
be an issue. 

•	 Example #2: Consider this system: 

1	 1 1 
ẋ(t) = x(t) + u 

0	 2 0 

with the same control approach
� � � � �	 � 

Acl = A − BK = 
0

1 

2

1 
− 

0

1 � 
k1 k2 

� 
=

1 − 

0 

k1 1 − 

2 

k2 

so that 
det(sI − Acl) = (s − 1 + k1)(s − 2) = 0 

So the feedback control can modify the pole at s = 1, but it cannot 
move the pole at s = 2. 

•	 System cannot be stabilized with full-state feedback. 

•	 Problem caused by a lack of controllability of the e2t mode. 
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•	 Consider the basic controllability test: � � � � � � 1 1	 1 1 Mc = B AB = 
0 0	 2 0 

So that rank Mc = 1 < 2. 

•	 Modal analysis of controllability to develop a little more insight 

1	 1 
A = , decompose as AV = V Λ Λ = V −1AV 

0 2	
⇒ 

where 

Λ = 
1 0 

V = 
1 1 

V −1 =
1 −1 

0	 2 0 1 0 1 

Convert 
z=V −1x(t) 

ẋ(t) = Ax(t) + Bu −→ ż = Λz + V −1Bu � �T 
where z = z1 z2 . But: � �� � � � 

V −1B =
1 −1 1

=
1 

0 1 0 0 

so that the dynamics in modal form are: 

1	 0 1 
ż = z + u 

0	 2 0 

•	 With this zero in the modal B-matrix, can easily see that the mode 
associated with the z2 state is uncontrollable. 

• Must assume that the pair (A, B) are controllable. 
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Ackermann’s Formula 

•	 The previous outlined a design procedure and showed how to do it by 
hand for second-order systems. 

• Extends to higher order (controllable) systems, but tedious. 

•	 Ackermann’s Formula gives us a method of doing this entire design 
process is one easy step. 

K = 0 . . . 0 1 M−1Φd(A)c 

• Mc = B AB . . . An−1B as before 

• Φd(s) is the characteristic equation for the closed-loop poles, which 
we then evaluate for s = A. 

• Note: is explicit that the system must be controllable because 
we are inverting the controllability matrix. 

•	 Revisit Example # 1: Φd(s) = s2 + 11s + 30 � � � � � � � � 1 1	 1 1 1 1 
Mc = B =AB = 

0 1	 2 0 0 1 

So 

� � � 
1 1 

�−1 
⎛� 

1 1 
�2 � 

1 1 
� ⎞ 

K = 0 1	 ⎝ + 11 + 30I⎠ 
0	 1 1 2 1 2 

� � 43 14 � � 
= 0 1	 = 14 57 

14	 57 

• Automated in Matlab: place.m & acker.m (see polyvalm.m too)
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Reference Inputs


•	 So far we have looked at how to pick K to get the dynamics to have 
some nice properties (i.e. stabilize A) 

•	 The question remains as to how well this controller allows us to track 
a reference command? 

• Performance issue rather than just stability. 

Started with • 

ẋ(t) = Ax(t) + Bu y = Cx(t) 

u = r − Kx(t) 

•	 For good tracking performance we want 

y(t) ≈ r(t) as t → ∞ 

•	 Consider this performance issue in the frequency domain. Use the 
final value theorem: 

lim y(t) = lim sY (s) 
t→∞ s→0 

Thus, for good performance, we want


Y (s)
sY (s) ≈ sR(s) as s 0→ ⇒ 

R(s)

= 1


s=0


•	 So, for good performance, the transfer function from R(s) to Y (s) 
should be approximately 1 at DC. 
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• Example #1 continued: For the system � � � � 
1 1 1 

ẋ(t) = 
1 2 

x(t) + 
0 

u 

y = 1 0 x(t) 

• Already designed K = 14 57 so the closed-loop system is 

ẋ(t) = (A − BK)x(t) + Br 

y = Cx(t) 

which gives the transfer function 

Y (s)
= C (sI − (A − BK))−1 B 

R(s) � �−1 � � � � s + 13 56 1 
= 1 0 

−1 s − 2 0 

s − 2 
= 

s2 + 11s + 30 

• Assume that r(t) is a step, then by the FVT 

Y (s)��� = − 
2 

= 1 !! 
R(s) s=0 30 

�

• So our step response is quite poor! 
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•	 One solution is to scale the reference input r(t) so that 

u = Nr − Kx(t) 

• N extra gain used to scale the closed-loop transfer function 

Now we have • 

ẋ(t) = (A − BK)x(t) + BNr 

y = Cx(t) 

so that 
Y (s)

= C (sI − (A − BK))−1 BN = Gcl(s)N 
R(s) 

If we had made N = −15, then


Y (s) −15(s − 2)

= 

R(s) s2 + 11s + 30


so with a step input, y(t) → 1 as t → ∞.


•	 Clearly can compute 

N = Gcl(0)
−1 = − 

� 
C(A − BK)−1B 

�−1 

• Note that this development assumed that r was constant, but it could 
also be used if r is a slowly time-varying command. 
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Pole Placement Approach


•	 So far we have looked at how to pick K to get the dynamics to have 
some nice properties (i.e. stabilize A) 

λi(A) � λi(A − BK) 

•	 Question: where should we put the closed-loop poles? 

•	 Approach #1: use time-domain specifications to locate dominant 
poles – roots of: 

s 2 + 2ζωns + ωn 
2 = 0 

• Then place rest of the poles so they are “much faster” than the 
dominant 2nd order behavior. 

• Example: could keep the same damped frequency wd and then 
move the real part to be 2–3 times faster than the real part of 
dominant poles ζωn 

� Just be careful moving the poles too far to the left because it 
takes a lot of control effort 

•	 Recall ROT for 2nd order response (4–??): 

1 + 1.1ζ + 1.4ζ2 
10-90% rise time	 tr = ωn 

Settling time (5%)	 ts = 
ζω
3 
n 

Time to peak amplitude tp = �π

ωn 1 − ζ2


Peak overshoot	 Mp = e−ζωntp 

•	 Key difference in this case: since all poles are being placed, the 
assumption of dominant 2nd order behavior is pretty much guaranteed 
to be valid. 
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Linear Quadratic Regulator


•	 Approach #2: is to place the pole locations so that the closed-loop 
system optimizes the cost function 

JLQR = 
∞ � 

x(t)TQx(t) + u(t)TRu(t) 
� 
dt 

0 

where: 

• xTQx is the State Cost with weight Q 

• uTRu is called the Control Cost with weight R 

• Basic form of Linear Quadratic Regulator problem. 

•	 MIMO optimal control is a time invariant linear state feedback 

u(t) = −Klqrx(t) 

and Klqr found by solving Algebraic Riccati Equation (ARE) 

0 = ATP + PA + Q − PBR−1BTP 

Klqr = R−1BTP 

• Some details to follow, but discussed at length in 16.323 

•	 Note: state cost written using output xTQx, but could define a 
system output of interest z = Czx that is not based on a physical 
sensor measurement and use cost ftn: 

T (t)CT ˜JLQR = 
∞ � 

x z QCzx(t) + ρ u(t)T u(t) 
� 
dt⇒	

0 

˜• Then effectively have state penalty Q = (Cz
TQCz) 

• Selection of z used to isolate system states of particular interest 
that you would like to be regulated to “zero”. 

• R = ρI effectively sets the controller bandwidth 

October 17, 2010 
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LQR Weight Matrix Selection 

•	 Good ROT (typically called Bryson’s Rules) when selecting the weight
ing matrices Q and R is to normalize the signals: 

⎡
 ⎤

α2 
1 ⎢⎢⎢⎢⎢⎢⎢⎢⎣


(x1)2 
max 

α2 
2 

(x2)2 
max 

⎥⎥⎥⎥⎥⎥⎥⎥⎦


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦


Q =

. . . 

α2 
n 

(xn)2 
max 

β2 
1 

(u1)2 
max 

β2 
2 

(u2)2 
max . . . 

β2 
m 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣


R = ρ


(um)max
2


• The (xi)max and (ui)max represent the largest desired response or 
control input for that component of the state/actuator signal. 

i
α
2 
i =
 1 and
 i
β

2 
i =
 1 are used to add an additional relative
•


weighting on the various components of the state/control 

•	 ρ is used as the last relative weighting between the control and state 
penalties gives a relatively concrete way to discuss the relative size ⇒ 
of	Q and R and their ratio Q/R 
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Regulator Summary


•	 Dominant second order approach places the closed-loop pole locations 
with no regard to the amount of control effort required. 

• Designer must iterate on the selected bandwidth (ωn) to ensure 
that the control effort is reasonable. 

•	 LQR selects closed-loop poles that balance between state errors and 
control effort. 

• Easy design iteration using R 

• Sometimes difficult to relate the desired transient response to the 
LQR cost function. 

• Key thing is that the designer is focused on system performance 
issues rather than the mechanics of the design process 
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Regulator/Estimator Comparison 

•	 Regulator Problem: 

• Concerned with controllability of (A,B) 

For a controllable system we can place the eigenvalues 
of A − BK arbitrarily. 

• Choose K ∈ R1×n (SISO) such that the closed-loop poles 

det(sI − A + BK) = Φc(s) 

are in the desired locations. 

Estimator Problem: • 

• For estimation, were concerned with observability of pair (A,C). 

For a observable system we can place the eigenvalues of 
A − LC arbitrarily. 

• Choose L ∈ Rn×1 (SISO) such that the closed-loop poles 

det(sI − A + LC) = Φo(s) 

are in the desired locations. 

•	 These problems are obviously very similar – in fact they are called 
dual problems. 
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