
Planning Graphs

Slides from
https://cw.fel.cvut.cz/old/_media/courses/a4m33pah/cv10-graphplan.pdf

Planning Graphs

 Planning graphs are an efficient way to create a
representation of a planning problem that can be
used to

Achieve better heuristic estimates

Directly construct plans

 Planning graphs only work
for propositional problems.

Planning Graphs

 Planning graphs consists of a seq of levels that
correspond to time steps in the plan.

 Level 0 is the initial state.

Each level consists of a set of literals and a set of
actions that represent what might be possible at
that step in the plan

Might be is the key to efficiency

Records only a restricted subset of possible
negative interactions among actions.

Planning Graphs

 Each level consists of
 Literals = all those that could be true at that time

step, depending upon the actions executed at
preceding time steps.

 Actions = all those actions that could have their
preconditions satisfied at that time step, depending
on which of the literals actually hold.

PG Example

Init(Have(Cake))

Goal(Have(Cake)  Eaten(Cake))

Action(Eat(Cake),
PRECOND: Have(Cake)

EFFECT: ¬Have(Cake)  Eaten(Cake))

Action(Bake(Cake),
PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake))

PG Example

Create level 0 from initial problem state.

PG Example

Add all applicable actions.

Add all effects to the next state.

PG Example

Add persistence actions (inaction = no-ops) to
map all literals in state Si to state Si+1.

PG Example

Identify mutual exclusions between actions and
literals based on potential conflicts.

Mutual exclusion

 A mutex relation holds between two actions when:
 Inconsistent effects: one action negates the effect of another.

 Interference: one of the effects of one action is the negation of a
precondition of the other.

 Competing needs: one of the preconditions of one action is mutually
exclusive with the precondition of the other.

 A mutex relation holds between two literals when:
 one is the negation of the other OR
 each possible action pair that could achieve the literals is

mutex (inconsistent support).

Cake example

 Level S1 contains all literals that could result from
picking any subset of actions in A0

 Conflicts between literals that can not occur together
(as a consequence of the selection action) are
represented by mutex links.

 S1 defines multiple states and the mutex links are the constraints that
define this set of states.

Cake example

 Repeat process until graph levels off:
 two consecutive levels are identical, or

 contain the same amount of literals
(explanation follows later)

The GRAPHPLAN Algorithm

 Extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph  INITIAL-PLANNING-GRAPH(problem)

goals  GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution  EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

if solution  failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph  EXPAND-GRAPH(graph, problem)

GRAPHPLAN Termination

 Termination? YES

 PG are monotonically increasing or decreasing:
 Literals increase monotonically

 Actions increase monotonically

 Mutexes decrease monotonically

 Because of these properties and because there is
a finite number of actions and literals, every PG
will eventually level off

