
Planning and Control

Submission Guidelines

Writeups must be submitted as a PDF via Gradescope. LATEX is preferred, but
other typesetting methods are acceptable. Code for the programming compo-
nent must be submitted in a zip archive via Canvas. Plots generated as part of
the programming component should be included in the writeup.

Collaborators

List the names of all collaborators and which questions you collaborated on.

1 Motion Planning: Search and Sampling (45 points)

In this section you will be required to implement different motion planning
algorithms and study the parameters that govern their behaviors.

1.1 Code Overview

The starter code is written in Python and depends on NumPy and Matplotlib.
This section gives a brief overview.

• run.py - Contains the main function. Note the command-line arguments
that you can provide.

• MapEnvironment.py - Environment-Specific functions. Some of them have
to be filled in by you.

• map1/2.txt - Maps that you will work with. The numbers denote the
collision status of the cell (1 - collision, 0 - collision-free).

• AStarPlanner.py - A* Planner. Logic to be filled in by you.

• RRTPlanner.py - RRT planner. Logic to be filled in by you.

• RRTStarPlanner.py - RRT* planner. Logic to be filled in by you.

• RRTTree.py - Contains datastructure taht can be useful for your imple-
mentation of RRT and RRT*.

1



To run A* on map 2, you would run
$ python run.py -m map2.txt -p astar -s 321 148 -g 106 202

1.2 Environment Modelling

The planning consists of a 2D map. You have been provided with two maps
map1.txt and map2.txt. You can use the former to test your implementation
but report all results on the latter with start and goal to be [321, 148] and
[106,202]. Note that environement-specific functions need to be filled in by you
in MapEnvironment.py file, these functions can include distance computations
or sampling and nearest neighbor retrieval. Once you complete implementing
the environment-specific functions, you are ready to implement the planners.

Note that in case of search algorithms like A*, the environment is considered
to be a discrete grid while in sampling-based techniques the environment is
assumed to be continuous. However, in this case since the underlying world is
given to be grid, you can snap any continuous sample points onto the grid.

1.3 A* Implementation (10 points)

You will be implementing the weighted version of A-star where the heuristic is
weighted by a factor of ε. Setting ε = 1 gives vanilla A*. For more details on
the algorithm, refer to the reading material on the course website. The main
algorithm is to be implemented in AStarPlanner.py file.

1. Use an 8-connected neighbourhood structure so that diagonal actions are
also allowed. Each action has a cost equal to the length of the action i.e.
cost of action (dx, dy) =

√
dx2 + dy2. Note that diagonal actions cost

√
2.

2. Use the Euclidean distance from the goal as the heuristic function.

3. Try out different values of epsilon to see how the behavior changes. Report
the final cost of the path and the number of states expanded for ε =
1, 10, 20.

4. Discuss the effect of ε on the solution quality.

5. Visualize the final path in each case and the states visited.

1.4 RRT and RRT* Implementation (25 points)

You will be implementing a Rapidly-Exploring Random Tree (RRT) for the
same 2D world. For more details on the algorithm, refer to the reading material
on the course website. Think of the practical considerations in implementat-
ing the RRT-style algorithms. The main algorithms are to be implemented in

2



RRTPlanner.py and RRTStarPlanner.py files. Note that since these methods
are non-deterministic, you’d need to provide statistical results (averages over
around 10 runs).

1. Bias the sampling to pick the goal with 5%, 20% probability. Report the
performance (cost, time) and include figures showing the final state of the
tree for both values.

2. For this assignment, you can assume the point robot to be able to move
in arbitrarily any direction i.e. you can extend states via a straight line.
You will implement two versions of the extend function:

• the nearest neighbor tries to extend all the way till the sampled point.

• the nearest neighbor tries to extend to the sampled point only by
a step-size η. Pick a small η of your choice and mention it in your
write-up.

As before, report the performance (cost, time) and include a figure showing
the final state of the tree for both values. Which strategy would you
employ in practice?

3. You will also be implementing RRT* as part of this question. You can im-
plement this on top of your RRT planner with consideration for rewiring
the tree whenever necessary. Compare the performance of the two al-
gorithms, i.e. RRT* against RRT planner (with your choice of planner
parameters).

2 Trajectory Optimization (20 points)

2.1 Representation (5 points)

1. Although CHOMP and TrajOpt are cavariant to trajectory representa-
tion, their implementation requires a choice of parameterization for the
trajectory. Mention two ways to represent trajectories.

2. For each type of representation, express Usmooth =
∫

1
2 ‖ξ

′(t)‖2dt in terms
of the parameters involved.

2.2 Inner Product and Gradient Descent (15 points)

Consider the three trajectories in Fig. 1. Note that they have a waypoint
parameterization of a single-DOF system with T1 = (0, 0, 0, 0, 0, 0), T2 =
(0, 5, 0, 0, 5, 0) and T3 = (0, 5, 10, 10, 5, 0) indexed by timepoint.

1. Consider the Euclidean distance norm where < ξ1, ξ2 >E= ξT1 ξ2. Which
trajectory is closer to T1: T2 or T3?

3



Figure 1:

2. If smoothness in deformation is weighed higher than closeness in position,
which trajectory is closer to T1: T2 or T3?
Hint: To determine this, start from Usmooth =

∫
1
2 ‖ξ

′(t)‖2dt and define
the inner product using the Hessian of Usmooth.

3. Discuss your intuitive understanding of why the Euclidean metric does
not capture the closeness in smoothness and how the Hessian overcomes
the issue.

3 Task Planning (15 points)

It is essential for a symbolic planning problem to properly define the symbols,
actions, the preconditions and effects appropriately to correctly solve the plan-
ning problem. Consider the Blocks World illustration in Fig. 2 as an example.

Figure 2: Blocks World

• Symbols: A, B, C, Table

• Initial Condition: On(A, B), On(B, Table), On(C, Table), Block(A),
Block(B), Block(C), Clear(A), Clear(C)

• Goal Condition: On(B, C), On(C, A), On(A, Table)

• Actions:
MoveToTable(b, x)
Preconditions: On(b,x), Clear(b), Block(b), Block(x)
Effects: On(b,Table), Clear(x), !On(b,x)

4



Move(b, x, y)
Preconditions: On(b,x), Clear(b), Clear(y), Block(b), Block(y), b != y
Effects: On(b,y), Clear(x), !On(b,x), !Clear(y)

In this homework, you are supposed to write the environment description files
for two environments:

3.1 Blocks and Triangles World (5 points)

This environment is similar to the Blocks world problem discussed above. In
addition to the blocks, this environment has triangles that can be moved in
the exact same way as blocks with the exception that nothing can be put on
top of them. A simple example of this environment with only three objects is
shown below. Write a problem description file for an environment with 5 blocks
(B0, B1, B2, B3, B4), 2 triangles (T0, T1) and a Table. The start and goal
conditions are below:

• Start condition: B0 is on B1, B1 is on B4, B2 is on Table, B3 is on B2,
B4 is on Table, T0 is on B0, and T1 is on B3.

• Goal condition: B0 is on B1, B1 is on B3, and T1 is on B0.

3.2 Fire Extinguisher Environment (10 points)

The goal of this problem is to have a pair of robots put out a fire. This domain
has two robots 1) a quadcopter and 2) a mobile robot. The mobile robot can
travel between locations. The quadcopter only moves between locations by
landing on the mobile robot and having the mobile robot travel to the other
location. The quadcopter can fly around a single location (cannot navigate
between locations) if its battery level is High, but it won’t be able to take off if
its battery level is Low. Whenever the quadcopter is on the mobile robot, it can
charge its battery by calling the charge action. The quadcopter has a tank that
can be filled with water when the quadcopter is on the mobile robot at location
W (where there is water). The fire is at location F. The W and F locations are
far from each other. The quadcopter should fly around location F in order to
pour water on the fire. The quadcopter needs to pour water on the fire three
times in order to extinguish the fire. Every time the quadcopter pours water
on the fire, its battery level becomes low and its water tank becomes empty (it
should go back to W to fill its tank). The robots will each start at one of five
different locations (A, B, C, D, E), which are far from W and F. The quadcopter
cannot land on the ground.

• Start condition: The quadrotor is flying and at location B. The mobile
robot is at location A. The quadrotor’s water tank is empty.

5



• Goal condition: The fire is extinguished.

4 Control of a Cartpole (20 points)

Figure 3: Cartpole

4.1 Modelling (5 points)

Control of a physical system requires the system to be modelled to determine
the states to be controlled and the appropriate control inputs. Consider the
inverted pendulum mounted on a cart as shown in Fig. 3. The pendulum has a
uniform mass m and length l while the cart has a mass 3m. Assume the surface
to be frictionless. Gravity is as shown in the figure.

1. Assuming that the only control input that can be applied is the horizon-
tal force f on the cart to control the position and velocities of the the
pendulum and the cart, derive the statespace equation of the system.

2. Identify the points of equilibrium, if any, and if they exist, qualify their
stability.

4.2 Control (15 points)

1. Linearize the system around (x, θ, x′, θ′) = (0, π2 , 0, 0). Using the linearized
model, determine if the system is stable and controllable?

2. If the system is unstable, design a stabilizing controller for it and discuss
the choice and effect of the controller.

3. Using an LQR determine the optimal controller for the system for your
choice of Q and R. Discuss the design decisions made. Assume m = 1, l =
1, g = 10m/s2. Feel free to use available python packages to solve the
Ricatti equation.

6


