CSE561 – Traffic / Content Distribution

David Wetherall
djw@cs.washington.edu
Project presentations & reports

- Presentations in class, last day of classes
- 10? minutes per team
- Quick refresher of the problem, focus on what you have accomplished and what you have learned

- Accompanying writeup of no more than 6 pages (11pt)
- Can be turned in up to EOD the following day
- Captures your problem / approach / results / learnings and future directions.
Traffic and Content Distribution

- Focus:
 - Things you should know about Internet workloads

- Traffic characteristics
- Caching
- CDNs
- Peer-to-peer
Rapid shifts in dominant applications

- The rise of P2P over Web in 2002 (Sariou et al.)

- Email, Web, P2P/BitTorrent, Skype, YouTube, Facebook
Leads to shifts in traffic features

- With the rise of video, shift from many short connections to much longer/larger transfers
Self-similarity

- Network traffic is bursty over all timescales; Poisson is only a good model for human-driven
 - “On the self-similar nature of Ethernet traffic,” Leland et al., 1993

- Aggregating Poisson traffic (exponential inter-arrival times) smoothes it
- But aggregating self-similar traffic just makes it burstier
More on objects …

• The size of transfers is heavy-tailed
 – Mostly small connections yet most bytes in a few large ones

• The popularity of objects has a power-law distribution
 – Zipf/Pareto for Web pages
Caching

• Implication of power-law traffic models is that caching is not very effective (by traditional measures)
 – More like “50%” than “95%”

• One rule of thumb:
 – Cache hit rate grows logarithmically with cache size
How to speed up content distribution

• Model is that many clients want the same objects

• 1. Remove server bottleneck
 – Replicate it

• 2. Place content close to clients
 – Reduces network load, speeds transfers (TCP effects etc.)
Content Distribution Networks

- Akamai as example

- Replicate content at locations near clients
- Replicas are really cached copies

- Magic is to connect client with nearby replica
 - Overrides DNS resolution for deployment
 - Client still uses URL, contacts server to get page
 - DNS maps Akamai server name to IP of nearby replica
 - Nearby might be RTT to client nameserver, or better
Peer-to-Peer

• BitTorrent as example

• Users serve dual role as replicas for each other
 – Issues of participation incentives

• Magic is to connect client with a set of nearby replicas
 – Application search process that favors better/faster partners
 – Emphasis on decentralization; no single authority or contact