CSE561 – Congestion Control

David Wetherall
djw@cs.washington.edu
Congestion Control

- Focus:
 - How to share bandwidth between senders

- Congestion
- Fairness
- Bandwidth allocation
- RED/ECN
Congestion

- Buffer intended to absorb bursts when input rate > output
- But if sending rate is persistently > drain rate, queue builds
- Dropped packets represent wasted work; goodput < throughput
Effects of Congestion

• Draw throughput and delay versus offered load
 – Combination leads to notion of a good operating point
• Also draw goodput versus offered load
 – Notion of congestion collapse
Bandwidth Allocation

• Find a suitable allocation of bandwidth given:
 – a network, workload of traffic flows, and the routes (usually)

• Allocation depends on:
 – A notion of fairness [cf. next slide]
 – A notion of efficiency [cf. last slide]

• Allocation implemented as:
 – Distributed feedback control loop
 – Ouch!
• Each flow from a source to a destination should get an equal share of their bottleneck link ... depends on paths and other traffic
Control Loop

- Traffic is bursty
- Congestion is experienced at routers (Network layer)
- Traffic is controlled at sources (Transport/Network layer)

- The two need to talk to each other!
 - Sources sending more slowly is the only relief
 - Sources sending more quickly is the only way to use the capacity
Control Loop Designs

• Open versus Closed loop
 – Open: reserve allowed traffic with network; avoid congestion
 – Closed: use network feedback to adjust sending rate

• Host-based versus Network support
 – Who is responsible for adjusting/enforcing allocations?

• Window versus Rate based
 – How is allocation expressed? Window and rate are related.

• Internet depends on TCP for bandwidth allocation
 – TCP is a host-driven, window-based, closed loop mechanism
AIMD Rationale (Chiu & Jain, 1989)

- AIMD (right) finds the optimal point (left)
Control Loop Feedback Signals

• Many possible signals:
 – Hosts can observe E2E packet loss (e.g., TCP)
 – Hosts can observe E2E packet delay (e.g., Vegas, FAST)
 – Router can tell source of congestion (e.g., RED/ECN)
 – Router can tell source its allocation (e.g., XCP)

• Each has pros / cons and design implications
Avoidance versus Control

• Congestion control
 – Recover from congestion that is already degrading performance

• Congestion avoidance
 – Avoid congestion by slowing down at the onset

• Latter benefits from router support
Detecting the onset of congestion

- Sustained overload causes queue to build and overflow
- Router can watch for an increase in the average delay
Random Early Detection (RED) routers

- Router sends “early” signal to source when avg. queue builds

- Probabilistically choose packet to signal; fast flows get more
RED signals

• Preferred/Future:
 – Set Explicit Congestion Notification bits in the IP packet header
 – Destination returns this signal to the source
 – Generates no extra packets at a time of congestion, signals reliably

• Deprecated/Present
 – Drop the packet; that is what pre-RED routers do
 – Source will get the hint
 – Paradox is that early loss can improve performance!
 – This is why RED tries to give each source only one signal

• In practice: not widely used, needs tuning to work well