Deploying Ubiquitous Connectivity:

Mechanisms for Resource Allocation and Authentication

Charles Reis
Karthik Gopalratnam
Wireless Routers Abound

• Cheap
• Widespread
• Programmable

• Presents a new opportunity…
Ubiquitous Connectivity

• Widespread Internet access through existing APs
 – Cheap, high bandwidth

• Need incentives to share
• Need backwards compatibility
New Considerations

• Resource sharing

• Security concerns

• (Mobility between APs)

• (Cooperation between APs)
Local View

Internet

Apartment
Global View

ISP

Internet

Apartment
Authentication

• WPA Enterprise
 – Per-user encryption keys
 – RADIUS authentication
 • Global: ISPs
 • Local: on the router (tinyPEAP)
 • Router associates flows with users
Resource Allocation

• What is the Shared Resource?
 – Bottleneck Bandwidth to the Internet?
 – Wireless air time?
Sharing Air Time

Problem: nothing queues up!
Sharing Air Time

A

\[\text{a}_1, \text{a}_2, \text{a}_3 \ldots \text{a}_7, \text{a}_8\]

B

\[\text{b}_1, \text{b}_2, \text{b}_3\]

Router Outbound Link

\[\text{a}_7, \text{a}_8 \text{ and } \text{b}_3 \text{ are Q'd.}\]
Much Better Utilization
Wireless Weighted Fair Queuing (WWFQ)

• Core idea: Sharing two resources
 – Wireless air time
 – Uplink bandwidth

• Enforce this idea on flows:
 – Ingress mechanism
 – Egress mechanism
WWFQ Ingress

- Establish fair sharing of air time
 - Drop packets if clients exceed their share
 -
 - $\frac{D_i}{r_i} > W_i \left(T - T_{ref} \right)$
 -
 -
- Share based on *rate* and *class*
• Partition uplink bandwidth
• Two-level WFQ scheme:
 • Within a class:
 • Choose candidate packet among flows based on rate
 • Among classes:
 • Choose from candidates based on rate and class weight
Evaluation

- Modified Linux kernel
 - Implemented egress scheme (wwfq qdisc)
 - Approximated ingress scheme (TBF filter)

- TOPOLOGY:
 - Focused on upstream traffic
Higher Utilization

Throughput for Queuing Mechanisms (Different Clients and Rates)
Fair Sharing

Throughput for Queuing Mechanisms (Different Clients and Rates)
Future Work

• Automate Ingress filter
• Deal with mixed (up/down) flows
 – Still sharing air time
 – Kernel tricks for policy across queues
• Port to router!
Summary

• Share connectivity with commodity routers

• Security:
 – Authentication with WPA / RADIUS

• Resource Allocation:
 – Share air time and uplink bandwidth
 – Improve fairness and utilization
Acknowledgments

• KERNEL GURUS:
 – Mike Swift
 – Muthu Annamalai