
Diagnosing Network Problems with Standard Tools

Jonas Lindberg & Erika Rice

December 10, 2004

Abstract

It is altogether too common that a user cannot use
the network they are on to do the tasks they de-
sire. Experts know how to diagnose network prob-
lems using tools available, but using these tools is
hard for the non-expert. We have developed a tool
that demonstrates the feasibility of automating the
use of existing network tools.

1 Introduction

It is altogether too common that a user cannot use
the network they are on to do the tasks they desire.
When such a problem occurs, the user who is knowl-
edgeable about networks will know the tools to use
to pinpoint the problem. However, the average user,
even the average computer savvy user, will not have
this sort of expert knowledge at their disposal when
the network acts up.

There are many tools that experts use to diagnose
network problems. However, these tools can be diffi-
cult to use. They often have many options, and they
place no interpretation on their output. It is up to
the user to know what questions to ask and how to
interpret what the answer means.

We have developed a prototype tool to examine the
feasibility of developing an easy to use utility for di-
agnosing network problems. This tool, Why, requires
only the website the user wants to connect to and a
port to diagnose the network problem. The output is
a description of what the tool thinks the problem is or
an “I don’t know” message with hints of the possible
problems if it cannot determine the exact problem.
Because this is a prototype tool, the focus was more

on automating detection rather than creating a good
user interface.

The rest of this paper is organized as follows. Sec-
tion 2 describes the goals of this project. Next sec-
tion 3 describes our general approach. This is fol-
lowed by section 4 which describes the primary prob-
lems we are trying to diagnose. Section 5 gives the
details of our implementation, including our diagnos-
tic structure and the tools we use. Section 6 describes
the tests we performed and discusses the individual
test results. This is followed by section 7 which dis-
cusses some of the successes and challenges of this
work. Sections 8 and 9 discuss, respectively, future
and related work. Finally, we conclude in section 10.

2 Goals

This project has two evaluation goals. The first is
to evaluate how well we demonstrate the feasibility
of using existing tools to create a utility that can be
used to determine the source of network problems
with minimal expert knowledge needed by the user.
The second goal is to test how well the tool we have
developed diagnoses the specific problems we are try-
ing to identify.

3 Approach

Our approach was to develop a tool that the user
could invoke with a minimal number of arguments
when she experienced network problems. Why in-
vokes existing network tools and interprets the out-
put so that the user can be given a concise summary
of what the problem likely is. The primary technical

1



issue is determining the right tools to use and how to
interpret their output. An expert diagnosing a net-
work has the advantage of knowing the characteristics
of that network; they know what is normal behavior
and what is strange behavior. However, our goal was
to make a light weight tool that could give some idea
of the network problems without prior knowledge of
what was normal for the network. This makes the
task of knowing how to interpret the output from
various network tools difficult.

4 Problem Areas

Because our goal is to test the feasibility of devel-
oping a general network diagnostic tool, we choose
to focus on a fairly small number of common prob-
lems. These are mostly problems at one of the end
hosts. Characterizing problems within the network
is a problem that is beyond the scope of this project
and developing tools that can do this is an area of
on going research. To determine which problems it
would be most useful to diagnose, we looked at sev-
eral online network troubleshooting guides. We chose
to focus on the problems which appeared to be most
common.

4.1 Problems at the Local Host

4.1.1 Nameserver not accessible or invalid
host

A source of connection problems is an inability to
translate from a host name to an IP address. There
are two potential sources of this problem. Either the
local machine cannot contact any nameserver or the
host does not exist.

4.1.2 No physical path

Suppose there is no physical path between one host
and the host it is trying to connect to. The missing
connection may be because the user has forgotten to
attach their computer to the network (in which case
it is easily fixable) or the missing connection may be
somewhere outside of the user’s control.

4.1.3 Improperly configured interfaces

Sometimes a user cannot connect to the network be-
cause there is no interface on the local machine con-
figured to access the network. There may also be
multiple external interfaces configured, and this may
cause problems on the sending machine.

4.1.4 Local routing table incorrect

The local routing table on a host indicates the default
gateway and interface to send packets on. It can also
be used to specify alternate routes for specific desti-
nations. For example, the local routing table could
indicate packets destined for a particular destination
be routed through another machine. If the network
has been configured to use such a setup and the al-
ternate router was unreachable, the user might not
realize why most packets get through, but packets to
a particular destination do not. We address only a
subset of this problem wherein the default routes for
all hosts are incorrect.

4.2 Problems at the Remote Host

4.2.1 Firewall

A badly configured firewall may block packets from
reaching certain applications. Problems like this can
occur when the server administrator accidentally en-
ables a built-in firewall (e.g. by installing a service
pack) or forgets to configure the firewall when in-
stalling a new service1. In other cases, a firewall
may intentionally be blocking certain applications.
In both cases, it would be beneficial to the user to
know that a firewall is the reason they cannot reach
the destination.

4.2.2 Service down

Services such as web servers do occasionally go down.
It may be useful for a user to know that it is only
the particular service that is down. For example, in
the case where a user has a choice between an FTP
download and an HTTP download. If HTTP is not

1A local firewall could also cause problems, but we are not
directly considering that situation.

2



working, the user can use Why to find this out and
use FTP instead.

4.2.3 Server offline

Sometimes a server is turned off, rebooting, or just
not attached to the network. Just being able to de-
tect that the computer is not on the network would
be useful information for the end-user.

4.3 Internal Network Problems

Problems which occur within the network rather than
at one of the end points are the hardest to diagnose.
Problems such as congestion, routing problems due to
routing around a link that is down, or inefficiencies
due to routing between ISPs can be hard to pinpoint.
As such, our only goal with respect to these problems
is to be able to detect that the problem is somewhere
within the network rather than at one of the end
points. We do not see this as a terrible trade off,
since it is problems at an end point that the user is
likely to have some ability to remedy.

5 Implementation

5.1 Diagnostic Structure

Figures 1 and 2 show how Why diagnoses network
problems. The first figure shows local tests and the
second figure shows non-local tests; these tests are
performed if all of the local tests pass. The rest of
this section explains this process in detail.

The diagnosing process starts by trying to detect
errors at or near the local host2. These tests are
first because they are relatively quick; their running
time does not significantly effect the time it takes for
running the full diagnosis. The following tests are
performed for identifying local problems: verifying
the existence of a suitable network interface; verify-
ing that name resolution works; and verifying that
the given host name is valid. The last two tests are

2In our implementation, tests are performed sequentially.
This is, of course, not as time efficient as running the tests in
parallel, but performs well enough for this prototype.

bypassed if the remote host is given as IP-address
instead of host name.

If no local problems were detected, the process
probes the remote host to detect non-local problems.
First, Why tries to connect to the remote host on the
given port. There are three possible outcomes from
this test: port is open, port is closed or no response.
A port-open response indicates that the host is reach-
able and that there in fact is a service listening on
the port. Should Why instead receive a port-closed
response, it concludes that the host is reachable but
the service is down; the close, in this case, is an ac-
tive response from the server saying that the port is
closed3.

The third case, not receiving any response at all,
occurs when a firewall is blocking the port or the
host is unreachable. Differentiating these two prob-
lems can be hard or even impossible. Our approach
is to probe the host in different ways and hope that
it will respond on some of our requests and prove it-
self reachable, which would implicate a firewall as the
problem source. This technique will not provide us
with any new information in the case where a firewall
is blocking all incoming connection attempts.

If Why gets to the point where there does not ap-
pear to be any problem that it can diagnose, it tries
a rough test for congestion. It does this by pinging
the destination host for a short period of time; if any
packets are dropped, congestion is suggested as the
problem. Why also compares minimum and average
round trip times for a set of pings to look for indica-
tions of congestion; if the minimum deviates too far
from the average, congestion is reported as a poten-
tial problem.

5.2 Platform and Tools

Why has been developed for Linux. Development was
done on Fedora Core 2 machines running 2.6 ker-
nels and Debian Woody machines running 2.4 ker-
nels. Our tool is implemented in Perl 5. The utilities
used to implement Why are Traceroute (v. 1.4a12)
[8], Nmap (v. 3.5 and 3.7) [3], Netstat (v. 1.42) [20],

3Although a firewall could give an active closed message
for an open port, this is rare. Thus, we assume that a closed
message means the port is really closed.

3



Figure 1: Flowchart illustrating the diagnosing process for local problems.

Figure 2: Flowchart illustrating the diagnosing process for non-local problems.

4



Ping [13], and Host [6]. These are all common Linux
network tools.

The output of most tools is parsed by hand in our
application. The one exception is Traceroute; there is
a Perl module for parsing Traceroute output [5]. Such
modules were not publicly available for other tools
that we used. This presents one limitation of our
current implementation of Why. The tool is depen-
dent on the specific output formats of these tools; if
the format of the output changes, our tool will break.
A more modular design could address this limitation.

5.3 Usage

An easy to use diagnostic tool should take as few
inputs as possible. Why requires two arguments: a
host to connect to (either a host name or IP) and a
port. An optional output granularity value controls
the amount of information given to the user.

6 Testing

6.1 Unit Testing

Due to time constraints, the only systematic tests of
Why we were able to perform were tests to detect
each problem individually. Most problems occur at
one of the end hosts and can easily be tested directly.
Because we had access to multiple Linux machines,
causing these problems was easy. However, because
we only had root access on machines on a local area
network of four computers, some tests could only be
performed within that LAN rather than across the
Internet.

6.1.1 Nameserver not accessible

In Linux, the list of local nameservers is kept in a
file editable by the root user. This presents two ways
of removing accessibility to the nameserver without
having access to it. The first way is to delete the
nameservers in the file. The second way is to put in-
correct nameservers in the list. We did each of these
in turn and tried to connect to www.google.com on
port 80 (HTTP). In both cases, Why correctly re-
ported that there were no accessible nameservers.

6.1.2 Invalid host

Performing this test was as simple as attempting to
use the tool to diagnose the connection to a host
which does not exist. The host and port used for
the test were theperfectroutingprotocol.com and
port 80. Why successfully tells us that this host does
not exist. One could imagine improving the output
by having Why do simple tests like changing the suf-
fix (try .net instead of .com, etc.) and suggesting
possible alternatives to the user.

6.1.3 No physical path

Why can only diagnose this problem when the break
in the physical connection is at the local host. To test
this, we disconnected the ethernet cable from a com-
puter while leaving the ethernet interface configured.
As done in most tests, Why was then used to try to
diagnose the connection between the local host and
www.google.com on port 80. When Why was run, it
reported that it could not reach the default gateway
and gave as possible reasons a broken physical con-
nection, an incorrect gateway, or a malfunctioning
gateway.

6.1.4 Improperly configured interfaces

Why was tested for this problem in two ways. In the
first test, all interfaces to the network were disabled.
Diagnosing with the standard www.google.com on
port 80 gave the error that the only interface running
was a local loop-back interface. Thus, the problem
was diagnosed successfully.

The second test involved configuring two interfaces,
an ethernet interface and a wireless interface, at the
same time. Using the same parameters as before, this
test reported that there were multiple interfaces con-
figured. While technically correct, this answer is not
terribly informative. Depending on how the inter-
faces affect the routing table, it may or may not be
permissible to have multiple interfaces. If the host
Why was being used on was, for example, a server
where the two interfaces had been properly config-
ured, Why would always print out this message as a
probable source of error and would rarely be right.
The proper way to detect if multiple interfaces are

5



problematic would be to combine the inspection of
which interfaces are up with an inspection of the rout-
ing table. This information could be used to see if
there was ambiguity in determining which interface
packets to a particular destination should use.

6.1.5 Local routing table incorrect

The Linux utility Route [15] can be used to change
the local routing tables on a host. Using Route it is
possible to change the default gateway for all desti-
nations or just the gateway to a particular subnet of
destinations. The first test performed was to com-
pletely disable the default gateway. The result of
trying to connect to www.google.com on port 80 was
an error message stating that the gateway could not
be reached. However, there was no indication that
there was no gateway specified in the routing table.

The second test was to change the default gateway
to be some IP that could not be directly reached from
the local host. When run with the standard inputs,
Why gave the same message as before indicating that
the gateway could not be reached. However, in this
case such a message is acceptable because a correct
gateway that is down and an inaccessible gateway
should look indistinguishable. However, it might be
possible to give some indication that the gateway is
wrong by checking whether or not it is on the same
subnet as the local host.

6.1.6 Firewall

The Linux utility IPtables [7] can be used for setting
up a firewall on a Linux machine. Using IPtables, all
incoming connections to port 80 were blocked on a
meikon.homeip.net. We then used Why to diagnose
a connection on port 80 to that server from another
machine. Why was able to suggest that the problem
was a server side firewall blocking the connection.

As a second test, IPtables was used to block outgo-
ing connections from the local machine to port 80 on
other machines. When Why was used to diagnose the
connection to meikon.homeip.net (without port 80
on the server blocked), the same message was given
as before. This shows that our method of detecting
firewall blocking can be used for either the local or

remote host. However, since Why does not try to dif-
ferentiate the two, a user of Why might be confused
as to which side the firewall was on.

6.1.7 Service down

To test this problem, the Apache web server on
meikon.homeip.net was taken down. Why was then
used to diagnose a connection to that machine on
port 80. The tool successfully reported that the prob-
lem was that the desired web service was down.

6.1.8 Server offline

This test was performed simply by disconnecting a
host, leela.cs.washington.edu, from the network
and diagnosing the connection to that machine on
port 22 (SSH). The result of this test was that Why
gave the message that the host was probably of-
fline, but could not give any definitive results since
the problem could also be a destination side firewall
which drops all incoming connections.

6.1.9 Congestion

To test the capabilities of Why in detecting conges-
tion, we set up NistNet [11] on a machine in a four
computer local area network. NistNet is a kernel
module that can be used on a Linux machine set up
as a router. It monitors traffic going through the
router and follows user defined rules on source desti-
nation pairs to delay packets, drop packets, and re-
strict bandwidth. Using this tool, we were able to
emulate congestion.

The first test was to use the emulator to drop 5%
of the packets between the test machine and the des-
tination server, leela.cs.washington.edu. When
Why was used to diagnose the connection to this ma-
chine on port 22, the output successfully classified
the problem as congestion. This demonstrates that
Why can correctly diagnose congestion that is heavy
enough to cause packet loss.

The second test was to use the emulator to de-
lay packets between the two test machines by 100ms
(the normal delay between the two test machines is
between 15 and 20ms). Why was not able to notice

6



congestion as the problem in this case and reported
that it could not see any network problems. This is
because our heuristic looks for variation in delay, but
NistNet delayed packets uniformly. From this, we can
conclude that Why can be used to detect congestion
in some extreme cases, but cannot detect anything
less than that.

6.2 Live testing

Throughout the development of Why there were
times when we would experience network problems.
During those times, Why was tried as a method of
finding the source of the problem. The results of
these spontaneous live tests are recorded here.

One morning, the network connection of one of the
authors was not present. Why was used, and reported
that the DNS was unavailable. A second use of Why
was tried, giving it a known IP address instead of a
host name. This time, the firewall blocking message
was given. Hand testing confirmed that neither of
these was the correct answer. However, the author
was also unable to determine the problem.

In another situation, one of the authors used Why
to successfully discover that the local area network
was congested. Upon asking other users of the LAN,
it was discovered that someone had been updat-
ing their computer and, therefore, generating large
amounts of traffic on the local network.

Finally, while trying to find documentation for IPt-
ables, one of the authors used Why to discover that
the webserver was down. Hand testing confirmed
that this was, indeed, the case.

Although these anecdotes do not count as rigorous
testing, they do show that Why does have some utility
for diagnosing real problems.

7 Discussion

In this section, we will discuss how our work meets
the two evaluation goals previously described. We
start with interpreting our test results and continue
with discussing the implication our results have on
the feasibility of constructing a network diagnosing
tool.

7.1 Testing

To perform realistic testing on a real network diag-
nosing tool would be both hard and very time con-
suming. Not only would one need to know what prob-
lems can occur, how frequent each problem is, and
how to diagnose problems in different hardware and
software environments, one would also need to know
how to simulate a broad range of problems and look
at issues such as how the user interprets the output.

We have simplified this by concentrating on a small
number of problems and by performing our tests in an
isolated way. Most problems were easy to simulate;
for the ones which were not, emulation was used.

In our tests, Why gave a technically correctly di-
agnosis for six of the nine problems. The problems
that were not fully diagnosed were local routing ta-
ble incorrect, host offline and congestion. In the first
problem the diagnosis failed because we did not real-
ize the possibility of a gateway that does not forward
packets when designing the test. The host offline test
failed in the sense that it could not determine, but
merely guess, the source of the problem. However, we
believe this is as good as can be done for this prob-
lem, since it can be impossible to differentiate from
some firewall problems. Congestion was correctly di-
agnosed when packets were lost, but Why failed to
infer the network congestion problem when signifi-
cant packet delay was applied. The reason for this
was that our heuristics where not sensitive enough.
Finding generally applicable heuristics that works in
heterogeneous environments is a difficult task. The
best remedy for this is probably to construct the tool
so that it can learn the characteristics of the environ-
ment it is used in.

Another interesting result from our test was that
the diagnosis needs to be more detailed in order to
avoid ambiguous results like those experienced in the
tests of the firewall and the improperly configured
interfaces problems.

7.2 Feasibility

We think that the tool we have developed shows that
constructing tools for automatic network diagnosis is
feasible. Why is far from a complete tool, but even

7



with limited diagnosing capabilities, it proved to be
a useful tool in spontaneous live test. Why also di-
agnosed most problems in our systematic tests and
provided useful hints on some of the other problems.
However, in order for Why to be useful to the aver-
age user, many improvements would be required (see
section 8).

Given more resources and time, it would be feasi-
ble to construct a tool that can diagnose or give ed-
ucated guesses on many common connectivity prob-
lems. Such a tool could be very useful for the user
who does not possess enough knowledge to efficiently
diagnose network problems by hand.

8 Future Work

Although our goal was to demonstrate the feasibility
of an easy to use network diagnostic tool, improving
the user interface is still an important area of future
work. In the context of this project, “easy to use”
only means that Why takes minimal information and
prints out error messages which indicate the source
of the network problem. However, there are many
improvements that could be made in the user inter-
face. Currently Why takes a host and a port. This
input could be improved by letting the user specify
either a port or a type of service (e.g. ‘web’ or ‘ssh’);
this would let less experienced users use the tool with
less effort. Further improvements could be made by
making the output better organized and more infor-
mative.

The user experience would be improved if Why was
faster. Currently a full diagnosis including port scans
takes about 10 minutes. This time could be reduced
by running several tests in parallel.

Of course, Why could always be improved by
adding more diagnostic capabilities. There are sev-
eral ways this could be done. One method of improv-
ing our diagnostic capability would be to increase
the accuracy of the diagnoses we already do. An-
other method of improving the diagnostic capabili-
ties would be to find more problems, determine how
to solve them using existing tools, and integrate them
into Why.

One area where there are many advances yet to be

made is correct classification of problems within the
network. This would involve finding better ways of
detecting not only what problems within the network
are (e.g., congestion, misdirected packets, etc.) but
where those problems occur. Much work has been
done on this problem [1, 8, 9], but there is still a long
way to go before these tools become common.

Another area of improvement would address the
problem of knowing what heuristics to use to deter-
mine when the network is acting abnormally. Cur-
rently, Why uses heuristics chosen by the authors
based on their experience and general rules of thumb
used by network administrators. The performance
of Why would improve if it could be modified to con-
stantly monitor the system and learn what is normal.
Instead of running the program when network prob-
lems were suspected, the user would simply query the
already running program.

Why does not take advantage of the extra knowl-
edge that could be acquired by running as root. For
example, some tools like Netstat and even Ping, have
options that can only be fully utilized as root. There
are other tools, such as Tcpdump [17] which can only
be run as the root user. If the tool took advantage of
these capabilities, it would be able to better discover
the state of the network. If this were combined with
the previous improvement, we could retain our origi-
nal goal of not requiring special privileges by having
the tool be run by the root user but query-able by
normal users.

Currently, Why manually parses the output of most
of the utilities it uses making the program highly sen-
sitive to changes in the format of the output. This
makes it harder to port Why to different systems and
makes the whole program fail if future upgrades to
those programs change the format of the output or
the command line options of these tools. To decrease
Why’s dependence on these factors, it would be useful
to break out calling the utilities and parsing their out-
put into separate modules, in the style of the Tracer-
oute module we used. Doing this would allow Why to
remain relatively static in the face of changes. The
only necessary changes would be changes to the mod-
ules to allow them to handle the new versions.

8



9 Related Work

There are many tools which have been developed for
diagnosing Internet connectivity. These include the
tools we used such as Ping, Traceroute, Nmap, Net-
stat, and Host as well as tools like Tcpdump (a packet
monitoring tool), Pathchar (bandwidth characteriza-
tion), and Tulip (a congestion characterization tool)
[13, 8, 3, 20, 6, 17, 9, 1]. These tools put a wealth of
information at the user’s fingertips. However, none
of them meet the requirement of being easy to use.

There has also been a large amount of work on sys-
tems for making large networks easier to diagnose by
network administrators, some of which can be seen
in [16]. Other work has focused on determine why
large network enterprises fail [12]. However, neither
these tools nor the information gained in these stud-
ies address the needs or the information gathering
capability of the home user.

The work which most closely addresses our project
is manual troubleshooting guides that can be found
on the Internet. Such troubleshooting guides are
written by operating system providers [18], Internet
Service Providers [10] or people willing to put their
expert knowledge up for all to use [2, 14]. These doc-
uments describe steps for a user to manually follow
to diagnose the source of network problems. They
address many of the problems we chose to diagnose
and were, in fact, our main source of motivation. Our
goal in this project could be looked at as trying to
automate many of the actions described in such trou-
bleshooters.

10 Conclusion

Although Why is limited in the scope of problems
it can diagnose, it does demonstrate the feasibility
of developing a tool which encapsulates some of the
expert knowledge of system administrators. While
the tool cannot perform advanced network analysis,
it can perform the basic steps users are asked to go
through when they experience network difficulties.
As such, we have developed a valuable tool that can
simplify the process of diagnosing network problems
for less knowledgeable users and for users who are

knowledgeable about networks but do not use net-
work tools often enough to have their usage memo-
rized.

11 Acknowledgments

Many thanks to the Fall 2004 CSE561 Networks class
for all their good questions. We would also like to
thank David Wetherall and Valentin Razmov for the
good feedback on our initial project plan. Finally, we
would like to thank Andy Collins and Krishna Gum-
mandi for their suggestions of tools and approaches
we could use.

References

[1] T. Anderson, R. Mahajan, N. Spring, and D.
Wetherall. tulip: a tool for user-level inter-
net path diagnosis. http://www.cs.washington.
edu/research/networking/tulip/.

[2] Diagnosing Internet Connectivity Problems.
http://www.losurs.org/docs/tips/general/
connectivity.

[3] Fyodor. nmap(1) - Linux man page. http://www.
die.net/doc/linux/man/man1/nmap.1.html.

[4] Krishna Gummadi. Personal communication, 8
Nov 2004.

[5] D. Hagerty. Net::Traceroute - traceroute(1)
functionality in perl. http://search.cpan.org/
~hag/Net-Traceroute-1.08/Traceroute.pm.

[6] host(1) - Linux man page. http://www.die.net/
doc/linux/man/man1/host.1.html.

[7] netfilter/iptables project homepage.
www.iptables.org.

[8] V. Jacobsen. traceroute(8) - Linux man page.
http://www.die.net/doc/linux/man/man8/
traceroute.8.html.

[9] V. Jacobsen. Pathchar. http://www.caida.org/
tools/utilities/others/pathchar/.

9



[10] My Service is Down. http://support.
speakeasy.net/cgi-bin/support.cfg.

[11] NIST Net Home Page. http://snad.ncsl.
nist.gov/itg/nistnet/.

[12] D. Oppenheimer, A. Ganapathi, and D.A. Pat-
terson. Why do Internet services fail, and what
can be done about it, in: 4th Usenix Symposium
on Internet Technologies and Systems, 2003.

[13] ping(8) - Linux man page. http://www.die.
net/doc/linux/man/man8/ping.8.html.

[14] Quick HOWTO - Simple Network Troubleshoot-
ing. http://www.siliconvalleyccie.com/
linux-hn/network-trouble.htm.

[15] route(8) - Linux man page. http://www.die.
net/doc/linux/man/man8/route.8.html.

[16] M. Sabin, R.D. Russell, and E.C. Freuder. Gen-
erating diagnostic tools for network fault man-
agement, in: Proceedings of the fifth IFIP/IEEE
international symposium on Integrated network
management V : integrated management in a vir-
tual world: integrated management in a virtual
world, 1997.

[17] TCPDUMP public repository. http://www.
tcpdump.org/.

[18] Troubleshooting Internet Connection Sharing in
Windows XP http://support.microsoft.com/
default.aspx?scid=kb;en-us;308006.

[19] F. van Kempen and B. Eckenfels. arp(8)
- Linux man page. http://www.die.net/doc/
linux/man/man8/arp.8.html.

[20] M. Welsch and A. Cox. netstat(8) - Linux
man page. http://www.die.net/doc/linux/
man/man8/netstat.8.html.

10


