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Abstract

Dataflow microprocessors have emerged as a viable
solution to the near-term demise of traditional superscalar
processor architectures. The performance of these dataflow
architectures is heavily dependent on the network design,
hence good network performance is paramount. The
network must also provide fault tolerant, deadlock-free
operation while allowing scaling from one to several
hundred nodes. The unique demands of dataflow processors
on network resources, as well as an increasingly complex
physical environment, make it difficult to determine the
optimum network architecture.

Our research evaluates the network design for the
WaveScalar dataflow architecture [1], though the same
concepts extend to other dataflow architectures such as
Monarch [17]. We evaluate the effects of different
topologies along with various routing and flow control
strategies to find the best performance within the available
chip area constraints. We find the optimal design is a torus
topology with adaptive routing using a link bandwidth of 2,
2 virtual channels, and 2-4 entries per queue. Our design
corrects deficiencies in the current WaveScalar design while
adding negligible area overhead and doubling performance
on certain workloads.

1. Introduction

Current technological trends suggest that within 5-10 years
conventional microarchitectures will be impractically
complex and only marginally faster than current processors
[5]. Chip Multiprocessors (CMPs) have been proposed as a
way to reduce complexity and improve performance in
future architectures [1,6,7]. CMPs require an on-chip
network for core-to-core communication. One particular
kind of CMP called a dataflow processor [1, 17] is a
particularly attractive solution to these problems, yet these
architectures have many characteristics that complicate their
design and implementation

In this paper, we present an on-chip network design for
dataflow architectures that addresses these issues, and
satisfies the design constraints of high performance per unit
area, fault tolerance, guaranteed message delivery, and
deadlock-free operation.

On-chip networks must provide much of the same
functionality as traditional multi-computer networks, but
must do so under very different constraints. Along with
different constraints come a different set of metrics that are
used to evaluate the success of the network design. On top
of the traditional metrics of speed, reliability, scalability,
and cost-effectiveness, on-chip networks must efficiently

use die area. Minimizing die area limits the number of links,
the bandwidth, and the buffer sizes that can be used at each
networked component. This means that the viability of a
network is always related to its area, so traditional viability
metrics like speed become speed per unit area.

These networks require similar functionality as is
provided by an Ethernet connection running TCP/IP, yet
have unique performance, complexity, and timing
constraints that prohibit protocols with large timing and
buffering overhead.

We investigate network designs for the dataflow
architectures similar to WaveScalar [1], a processor that is
being developed by the computer architecture group at the
University of Washington. Unlike most other CMP designs
that have tens of relatively complex processor cores,
WaveScalar consists of hundreds to thousands of very
simple processor cores. With such a large number of cores,
fast, efficient communication between the processor cores is
essential. WaveScalar is also a dataflow processor, which
makes it difficult to predict when and where network
resources will be needed. On-chip networks like the one we
are designing for WaveScalar have been proposed, and
some of the concepts behind those designs are certainly
applicable to the WaveScalar network [4]. However, most
on-chip network research focuses on manufacturing
processes much larger than those that will be used for
WaveScalar. There is significant reason to believe that the
on-chip network designs that worked in the larger process
sizes will not be practical for deep sub-micron processes just
like conventional microarchitectures do not work in deep
sub-micron processes. Also, manufacturing defects increase
exponentially in smaller process sizes, so the networks must
be adaptable to manufacturing defects in order to allow
commercially viable chip yields. The most challenging
portion of the WaveScalar network design is providing
deadlock-free operation in a network that does not support
dropping messages. As a dataflow processor, messages have
an ordering relationship that causes a number of potential
deadlock situations. While virtual channels provide a
mechanism for routing messages around congested routes,
there are cases when the receiving processor can only
continue if it receives a particular message. The virtual
channels must be set up so that these messages can bypass
other messages in order to guarantee forward progress

1.1. Dataflow Networks
Dataflow architectures add additional constraints to on-chip
networks that complicate the network design. Most
importantly, dataflow architectures display unpredictable
traffic patterns, exhibit highly bursty traffic, and do not
guarantee message consumption upon message arrival.

1.1.1 Unpredictable Traffic



Traditional Von Neumann architectures that have a program
counter and structured pipeline exhibit predictably regular
operation that allows network resources to be allocated
before the resources are needed. This results in resource
arbitration that is off the critical path, and hence does not
limit performance of the processor.

Unlike Von Neumann architectures, dataflow
architectures operate on the dataflow firing rule: execute
instructions as soon as all of the inputs to that instruction are
available. There is no program counter or pipeline that
regulates the demand for network resources. Consequently,
network resources must be allocated at the time they are
needed. This allocation can become a bottleneck, and hence
must be done as quickly as possible. We propose a
mechanism for dealing with resource allocation in section
2.3

1.1.2 Bursty Traffic
Dataflow programs expose massive amounts of parallelism
to the architecture. Any dataflow program can be
represented using a dataflow graph. This dataflow graph can
be broken into a set of independent dataflow subgraphs that
can be executed in parallel.

We have observed that there numerous dataflow
subgraphs that are data dependent upon the same input.
When this input is produced at the end of some other
subgraph, the result is forwarded to all of the dependent
subgraphs. Ideally, the input can be forwarded to all of the
dependent subgraphs simultaneously, minimizing idle time.
Given limited network resources, this may not always be
possible. The overall performance of dataflow programs is
dependent on minimizing unnecessary idle time, handling
these heavy bursts is essential for facilitating fast execution.

1.1.3 Unconsumed Messages
Numerous routing algorithms have been proposed for on-
chip networks that all claim to be deadlock free [3, 8, 10,
14]. The deadlock-free characteristic of these algorithms
relies on the idea that a network node will consume any
message that makes it to the node. This is not necessarily
the case in a dataflow processor. Each processing element
(PE) in a dataflow processor has a finite amount of buffer
space with which to store operands while awaiting its
partner operand. If these buffers fill up, then the PE cannot
accept the network message without generating a network
message of its own. This means that, without clever design,
the network is prone to deadlock even if it uses a provably
deadlock free routing algorithm. We propose additions to
the network architecture that allow deadlock-free and
livelock-free operation in 2.2.

1.2 Requirements of Dataflow Networks

Based on the characteristics of dataflow architectures from
the previous section, and on technological concerns
addressed in [19], the following are the minimum
requirements for an on-chip network of dataflow processors:

1. High performance, especially in the presence of
bursts

2. Area efficient
3. Guaranteed message delivery
4. Deadlock and livelock free
5. Fault tolerant

1.2.1 Fault Tolerance
The fault tolerance requirement warrants further discussion.
Fault tolerance is a growing concern for chip designers [19].
As process technology continues to shrink, a number of
factors arise that change the way in which designers must
think about on-chip systems and networks. Recent
projections for 2010 [18] predict:

1. Manufacturers will no longer be able to conduct in-
factory testing and defect correction

2. On average, 20% of the transistors on each chip
will be defective after manufacturing

3. An additional 10% of transistors will fail within the
first few months of chip operation

4. Chips will continue to degrade over their lifetimes

Even if these projections turn out to be pessimistic, it is
clear that fault-tolerant architectures will replace traditional
architectures by the end of this decade. From this, we adopt
the following design requirements for fault tolerance in
dataflow networks:

1. There must be no single point of failure
2. The network must be able to adapt to faulty links

by finding alternative routes

While describing and implementing a fully fault-
tolerant network architecture is beyond the scope of this
paper, we do suggest topologies and routing algorithms that
are a first step toward a fault-tolerant network design.

1.3. Organization
The paper is organized as follows. Section 2 describes

the selections of topology, routing, and flow control that are
used for this study. Section 3 describes the performance
sensitivity of varying certain parameters of the network
architecture. Section 4 introduces a hardware
implementation of the network, which allows for
performance and area studies. Section 5 concludes the
study.

2.  Topology, Routing, and Flow Control

In this section, we evaluate different design choices for
topology, routing, and flow control, and make selections as
to which are feasible candidates for further evaluation.



2.1. Topology
In this section, we evaluate several different network
topologies for physical viability. Only those topologies that
are deemed viable will be studied in detail.

2.1.1. Physical Constraints
The physical layout of dataflow processors puts constraints
on network topologies that make sense for multicomputer
networks. This allows us to exclude certain network
topologies from further consideration.

Dataflow processors, like most CMPs, consist of a
collection of clusters laid out in a rectangular configuration
with R clusters per row and C clusters per column for a total
of RxC clusters. In most configurations, R=C, but this is not
a requirement.

2.1.2. The Fully Connected Network
The fully connected network topology is the simplest
topology and allows direct connection between all nodes.
Unfortunately, this topology does not scale well for the
number of nodes in the network. For n nodes, a bus width w,
and a total number of connections (bandwidth) b, the fully
connected topology requires (n+1)*w*b  wires into each
network switch. For wires in the high metal layers, typical
design rules [9] call for deep sub-micron processes call for
wire widths of 5λ and wire spacing of 5λ. This means each
wire will occupy 10λ.

For 130nm, the nearest-term technology node in which
a dataflow processor may be manufactured, λ≈0.75µm. This
leads to bus widths of slightly more than 2 mm above each
cluster for the 4x4 cluster, single-message per cycle
configuration (n=16, w=160, b=1). This means that the chip
size is a minimum of 8mm on each side due to network
wires alone. For the desired configuration of at least 2
messages per cycle (b=2), this means the chip is a minimum
of 1.6 cm on a side. While this is not technically prohibitive,
it is likely commercially prohibitive. Worse, this topology
does not scale well to a larger number of clusters, which
violates the scalability design goal of WaveScalar. For an
8x8 configuration, the chip would be approximately 62.4 cm
on each side, which is obviously prohibitive. For these
reasons, we exclude the fully connected topology from
further analysis.

2.1.3. Tree Topology
The tree topology is a tempting network topology since the
internal node network structure is generally a tree, and this
would logically extend the same hierarchical relationships.
The tree groups clusters into small groups, which reduces
the number of nodes in the top-level network connection
graph. This could allow small groups of fully connected
clusters for fast inter-cluster communication, but without the
scaling problems of the fully connected network topology.
Depending on instruction placement, this topology may

offer substantial benefit to programs that can run within one
of these grouped clusters.

Unfortunately, the tree topology results in a single point
of failure at the top node. Any failure in that network node
will result in the chip being partitioned, which results in a
dead chip. Due to the high likelihood of failure in future
technologies, the tree topology cannot satisfy the fault
tolerance requirement and thus will not be considered
further.

2.1.4. Hypercube Topology
The hypercube has been extensively studied for its property
of having a maximum distance between any two nodes in an
N-node network of log2(N). Studies have shown how to
efficiently lay out hypercube networks in VLSI [12, 16], and
that incomplete hypercubes retain the same qualities as
complete hypercubes [20]. Still, the hypercube topology
suffers from several downfalls that make it a poor choice for
a dataflow network. First, incomplete hypercubes have
nodes that can be cut off from all other nodes by a single
faulty link. This violates the fault-tolerance criteria. Even if
the dataflow processor only used complete hypercubes, they
are difficult to scale to a large number of nodes. Most
evaluations of efficient hypercube layouts deal with
configurations of no more than 4x4. Future dataflow
configurations could grow to several hundred nodes on each
side, which is clearly too complex for any of the hypercube
layout strategies currently proposed.

2.1.5. The Grid Topology
The grid topology is a simple topology that has the
convenient attribute of uniform physical delay between hops
since the length of wires between each network node is the
same. This topology is also a natural extension of the
physical wire routing available on chip.  Each network node
communicates with a maximum of 4 other nodes, one in
each cardinal direction. Nodes at the edges of the grid
connect to the L2 cache.

This design scales to any number of clusters, satisfying
the scalability design requirement. The grid topology also
provides a good mechanism for routing around defective
nodes (as long as the routing is adaptive), which helps to
satisfy the fault-tolerance design requirement. The grid
topology has a number of favorable characteristics and no
obvious fatal drawbacks, so it will be considered in this
study.

2.1.6. Grid-like Topologies
There are a number of other potential topologies that are
similar to the grid topology, but with additional connections
between particular nodes. These topologies include, k-ary n-
fly [15], torus, and twisted torus [22]. Each of these has
non-uniform link length, which equates to non-uniform
message passing delay in the physical domain. Also, long
wires have super-linearly increasing wire delay as devices
scale to smaller process sizes, so the gap between



communication over the short and long links will continue
to grow. This negatively affects scalability.  However, some
of these topologies allow interesting routing characteristics
that counteract this delay, and hence may still be viable. For
this study, we consider only the torus topology and leave the
other topologies for future work.

The torus topology has non-uniform latency, but has a
bound on the longest link length. Communication speeds
must accommodate the longest link, and hence
communication in general is slowed. However, there are a
number of routes that can be reached in a smaller number of
hops, and hence the slower communication speed may be
overcome by better route choices.

2.2. Deadlock-Free Operation

Traditional IP-based networks deal with the problem of
deadlock by requiring the sender to buffer all network
packets until the sender receives acknowledgement of
receipt of the packet by the receiver. The sender uses a
timeout value to decide when to retransmit a packet that has
not been acknowledged. The network is thus free to drop
packets when necessary. On-chip networks have one critical
difference from traditional IP networks: extremely limited
buffer space. If on-chip networks used IP, there could be
very few instructions in flight at any given time. As a
consequence, on-chip networks cannot drop messages.
Without the ability for the network to drop messages, there
is the possibility of deadlock.

A large number of provably deadlock-free network
topologies and routing algorithms have been proposed for
on-chip networks [8, 14, 15]. These algorithms overcome
the buffer space limitation by making the assumption that
receiving nodes will always accept messages. All of the
deadlock-free proofs hinge on the assumption that a
message is consumed as soon as it makes it to the
destination node. This is unfortunately not the case in
dataflow networks.

To illustrate how deadlock can occur in dataflow
networks, we use the simple illustration of two network
nodes as shown in Figure 1. While this is a simplified
version of the full network, the deadlock problem extends to
the full design. In this example, Node A wishes to send
message M1 to Node B. However, Node A has stalled
execution because the output queue is full from messages
M2 and M3. The output queue will not drain because the
messages are bound for Node B, which cannot execute and
drain its input queue until message M1 is sent.

To get around this issue, there needs to be a way to
flush the inputs out of Node B so that other inputs have the
chance to get in and break the deadlock. In order to do this,
there must be a way to selectively evict a message from the
input queue and send it somewhere where it will eventually
make it back to the node.

We present a design for overcoming deadlock in
dataflow networks by using dedicated channels to and from
memory. For correctness, these channels must be reserved
strictly for memory traffic. Since memory is essentially
infinite, the standard on-chip assumption that the destination
node can accept all messages is true when sending messages
to memory. This gives the network the guarantee that
eventually, the blocking message will be evicted and the
deadlock can be broken.

The design requires some additional logic to avoid the
possibility of livelock. Livelock occurs in dataflow
processors when messages are moving through the network,
but the operand pairs that need to unite in order to execute
never end up in the processing unit simultaneously. To
avoid this case, we adopt an approach similar to that in the
Manchester Machine [13]. We bias the input queue ejection
mechanism to prefer ejecting the right-hand operand from
the dataflow graph. This provides an increased rate of
messages through the network for right-hand operands than
left-hand operands. The two different rates guarantee that
matching operands will eventually meet in the processing
unit.

Figure 1 - Dataflow Deadlock: This interconnection network is
blocked on message M3 which cannot get onto the network
because Node A’s outgoing queue is full, and the output
instructions have nowhere to go.

While the deadlock breaking mechanism guarantees a
way for the network to eventually break deadlock, it
presents a new set of problems and drawbacks. First,
dedicating two channels for memory traffic alone results in
an 8-11% increase in area of each network switch. The



increased area does not result in improved performance,
since the bandwidth of memory messages is rarely the
bottleneck in dataflow programs [1]. We leave quantitative
evaluation of this mechanism and real-world performance
studies as future work.

Deadlock and livelock situations may seem far-fetched,
but the situation can arise frequently in a large dataflow
network. This frequency can be alleviated by using larger
input caches, providing additional network bandwidth, and
more intelligent output message handling schemes, but the
vulnerability still exists. The handling mechanism does not
have to be fast since the situation should be very rare, but it
should be fast enough that it does not require an excessive
amount of time to resume typical operation.

2.3. Flow Control
Flow Control is particularly important in dataflow
processors due to the unpredictability of dataflow traffic.
Without even a single cycle to do resource reservation,
nodes in the network cannot arbitrate for resources and
guarantee message reception. The round-trip latency
required for handshake protocols would add prohibitive
overhead on message transfers, so a different solution is
necessary. In this case, the best mechanism is the stop
channel mechanism introduced in [21].

The stop channel mechanism is chosen for its low
buffering overhead requirements and its high message
throughput in the absence of resource conflicts. In our
system, stop channel flow control works as follows. First,
the source sends a message to the receiver node, and
simultaneously stores the message in a small buffer. The
source node can continue to send messages as long as it
saves the messages in case of rejection. The messages in the
buffer must remain until an acknowledgement or rejection
signal from the receiver. In our network, the receivers and
senders are always only one clock cycle away. (This is
achieved by inserting message relays on longer links when
using the torus topology). The receiver notifies the sender
on the subsequent clock cycle whether or not the message
was accepted. If the message was accepted, then the sender
can simply clear the buffer. If the message was rejected,
then the message can be read out of the buffer and placed
back in the output queue. When the output queue and the
buffer queue both fill up, then the sender must stop
producing additional messages until the network clears up.

2.4. Routing
One of the requirements of dataflow networks is that they
need to perform reasonably well in the presence of the
faulty links and sudden bursts of inter-cluster traffic.
However the current WaveScalar architecture uses
dimension order routing to route packets between any two
clusters in the network.  In dimension order routing packets
between two   clusters are routed along a single
predetermined route. Each cluster is given a x  and y
coordinate corresponding to its location in the network.

Now when a packet is to be routed between two packets it is
first routed along the x-dimension given by its row of origin
until the packet’s x coordinate is aligned with the destination
cluster’s x coordinate. Once this step is achieved the packet
is routed along the y-dimension until the packet reaches it
destination.

Figure-2a shows the union of routes that connect the
clusters in row-0 to clusters in column-7. The intensity of
the color used to draw a physical-channel depicts the
number of routes passing through that channel. A large
fraction of the routes between these clusters pass through
the links in the top-right corner of the network. Such uneven
distribution of routes creates congestion points in the
network during heavy traffic, which results in reduced
network throughput.  Dimension order routing also does not
provide the necessary fault tolerance. Figure-3a shows that
severing a single link in the grid can partition the network.
On the other hand, dimension order routing is easy to
implement, ensures deadlock free communication, and
routes packets along the shortest route for a given cluster
pair.

2.4.1 Adaptive routing
To improve the network performance and allow for

graceful degradation in the presence of faulty links we
decided to replace WaveScalar’s dimension order routing
with the deadlock free adaptive routing protocol proposed in
[2]. Adaptive routing has many advantages over dimension
order routing for dataflow networks. Like dimension order
routing, adaptive routing routes packets deterministically
along the shortest routes when the load in the network is
low. However adaptive routing allows packets to be routed
along increasing longer routes instead of waiting on network
resources during periods of high congestion. This behavior
allows adaptive routing to route packets around congested
or faulty links thus increasing network performance under
heavy traffic and providing a mechanism for graceful
degradation when links begin to fail.

The adaptive routing algorithm consists of two main
components: a selection function, which distributes the load
evenly over the network, and a queuing function that
ensures deadlock-free communication. Each packet has a
field called ‘dimension reversal’ which notes the number of
times a packet has been routed in a direction that
dimensional order routing would not have chosen.

2.4.1.1. Selection Function
The selection function helps a node determine to which one
of its neighboring nodes it should route a given packet. In
dimension order routing the selection function is a static
function. With adaptive routing, we would like our selection
function to route packets based on the congestion level in
the neighboring clusters. The following algorithm describes
our selection function –



- Create a list of all possible directions – i.e. N, S, E,
and W.

- From this list remove the incoming direction of the
packet.

- Order the remaining directions in ascending order
of their distance from the destination cluster.

- Query the clusters in the given order for
availability of adaptive routes.

- If an adaptive route is found, note any dimension
reversals in the packet header and route the node
to its intended destination.

- If no adaptive route was found, the packet from
here on is routed using only dimension order
routing.

Figure 2. Routing packets between clusters in row-0 and column-7
in an 8 x 8 grid. (a) Dimension order routing created congestion in
the top-right corner of the grid. (b) Adaptive routing avoids
congestion routing around high load channels.

Figure 3. Routing packets in networks with broken physical
channels. (a) With dimension order routing, the blue clusters will
not be able to send any packets to the pink clusters. (b) Using
adaptive routing the network is able to route packets around the
broken link.

2.4.1.2.  Queuing Function
The queuing function avoids deadlocks by ensuring that no
packet in the network is waiting on a packet that is in turn
waiting on it. Each cluster divides its virtual channels into
two distinct classes: adaptive and deterministic. Messages
queued in the deterministic channel are routed using only
dimension order routing (though this can change in the

presence of a known failure in the deterministic path).
Messages in the adaptive channels are routed in the
direction chosen by the selection function.

When a clustered is queried for the availability of an
adaptive route it checks it to see if an adaptive channel
exists such that no packet queued in this channel has a
‘dimension reversal’ number lower than or equal to the
dimension reversal number of the packet that initiated the
query.

The algorithm described above is proved to be deadlock
free, and remains deadlock free for dataflow networks given
the modifications proposed in Section 2.2.

3. Sensitivity Analysis
In order to find the optimum configuration for the

network, we developed a cycle-accurate network simulator
that used dataflow traces from WaveScalar to evaluate the
effect of different configurations in overall performance.
The simulator allows us to evaluate a wide variety of
configurations, and a wide variety of applications.
Configurable parameters include the topology, routing
algorithms, number of nodes, network bandwidth, network
queue sizes, number of channels, and the number of packets
per message.

The baseline configuration for all simulations is a 4x4
grid of nodes and a grid network topology using static
dimension-order routing.

The simulations were run using traces of 2 billion
instructions from five different benchmark applications: art
is a Spec2000 floating point benchmark, mcf is a Spec2000
integer benchmark, lu is a Splash 2 multithreaded kernel
benchmark, ocean  is a Spash 2 multithreaded application,
and fir is a custom dataflow microkernel. These applications
represent a spectrum of different types of applications that a
dataflow processor could be expected to run. It is important
to note that only dataflow configurations that implement
wave-ordered memory [1] can run the Spec2000 and Splash
2 benchmarks.

The metric used to evaluate the performance of the
network is the total number of cycles required to complete
execution of the trace. This is equivalent to the actual
performance of the network, though it does not take into
account the performance of the underlying computational
structure. Other available metrics are the max and average
time through the network, the max and average number of
hops, and the max and average number of routing failures.
All of these metrics show the same general shape in the
curves, and so we use the simulation runtime to represent all
of these metrics. 

All of the simulations in this study allow only one
parameter to change at a time to make the effect of changing
that parameter clear. In future work, we would like to vary
multiple parameters at a time and evaluate whether there is
constructive or destructive interference between multiple
parameters.



3.1 Link Bandwidth
The link bandwidth is equivalent to the number of messages
that can be sent in a single direction from one node to an
adjacent node in a single clock cycle.  This is a critical
question since it seems to be the most obvious way to
handle the bursty traffic patterns in dataflow networks. We
ran simulations with bandwidths from 1 to 16 messages per
cycle, and an equal number of infinitely long channels
ensure that there was no contention for queues when the
links were fully utilized. Each benchmark was run in on
both the grid and the torus topologies. The results were
normalized to the performance for a bandwidth of one
message per cycle, and are shown in Figure 4.
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Figure 4: Link bandwidth performance sensitivity

The graph shows that there is a significant performance
benefit when increasing the number of links to 2, but very
little performance benefit beyond that. This is a surprising
result given the bursty nature of the dataflow traffic. There
are two possible explanation: (1) quickly handling the bursts
of network traffic is not essential to overall performance, or
(2) there is another bottleneck that is limiting performance.
There is some evidence for (1) in that only a very small
percentage of the traffic has a fan out of more than two
destinations. In most workloads, fewer than 3% of the traffic
is bursts from one particular node to a large number of other
nodes. It is possible that the occurrences of high-fanout
instructions are not critical to overall performance.

The results for art and mcf seem to indicate that their
performance does not change. This is anomalous, however,
since these particular benchmarks have very little inter-node
communication during their first 2 billion instructions. The
benchmarks do exhibit significant amounts of inter-node
communication, but simulations long enough to capture this
traffic were not available in time for this publication.

3.2 Queue Length
Another important parameter is the queue length. For these
experiments, we varied the queue length of both the
channels in the configuration. The bandwidth was set to
equal the number of channels to ensure that each queue
could potentially accept a message on every cycle.

Experiments were run for queue sizes ranging from 1 to 64
entries. The results are shown in Figure 5.
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Figure 5: Queue length performance sensitivity

The performance of the network seems to improve
dramatically from a one input queue to two input queues,
but there seems to be relatively little performance gain by
adding additional queue entries. Only lu, the most bursty of
the benchmarks, seems to benefit significantly from larger
queue sizes.

The results for queue size are somewhat biased by the
fact that the trace simulator does not model contention
within each node for network resources. The trace simulator
makes the assumption that each message can be accepted
once it reaches its destination node, and successfully passes
through the input queues. If the nodes were less likely to
accept incoming messages, then there would likely be
improved performance for longer queue sizes.

One other reason that the optimal queue size is so small
is that dataflow placement tries to concentrate instructions
in nearby locations. When instructions communicate across
nodes, they tend to take the same path. As long as there are
no other paths competing for the same link, then there is
likely to be nothing preventing the input flow from draining.
In fact, many placement algorithms take into account the
effect of placement on network communication patterns,
and hence try to prevent those patterns from crossing. Our
studies used the exp4 placement algorithm [1] which is one
of the algorithms that takes into account this behavior.

3.3 Virtual Channels
In the current WaveScalar architecture the buffer space
available to each physical channel is implemented as a
single queue. This design choice couples the buffer
resources of the network with its channel resources, thus
resulting in decreased network throughput.

At the hardware level, only the packet at the head of the
queue can be dequeued and routed onto the physical channel
in one clock cycle. This means that if a packet at the head of
the queue is blocked waiting for a network resource to be
freed, all other packets queued behind this packet will also
be blocked even if they do not need access to the
unavailable resource. For example, in Figure 6 Packet A



arrives before Packet B and is therefore queued ahead of B
in the single buffer queue. Unfortunately for Packet B,
Packet A is blocked because the destination node it is trying
to reach is currently busy. Packet B on the other hand has no
such dependencies but is blocked nonetheless, resulting in
an idle physical channel and lowered network throughput.

Figure 6.

Figure 7.

To circumvent this problem we implemented Virtual-
Channel based flow control proposed by W.J. Dally [3].
Virtual-Channels increase network throughout by
decoupling buffer and channel resources. Instead of
allocating the available buffer space to a single queue, the
buffer space is divided among several smaller queues or
virtual channels. When using static routing, incoming
packets are placed into the queue with most available space.
In a given clock cycle every virtual channel is capable of
placing the packet at the head of its queue onto the physical
channel. Fairness is ensured by using a round-robin
scheduling scheme. The scenario depicted in Figure 8 is
recreated in Figure 7 for a network that uses virtual
channels. In this network Packet B is no longer blocked due
to Packet A, resulting in increased network throughput.

This raises the question of how many virtual channels
are needed for a dataflow network. At one extreme, a buffer
could be divided into N virtual channels that can hold 1
packet each. However every additional virtual channel
involves additional hardware complexity, which comes at
the cost of reduced performance per area. Also, the
performance gain due to virtual channel tends to level off
after enough virtual channels have been added to the
network making the marginal gains from additional
channels unnecessary in lieu of their hardware cost.

We determined the ideal number of virtual channels for
the WaveScalar network by running simulations with
various numbers of virtual channels. We used the baseline
configuration of 2 links per channel, but assigned a random
time that each packet had to remain in the queue until it was
eligible to be routed. This modeled congestion, where a

greater number of virtual channels is helpful. The results of
the simulation are shown in Figure 8.
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Figure 8: Virtual channel performance sensitivity

The graph shows that the performance increase for the
number of virtual channels levels off after 2 to 3 virtual
channels. This is not surprising since there is not much
reason for packets to block in the current network. In the
face of increased contention, additional virtual channels
may improve performance, but for these typical loads, there
is not enough contention to make numerous virtual channels
worthwhile.

3.4. Link Width
The baseline configuration for the WaveScalar architecture
uses message links that are wide enough to carry the entire
message in a single cycle. We have carried this assumption
through the other studies, but the assumption should be
evaluated to ensure that it is necessary to have these very
wide busses.

For these simulations, the data bus size (which we
chose to be 128-bits, in accordance with the WaveScalar bus
size) was cut by factors of 2. The overhead associated with
recombining the messages at the destination was ignored.
The results for the experiment are shown in Figure 9.
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 Figure 9: Link width performance sensitivity



As the graph shows, performance goes down very
quickly as the number of packets per message increases. By
cutting the bus width by 2, performance degrades by 20%.
Cutting the data bus width by 4 degraded performance by
more than a 40%. Clearly, it is critical that the network links
pass full messages in parallel.

3.5. Adaptive Routing
The performance impact of adaptive routing was

studies relative to the same sensitivity analysis experiments
run previously. The results are shown in Figures 10, 11, and
12. The net result is that adaptive routing provided a
between a 1.5x and 2x speedup on most applications, which
shows adaptive routing to be essential not only for fault
tolerance, but also for overall performance.
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Figure 10: Speedup of link bandwidth sensitivity analysis using
adaptive routing.
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Figure 11: Speedup of queue length sensitivity analysis using
adaptive routing.
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Figure 12: Speedup of virtual channel sensitivity analysis using
adaptive routing.

4. Area Analysis
In typical network applications, the physical size of the
network switches and links is of little concern. For on-chip
networks, the area is a primary concern. The economic
viability of on-chip systems is directly tied to the total die
area required to implement the design. Users demand high
performance as well as small area, so finding the proper
balance between the two is critical to making a high-
performance yet economically viable design.

On-chip networks also have very tight timing
constraints, significantly tighter than in typical networks.
Network transfers must take place within integer multiples
of the system clock cycle. If the signal propagation time
along one link in the network is longer than the propagation
time along other links, then the designer must choose
whether to (1) slow the transfer rates of all the other links to
make a common link propagation time, or (2) add additional
logic to the routing and message handling mechanisms to
consider the latency of the link before using slower links.
There is a balance here as well between using more
complicated routing decisions that will take advantage of
the different link times, yet take time themselves to
determine the correct path and thus reduce throughput.

4.1 Area Metrics
In order to determine the optimal balance, of performance
and area we need a metric that expresses performance as a
function of area. For simplicity, we choose instructions per
cycle (IPC) per square millimeter, or IPC/mm2. For
performance-critical designs, IPC can be multiplied by a
constant, or even raised to a small exponent. The same
could be done to the area component for area critical
designs.

When determining the effect of the network links, using
the chip area is questionable since the links are actually
implemented in metal layers that sit above the base layer,
and hence do not contribute to the actual die area. Instead,
the viability of the links is measured in a somewhat
subjective metric called degree of congestion. Too many



links or links that are routed poorly tend to cause
congestion, which requires links to be routed in higher and
higher layers of metal. This is acceptable as long as there
are available metal layers. When metal layers are no longer
available, the design cannot be implemented. This makes a
rather binary metric, which causes us to completely
disregard a design if it cannot satisfy the congestion criteria.
While this may seem excessive, unimplementable designs
are of little value, and hence should not be considered
further given current technological constraints.

4.2  Synthesizable Model
In order to get the area of the design, we implemented an
RTL-level model using SystemC. From this synthesizable
model, we used Synopsys DesignCompiler and
DesignCompiler Ultra for logical synthesis.

The design rules for manufacturing devices have
undergone dramatic changes at and below the 130nm
technology node [19]. Issues such as crosstalk, leakage
current, and wire delay have required synthesis tool
manufacturers to upgrade their infrastructures. The data we
present in later sections is derived from the design tools
specified by Taiwan Semiconductor Manufacturing
Company’s TSMC Reference Flow 4.0. TSMC selected
these tools specifically to handle the increased complexity
of 130nm and smaller designs. By using these up-to-date
tools and technology libraries, we ensure, as best as
possible, that our results scale to future technology nodes.
As a result of the new design rules, designs at and below
130nm are extremely sensitive to placement and routing.
Therefore, we did not use the area or delay numbers that are
produced after logical synthesis by DesignCompiler.
Instead, we fed its generated netlist into Cadence Encounter
for floorplanning and placement, and then used Cadence
NanoRoute for routing. After routing, we extracted the
appropriate area values. We used Encounter to extract the
resistance and capacitance values, and produce the net
timing information. This information was then fed into
Synopsys PrimeTime for static timing analysis.

4.3 Area Results
Table 1 shows the results of area for various configurations
of a single network switch. The baseline configuration is 2
links, 2 channels, and a queue length of 4. The table shows
the effect of on area of changing (a) the number of virtual
channels, (b) the link bandwidth, and (c) the queue length
per channel. Doubling the queue length is the most
expensive choice as it nearly doubles the total area of each
network switch. Increasing the number of channels similarly
increases area. Increasing bandwidth has less of an effect on
area, but increases congestion

4.3.1 Performance per Area
Using these area results, we can go back to the performance
results from the previous sections to evaluate the

performance per unit area. Graphs of performance per unit
area are shown against queue length, number of virtual
channels, and link bandwidth in Figures 13, 14, 15. The
figures all show sharp peaks around 2 for each of the
parameters. This leads us to conclude that the optimum
configuration for both performance and performance per
unit area is 2 channels, a bandwidth of 2, and a queue length
of 2.
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 Figure 13: Performance per unit area for queue length sensitivity
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 Figure 14: Performance per unit area for link bandwidth
sensitivity
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 Figure 15: Performance per unit area for virtual channel
sensitivity

4.3.2. Timing Results
The only two topologies that were implemented in the

RTL model are the grid and the torus. In the grid topology,



the links are all the same length, and have approximately the
same delay. The longest link delay for the grid topology is
2.76 ns. For the torus topology, the different links have
different latencies. The worst case latency is 6.16 ns for a
4x4 grid. Since sending a message through the 4xx4 grid
would require 3 hops at 2.76 ns per hop, the long link on the

torus gets messages to far nodes about 34% faster than
going through the network, and helps keeps long-distance
traffic out of the central grid. The scalability of the torus
network is the topic of future work, but initial estimates

Table 1: Area values for network switch with various number of channels, bandwidth, and area
Channels Area (mm2) Bandwidth Area (mm2) QLength Area (mm2)

1 143064.8 1 141016.6 1 97277.9
2 189387.6 2 189387.6 2 143064.8
4 282033.2 3 237758.6 4 189387.6
8 467324.4 4 286129.6 8 370586.4
16 837906.8 8 479613.6 16 741164.8

16 866581.6 32 1482329.6
64 2964659.2

suggest that this slight performance advantage will hold for
a wide range of configurations.

5. Conclusion
Our study has shown that high-performance dataflow
networks can be implemented in a reasonable area. The
optimal configuration is small, consisting of 2 channels, 2
links, and 2-4 entries per queue. Also, adaptive routing
proved to be not only important for fault tolerance reasons,
but it significantly improves overall performance. Also,
there is little difference between the grid topology and the
torus topology in the majority of benchmarks, though the
torus topology gained a slight edge when coupled with
adaptive routing and a heavily network-centric workload.
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