
Evaluation of ad hoc routing over a channel switching MAC

protocol

Ethan Phelps-Goodman and Lillian Kittredge

December 10, 2004

Abstract

Several recent works on wireless ad hoc networks have
looked at increasing bandwidth by utilizing multiple
radio channels. One such scheme is SSCH, which
uses a distributed coordination mechanism to dy-
namically distribute overlapping flows on separate
channels. While the simulation data from the origi-
nal SSCH paper show substantial performance gains
through channel hopping, they also suggest an ad-
verse effect on ad hoc routing when running over
SSCH. In this paper we investigate further the in-
teraction between routing and SSCH. We argue that
the potential problems are significant, and build a
simulation to quantify these effects. Unfortunately,
due to problems with the simulation, we were for the
most part unable to collect meaningful data on our
question.

1 Introduction

An ad hoc wireless network is a set of wireless mobile
nodes forming a network without the aid of a central-
ized control structure. As their name implies, ad hoc
networks are unstructured and highly dynamic. They
networks have been an active area of research for over
a decade. They were originally investigated for mili-
tary applications because of their fault tolerance and
infrastructureless deployment, but research into civil-
ian applications has overtaken military applications
[4]. It should be mentioned that the IEEE 802.11
specification defines an ad hoc network as an intfras-
tructureless network in which the nodes are within

range of one another [5]. We use the more common
definition that includes larger networks where traffic
must be routed along multiple hops.

Improving the capacity of wireless ad hoc networks
is an open area of research. One recent approach
to this problem is to exploit the ability of wireless
technologies to communicate on multiple orthogonal
channels. 802.11, for instance, supports 13 indepen-
dent channels. The use of multiple channels was orig-
inally intended for infrastructured networks where
central coordination of channels is possible. Recent
work by Bahl et al. extends the benefits of multi-
ple channels to ad hoc networks [1]. Their scheme,
Slotted Seed Channel Hopping (SSCH), uses a ran-
domized distributed algorithm for coordinating chan-
nel hopping among nodes. The protocol attempts
to schedule nodes so that those with traffic for each
other will rendezvous on the same channel, while
avoiding unrelated traffic on other channels.

While SSCH can give dramatic increases in
throughput, there is reason to believe that channel
hopping interacts poorly with ad hoc routing proto-
cols. These protocols are fundamental to the opera-
tion of an ad hoc network, so any negative impact on
the routing protocols will have a significant effect on
network performance. This problem of the interac-
tion between channel hopping and routing is touched
on in [1], where they show a moderate degradation
in the performance of the Dynamic Source Routing
(DSR) protocol [2]. In this paper we give a further
investigation into the interaction of these protocols,
and use simulation to quantify the performance loss.

The rest of the paper is organized as follows. Sec-
tion 2 describes SSCH in more detail. Section 3 de-

1

scribes DSR and discusses the possible negative inter-
actions with SSCH. Section 4 presents our simulation
and preliminary results. In section 6 we discuss is-
sues brought up by our simulation and future work.
Section 7 concludes the paper.

2 SSCH

SSCH is a link-layer protocol for distributed coordi-
nation of channel hopping. The objective is to ar-
range for multiple flows within radio range to be sent
over separate channels. This allows bandwidth to
scale linearly with the number of flows, up to the
point when all 13 channels are saturated. While there
have been other channel hopping protocols for 802.11,
SSCH is, to our knowledge, unique in that there is
no dedicated channel for control information, and so
none of the congestion and delay issues associated
with this. SSCH is also advantageous in that it runs
on top of IEEE 802.11 compliant hardware, and re-
quires no changes to the 802.11 protocol. The rest of
this section will describe the scheduling mechanisms
that control channel hopping, and the coordination
mechanisms that determine schedule changes.

2.1 Time multiplexing

SSCH divides time into a repeating series of four
10ms slots. Each node maintains a schedule of chan-
nels encoded in four sub-schedules – one for each slot.
Nodes are assumed to have synchronized clocks, so
that slot boundaries roughly align. (Bahl et al test
their protocol for robustness to clock skew, and find
that it fares well.) The division into four separately
scheduled slots allows each node to take on multiple
roles, such as forwarding for one flow in the first slot,
acting as a data source in the secod slot, and so on.
The four slots are repeatedly cycled through in order,
so that two nodes synchronized on a slot don’t have
to wait more than 30ms before their schedules align
again. We say that two nodes are synchronized on a
slot if they share the same schedule for that slot, and
so are visiting the same channels in the same order,
allowing them to share data during every instance of
that slot (1/4 of the time).

The schedule for each slot consists of an order for
visiting the 13 channels. The total time for each of
the four slots to iterate through the 13 channels is
known as a cycle. A cycle also includes one additional
slot at the end known as the parity slot, which is
needed to prevent logical partition. The schedules
are constructed in such a way that unsynchronized
nodes are guaranteed to overlap on some channel at
least once per cycle. This ensures that nodes learn
about one another’s presence, and avoids partition of
the network. Once per slot each node broadcasts its
complete schedule. Nodes use the data about their
neighbors’ schedules to make decisions about how to
change thier own schedules.

Packets are kept in per-neighbor FIFO queues.
These queues are prioritized according to perceived
reachability. Reachability is determined by cached
schedules for that node, and whether past transmis-
sions based on that schedule have been successful. A
node will only attempt to send packets to neighbors
it perceives are reachable (unless none are perceived
to be reachable, in which case it sends all the packets
it has).

Channel hopping introduces a problem for appli-
cations that use broadcast packets. Unlike in single-
channel networks, a broadcast packet will not reach
all of the neighbors in range, since they are likely to
be on spread across different channels. SSCH deals
with this by retransmitting broadcast packets 6 times
in successive slots, making it more likely, but not
guaranteed, that neighbors will hear the broadcast.
In section 3.1, we discuss how this issue affect the
interaction of SSCH with DSR.

2.2 Changing schedules

Nodes change their schedules with the goals of con-
verging on channels with nodes they wish to commu-
nicate with, and moving off congested channels. In
a well synchronized network, nodes keep their sched-
ules synchronized with nodes that they have traffic
for, and only occasionally overlap with other nodes.
During each slot, a node may change its schedule for
the next slot based on four fairly simple rules. The
first and most straightforward rule is that nodes alter
their schedules to synchronize them with the sched-

2

ules of nodes they want to send to. To take into
account the nodes’ desire to receive as well as send
packets, the node observes how many packets it re-
ceives in each slot. This way, for each sub-schedule,
it knows how many packets it received in the last
instance of this slot (the last time it used this sub-
schedule). If the node received more than 10 packets
the last time this sub-schedule was used, then that
sub-schedule is labeled receiving, and is not allowed
to change.

Nodes also explicitly avoid congestion. They ac-
complish this by observing which other nodes have
synchronized their schedules in this slot. If the num-
ber of neighbors sharing a schedule is more than twice
as many as the number of neighbors this node com-
municated with previously in this slot,the channel
is considered congested. The node de-synchronizes
from the others on the congested channel, simply by
creating a new random schedule to replace the cur-
rent one. This is necessary to prevent all nodes con-
verging to one schedule. Finally, in order to avoid
partition, nodes are only allowed to update the sched-
ule for the first slot during the parity slot.

3 The DSR Protocol

We use DSR as a representative protocol for test-
ing channel switching and ad hoc routing. There are
many other protocols that could have been used (see
GPSR [10] and AODV [11] for example), and looking
at other routing protocols may be interesting future
work. For this study we chose DSR primarily so that
our results would be directly comparable to those in
[1]. DSR is one of the oldest and most well-studied ad
hoc routing protocols, and is moving towards adop-
tion as a standard [3]. This makes DSR a good choice
for evaluation because it is one of the more relevant
protocols, and there is plentiful existing performance
data. From a practical perspective, it has the advan-
tage that there are several DSR simulation modules
are freely available. In this section we give a brief in-
troduction to how DSR works, with emphasis on the
parts that we believe interact poorly with SSCH.

DSR is a reactive protocol, meaning that nodes
waits until a route is needed before attempting to

determine the route. This is in contrast to active pro-
tocols, such as link state and distance vector in wired
networks, which send background traffic to keep their
routing tables constantly up to date. In DSR, when
a sender needs a new route, it floods a route request
across the entire network. Flooding has obvious scal-
ing problems, and DSR is only intended to be used
on networks with small diameter (less than 10 hops
according to [2].) Extensive caching is used to reduce
the amount of flooding needed.

There are three main components to DSR: route
discovery, forwarding, and route maintenance. Each
of these is potentially affected by SSCH. Route dis-
covery is accomplished by flooding, as discussed
above. Each time the request is re-broadcast, ad-
ditional path information is appended, so that by
the time the request reaches the destination, a list
of intermediate hops used to get to the destination
has been built up. This path information is then
sent back to the requester along the reverse route.
Note that the efficacy of flooding hinges upon request
broadcasts reaching all neighbors.

Forwarding is accomplished by including the full
route of every packet in the packet header. Each in-
termediate node simply forwards to the next address
in the path. The forwarding node is responsible for
retransmission to its next hop in the event of a failure.
If the next hop is not reached by a certain timeout,
the forwarding node returns a route error message
back along the path to the original sender.

Route maintenance consists of the caching mecha-
nisms used to keep the routes up to date. Essentially,
every piece of routing information heard is recorded.
This includes the paths in routing request broadcasts
and the paths in data packets begin forwarded. In or-
der to gather as much information as possible, DSR
is supposed to be run with the network interface in
promiscuous mode. (Promiscuous mode allows the
transport layer to see all packets on the medium, not
just those destined for that machine.) If a node over-
hears a packet being sent along a circuitous route, it
sends a route reply back to the original sender with
the shorter path. Also, if a sender learns of a bro-
ken link, it floods the information along with its next
route request so that other nodes can remove affected
routes from their tables. In this way, long routes are

3

eventually shortened and broken routes are repaired.

3.1 Interaction with SSCH

The most obvious problem when running DSR over
SSCH is that the efficacy of the flooding mechanism
depends on broadcast packets propagating quickly to
the entire network. Since at any time a node will only
share a channel with a fraction of its neighbors, the
normal operation of broadcast may be significantly
impaired. As previously mentioned, SSCH attempts
to remedy this by retransmitting broadcast packets
over several slots. This is partially effective, but Bahl
et al. still find that SSCH increases route discovery
time and route length.

There are also other potential problems not con-
sidered in[1]. One is that DSR relies on promiscu-
ous mode operation to optimize routes and maintain
cached information. Though an SSCH node promis-
cuously listens to all of the traffic on its current chan-
nel, it is also purposefully trying to avoid encounter-
ing traffic not destined for it, by avoiding congested
channels. This could lead to less path optimization
over time, since news of better routes is not heard.
Having less cached information from promiscuous re-
ceiving could also lead to more routes having to be
discovered by flooding. Finally, forwarding may be
less efficient, as a forwarding node may have to wait
until its schedule is aligned with the next hop, poten-
tially increasing transmission delay by several tens of
milliseconds per hop.

To summarize, when using DSR over SSCH we ex-
pect to see:

• longer route discovery times

• longer initial path lengths

• more delay from forwarding

• less path optimization over time

• more route requests over time

4 Evaluation

We build off of ns-2 [6], a widely used open-source
network simulator. ns-2 is a packet level simulator

with built in functionality for all levels of the net-
work stack, from radio propagation models to FTP
transfers. Although originally designed for wired
networks, ns-2 was extended by the CMU Monarch
Project to handle wireless ad hoc networks [2]. The
included DSR module we use is the same one used in
[2] to test DSR against other ad hoc routing proto-
cols. Although SSCH itself is only moderately com-
plicated, integration with ns-2 turned out to be sub-
stantially more difficult than we initially expected,
requiring changes to existing code, and a detailed a
understanding of the low level workings of a signifi-
cant portion of the code base.

Logically, SSCH sits at the link layer, above the
network interface. While Bahl et al. refer to their
SSCH implementation as a MAC layer module, we
chose to change the existing 802.11 module as little
as possible, only inserting hooks to allow it to directly
alert our SSCH module to RTS transmission failures,
and to deal with the SSCH schedule-advertisement
packets. The bulk of our SSCH implementation is a
module between the LL (Link Layer) object of ns-2

and the MAC layer. The very existence of such a
separate module indicates the odd design decisions
in the structure of the ns-2 stack. At the higher lev-
els of the network stack, the tracing mechanism for
data collection were modified to make data collection
manageable. Also, although ns-2 supports multiple
channels, there was no existing mechanism to allow
nodes to switch channels, so changes were required in
the node implementation.

Other differences between our SSCH implementa-
tion and Bahl’s arise from the differences between
the simulation environments we use. They use the
proprietary simulator QualNet [7], which simulates
the PHY layer more cleanly and realistically, includ-
ing physical-layer buffers of packets and a delay for
channel-switching [1]. ns-2 lacks these elements. We
suspect that the structure of QualNet is in general
more coherent and well-designed than that of ns-2,
which has evolved over time and at the hands of mul-
tiple developers with differing goals.

One important caveat about our results with ns-

2 is that even before making any SSCH-related
changes, we were unable to increase the bandwidth
of 802.11 beyond 3.2Mb/s. This is about an order of

4

magnitude short of what 54Mbs WiFi is capable of.
We were not able to explain this bandwidth limita-
tion other than it seems to be coming from a variety
of delays throughout the network stack rather than
a single limiting bottleneck. This is a problem for
SSCH, because at this rate, a 10ms slot (which Bahl
et al. assumed to fit about 35 full length packets) only
fits 3 packets. To get around this, we increased the
slot length to 100ms. Because of these workarounds,
the bandwidth results given here should be used only
as a relative comparison between results in this paper
and not with other work or real-world data.

4.1 Experiments

Our first test is a simple sanity-check, confirming that
our SSCH implementation still shows the basic ad-
vantage over 802.11 that Bahl et a. found. A group
of stationary nodes are placed all within range of each
other. (The radio range in all our simulations is set
to approximately 250m.) The nodes are divided into
sender/receiver pairs. All communication is single
hop, and each node is either sending one flow or re-
ceiving one flow. The flows are UDP with the maxi-
mum rate set to saturate a single 802.11 channel.

Figure 4.1 shows the total data throughput
summed over all flows. With 802.11, a single flow
saturates the bandwidth, so increasing the number
of flows does not increase the total bandwidth. With
SSCH, on the other hand, we see a nearly linear in-
crease in bandwidth, as additional flows simply move
to uncongested channel schedules. The bandwidth
peaks around 13 flows as expected, and then starts
to degrade as contention and overhead from control
traffic lower the utilized bandwidth.

The second graph, Figure 4.1, shows the aver-
age delay in different-sized networks. Though SSCH
starts off with a higher delay due to its operation
overhead, the delay in 802.11 increases linearly with
number of flows, as each flow has to contend for the
channel. In SSCH, communicating nodes mostly have
their own channels, so delay remains constant un-
til the number of flows exceeds the number of chan-
nels, at which point they once again contend for the
medium.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Flows

To
ta

l t
hr

ou
gh

pu
t (

M
B

/s
)

802.11
SSCH

Figure 1: Throughput rate of disjoint flows on SSCH
versus 802.11

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20

Flows

A
vg

. D
el

ay
 (s

ec
on

ds
)

802.11
SSCH

Figure 2: Delay of disjoint flows on SSCH versus
802.11

5

4.2 SSCH and DSR over a multi-hop

network

The experiments presented in this section are meant
to address the main questions of this paper: How does
SSCH impact the time to find routes, and the quality
of routes found, the maintenance of routes over time,
and the delay and total throughput of the network?
For reasons that will be examined in the next section,
we do not have reliable data to address these ques-
tions. This section will describe the experiments we
ran and the (faulty) results we obtained.

The simulations in this section evaluate SSCH
when operating on a multi-hop ad hoc network. The
topology used is a simple evenly spaced square grid of
nodes. Each node is 150m from each of its neighbors
on the grid. This puts each node in range of its ad-
jacent and diagonal neighbors, so that each node has
eight neighbors total. In all tests, 10 maximum rate
UDP flows are established from nodes on one side of
the grid to nodes on the opposite side. In this way,
the dimension of the grid directly relates to the min-
imum number of hops in any path. The flows start
within the first half second and the simulation runs
for 30 seconds.

We experimented with a variety of network topolo-
gies and traffic patterns. In particular, we tried a

0

2

4

6

8

10

12

0 20 40 60 80 100

Nodes

S
uc

ce
ss

fu
l C

on
ne

ct
io

ns
 (o

ut
 o

f 1
0)

802.11
SSCH

Figure 3: The number of flows sucessfully established

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

Nodes

A
vg

. T
hr

ou
gh

pu
t (

M
B

/s
)

802.11
SSCH

Figure 4: Throughput, averaged over 25 seconds over
all active flows

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100

Nodes

A
vg

. D
el

ay
 (s

ec
on

ds
)

802.11
SSCH

Figure 5: Average delay

0

2

4

6

8

10

12

0 20 40 60 80 100

Nodes

A
vg

. P
at

h
Le

ng
th

 (H
op

s)

802.11
SSCH
Optimal

Figure 6: Average number of hops between source
and sink

6

number of randomized node layouts, but it was diffi-
cult to reliably create large random networks that
were not partitioned. The regular grid setup was
chosen for our final tests because, though artificial,
it gives DSR plenty of choice in paths, but keeps
the guarantee about minimum path lengths. We also
measured networks with moving nodes, but did not
get results consistent enough to report.

Figure 4.1 show the number of flows that were suc-
cessfully established. Except for an anomaly in the
16-node network, in the experiments without SSCH,
the network established connections most of the time,
only failing to find routes for two flows, each in one
of the larger networks. With SSCH it performs much
worse: the 64- and 81-node networks weren’t able to
establish even a single connection. The need even to
include this graph is a surprise–even with SSCH’s po-
tential performance problems, we were not expecting
any source to go the full 30 seconds without finding
a route to its destination. This common failure to
establish connections means that the sample size of
the following data is very small.

Figure 4.1 shows the throughput, averaged over the
last 25 seconds of the simulation and over all active
flows. Similarly, Figure 4.1 shows the average delay
and Figure 4.1 shows the average number of hops be-
tween source and sink. We do not believe the data
to be reliable, and so do not discuss the results fur-
ther. We present the data mainly to show that we
were capable of collecting interesting data, had the
underlying simulation been working. We also col-
lected data on how path length varied over time as
DSR attempted to optimize its routes, but did not
feel it was significant enough to include here.

4.3 Discussion of Problems with DSR

and ns-2

While the dismal performance of SSCH in our tests
could conceivably be due to faulty implementation,
we were surprised to see surprisingly bad performance
in DSR running on 802.11, essentially unchanged
from the release version. It has trouble discovering
routes, sustains a throughput of about 1/10th the

0

2

4

6

8

10

12

Flow

Ti
m

e
to

 e
st

ab
lis

h
ro

ut
e

(s
ec

on
ds

)

Figure 7: Amount of time to find a route in DSR over
802.11

0

2

4

6

8

10

12

Flow

Ti
m

e
to

 e
st

ab
lis

h
ro

ut
e

(s
ec

on
ds

)

0

100

200

300

400

500

600

700

800

900

1000

Flow

To
ta

l d
at

a
se

nt
 (K

B
)

Figure 8: The same flows from the prvious figure,
sorted by total amount of data sent by the flow in
the entire run

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

Time (seconds)

D
at

a
R

at
e

(K
B

/s
)

Figure 9: Rate of transmission of one particular flow
over time

7

available bandwidth, and has a completely unreason-
able delay of 4 seconds over 8 hops. In this section,
we set aside SSCH and discuss why we were unable
to get reasonable data with ns-2.

To investigate the source of these problems, we
looked closer at the data from one typical run of the
simulation on a network of 25 nodes. Figure 4.2 shows
the amount of time between issuing a route request
and sending the first data packet over the discovered
route. Each vertical bar is a flow; the flows have
been sorted by increasing time. Five of the flows es-
tablished a route in under 2 seconds, which sounds
high, but is within reasonable limits. The other half
of the flows took longer, with the last taking nearly
11 seconds to find a route in a network of 25 nodes!
This could explain why in some runs, not all the flows
were established: perhaps even 30 seconds still isn’t
long enough.

Figure 4.2 shows the same 10 flows, this time sorted
by total amount of data sent by the flow in the entire
run. Two of the flows achieve a poor but plausible
total of nearly a megabyte of data in 30 seconds. The
rest barely send data, with the worst flows managing
to transmit only a handful of packets successfully. It
is probably not coincidental that the two high rate
flows were the two pairs of nodes that were only 2
hops apart, while the rest of the nodes were 4 hops
apart. Looking closer at the first of the two high rate
flows, Figure 4.2 shows the rate of transmission of
one flow over time. The source node is sending UDP
packets at a constant rate, but the receiving end is
only getting packets in small bursts. The transmis-
sion rate varies by an order of magnitude from second
to second.

Taken together, these observations lead us to con-
clude that the codebase that we built off of is not
functioning well enough to be considered usable.
However, we find it highly unlikely that the basic
ns-2 or the DSR protocol itself are at fault. A few of
the possible explanations for the problems:

• the current release of ns-2 may be buggy. ns-

2 is a large open source project, and is bound
to contain bugs. In fact, we identified one in
channel.cc, and the current release’s ”stable”
release doesn’t even compile without manually

fixing some lines.

• we may have inadvertently made changes which
crippled DSR.

• something about our simulation setup may be
incorrect and causing poor performance. ns-2

is configurable with literally hundreds of simula-
tion parameters, and the documentation explic-
itly makes no promises that the default settings
are realistic.

Without more investigation we can’t speculate on
which of these, if any, is the ultimate cause.

5 Related Work

Most of the previous work on using frequency diver-
sity for ad hoc capacity improvement has been with
hardware using multiple radios. Dynamic Channel
Assignment (DCA) [8] and Multi-radio Unification
Protocol (MUP) [9] are two of these. In DCA, one of
the radios is used on a fixed control channel. A weak-
ness of this is in the dedicated control channel - not
only is that channel lost for purposes of data trans-
mission, it is also susceptible to interference. SSCH’s
distribution of control traffic across channels makes
it robust to such interference. MUP uses both radios
for both data and control traffic, but does not switch
channels, and so can only utilize as many channels
as the device has radios. Furthermore the fact that
both of these require a whole extra radio is something
of a drain, as the cost of an extra radio is generally
considered high, since it currently requires a separate
NIC.

There is little other work which addresses multi-
channel operation in ad-hoc wireless networks for
devices with one radio. The only work other than
SSCH of which we are aware is the Multichannel
MAC (MMAC) [12] . It uses a common control chan-
nel to coordinate channel rendezvous between nodes.
Its coordination system is based on the 802.11 power
save model. Unfortunately, this requires good clock
synchronization, which is difficult in ad hoc networks
in general, and particularly so in situations where
broadcast is nontrivial. Also, they use a single control
channel, which becomes a performance bottleneck.

8

6 Future work

The foremost piece of future work is to complete the
evaluation that was attempted in this paper. We have
demonstrated a cause for concern, but without solid
data it is impossible to know how serious the issue is.

A major improvement for the evaluation of SSCH
and its interaction with routing protocols would be a
deployment on a physical testbed. Especially given
the inaccuracies of simulators like ns-2 when simulat-
ing channel hopping (discussed in 4), we feel that a
physical deployment would provide much more mean-
ingful data. Furthermore, this would allow a compar-
ison with the testbed evaluation of DSR [2]. An issue
which is likely to come up in any physical simulation
of SSCH is that the 13 “orthogonal” channels pro-
vided by IEEE 802.11 will interfere with each other
when the radios are at close range [13]. SSCH does
not currently make provisions to deal with this co-
channel interference.

Because SSCH is one of the most promising pro-
tocols of its kind, we would be interested to evaluate
it in the context of other routing protocols. How-
ever, in addition to examining its performance with
other routing protocols, we feel that the greatest gain
to be had would be in rethinking current protocols
with SSCH in mind. In the longer term, we believe
that designing channel hopping and routing proto-
cols to share information and work together has the
potential to provide better performance than proto-
cols designed separately. A channel hopping protocol
with knowledge of routing and traffic patterns may be
able to make more informed decisions about schedule
changes. Similarly, a routing protocol that is aware
of the channel switching can get a more accurate view
of the its neighbors and the capacity of its flows.

7 Conclusion

In this paper we have explored the interaction be-
tween channel hopping with the SSCH protocol and
routing with the DSR protocol. We argue that the de-
sign of SSCH leads to unavoidable problems in rout-
ing. We describe our implementation of SSCH in a
simulation environment, and discuss our results when

running DSR over our SSCH implementation. Unfor-
tunately, for reasons about which we can only spec-
ulate, the underlying simulation was unable to give
realistic data. Thus we cannot come to any conclu-
sion, but urge further testing of DSR over SSCH.

References

[1] P. Bahl, R. Chandra, and J. Dunagan. SSCH:
Slotted Seeded Channel Hopping for Capacity Im-
provement in IE EE 802.11 Ad-Hoc Wireless Net-
works. In MobiCom ’04.

[2] D. Johnson, D Maltz, and J. Broch. DSR: The
Dynamic Source Routing Protocol for Mulithop
Wireless Ad Hoc Ne tworks. In Ad Hoc Network-
ing, Addison-Wesley, 2001

[3] D. Johnson, D. Maltz, and Y. Hu. The Dy-
namic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR). IETF MANET Working Group
INTERNET-DRAFT, 2004.

[4] C. Elliot and B. Heile. Self-Organizing, Self-
Healing Wireless Networks. IEEE 2000.

[5] IEEE 802.11b/D3.0, Wireless LAN Medium Ac-
cess Control(MAC) and Physical (PHY) Layer
Specification: High Speed Physical Layer Exten-
sions in the 2.4 GHz Band, 1999.

[6] S. McCanne and S. Floyd. UCM/LBNL/VINT
Network Simulator - ns (version 2).
(URL: http://www.isi.edu/nsnam/ns/)

[7] QualNet, http://www.qualnet.com/.

[8] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu.
A New Multi-Channel MAC Protocol with On-
Demand Channel Assignment for Mobile Ad Hoc
Networks. In International Symposium on Parallel
Architectures, Algorithms and Networks (I-SPAN)
2000.

[9] A. Adya, P. Bahl, J. Padhye, A.Wolman, and
L. Zhou. A Multi-Radio Unification Protocol for
IEEE 802.11 Wireless Networks. In IEEE Interna-
tional Conference on Broadband Networks (Broad-
nets) 2004.

9

[10] B. Karp and H. Kung. GPSR: Greedy Perimeter
Statelss Routing for Wireless Networks. In ACM
MobiCom, 2000.

[11] C. E. Perkins. Ad-hoc on-demand distance vec-
tor routing, in MILCOM ’97 panel on Ad Hoc Net-
works, Nov. 1997.

[12] J. So and N. H. Vaidya. Multi-Channel MAC for
Ad Hoc Networks: Handling Multi-Channel Hid-
den Terminals Using a Single Transceiver. In ACM
MobiHoc 2004.

[13] Texas Instruments. The Effects of Adja-
cent Channel Rejection and Adjacent Chan-
nel Interference on 802.11 WLAN Perfor-
mance. http://whitepapers.zdnet.co.uk/

0,39025945,60070499p-39000680q,00.htm.

10

