
Statistical Learning of ISP Peering Policies

Michael Cafarella and Daniel Lowd

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195 U.S.A.

mjc@cs.washington.edu, lowd@cs.washington.edu

December 10, 2004

Abstract

Spring et al’s research on path inflation uses
a large number of traceroute probes to deduce
facts about ISP policies [3]. They are able to
learn an ISP’s network topology, its individual
router policies, and the overall ISP peering strat-
egy. However, the authors use only very ba-
sic heuristics to make deductions from the data.
Also, collecting the necessary traceroutes is a
substantial burden. Finally, a relationship be-
tween two ISPs is characterized only as being in
one of several categories.

We use a number of different machine learn-
ing techniques to make similar deductions. We
believe these techniques are well-grounded in
statistics. They enable us to describe a peer-
ing relationship with much greater precision than
the commonly-considered ISP policies.

1 Introduction

Many of the inner workings of the internet are
unknown and difficult to determine. While the
basic protocols are standard, network topology
and routing policies are manually set by indi-
vidual ISPs and are generally considered pro-
prietary. This is the natural outcome of allow-
ing distributed management, a policy that has
greatly helped the internet to grow. Unfortu-
nately, this makes studying the internet, debug-
ging internet problems, and planning for its fu-

ture more difficult.

In the Rocketfuel project, Spring et al. [4] used
traceroute sampling to map ISPs’ internal net-
works. They used Planetlab sites to launch a
number of traceroutes to various points on the
internet. They recorded the routers that each
trace traversed, and used this information to
generate a topology for the network. They use
a number of heuristic techniques to tie router
addresses and DNS names to geographic real-
world coordinates. Thus Rocketfuel can gener-
ate a geography-fitted network topology for the
traceroute-instrumented ISPs.

In [3], Spring et al. study the problem of path
inflation. Network path inflation can happen
in several scenarios, but one of the most com-
mon is during inter-ISP traffic exchange. There
is no protocol for ISPs to easily share infor-
mation about their internal topologies. Fur-
ther, ISPs may have different business motiva-
tions for exchanging traffic at points that are less
than geographically optimal. By comparing ob-
served traffic handoffs in traceroute data with
the geographically-extracted information from
the Rocketfuel paper, the authors can compute
each ISP’s traffic handling policies.

While Rocketfuel’s geographic-tying tech-
niques have yielded good results, they risk be-
ing overly brittle or simplistic, since they rely on
hand-coded knowledge and manual experimen-
tation. They also rely on tremendous amounts
of data. Finally, inter-ISP peering policies are

1

characterized as being just one of early-exit, late-
exit, load-balancing, or a few subclasses of late-
exit. We would like to describe these policies in
greater detail.

We take the goals of [4, 3] as our own, but try
to apply modern machine learning techniques.
We focus on the problem of predicting inter-ISP
peering policy. Specifically, given source and des-
tination IP addresses and some knowledge of the
network, how can we predict which peering point
packets are most likely to take? Each ISP’s peer-
ing decision is modelled as a probability distri-
bution over the border routers between itself and
the destination ISP.

It might seem strange to model the largely de-
terministic phenomenon of routing policy prob-
abilistically. However, there are solid reasons for
doing so:

• Probabilistic statements can model uncer-
tainty on the predictor’s part, not just
probabilistic behavior of the modelled pro-
cess. Operating with small amounts of data
means that the learner will need to general-
ize from limited training; it’s misleading to
pretend such generalization will be correct
100% of the time.

• An ISP is an agglomeration of policies, at
the router and at the peering ISP level.
Probabilities are useful as a shorthand for
describing the total impact of those policies.

• Although we assume most peering policies
are deterministic, this isn’t guaranteed.

• Probabilistic modeling can be combined
with a cost model to enable utility-based
policy analysis.

2 Problem Modelling

In this section, we frame the specific learning
problem. Given a source IP address and a des-
tination IP address in two different ISP net-
works, we wish to predict the peering point

used, where traffic goes from one network to the
other. Training data for this problem consists of
a set of traceroutes covering a number of paths
traversing these same two networks, but none
from the specific source to the specific destina-
tion. (Clearly, these traceroutes must also reveal
enough of the topology to make the problem fea-
sible: if, for example, the learning algorithm has
never seen the peering point that is used, then it
will not be able to predict it.)

2.1 Data processing

In general, we can assume that each traceroute
contains the following information along the
observed route:1

1. source IP in ISP A

2. some number of routers in ISP A

3. peer router in ISP A

4. peer router in ISP B

5. some number of routers in ISP B

6. destination IP in ISP B

Each step in the traceroute is labelled with the
RTT from the source.

The two peers in the middle constitute the
peering point, where traffic is exchanged between
ISPs A and B. We seek to learn the probability
distribution

Pr(peer|source-in-A,dest-in-B)

As discussed before, a substantial advantage
of learning a probability distribution is that it

1At least, this is the form we would like the data to

take. In fact, the traceroute data is very messy. Formats

vary, routers are unavailable, some RTTs are unavailable,

there is not always a DNS name for every IP address

encountered, and there are many other problems, as well.

Processing this data required large amounts of time and

programming, but we were eventually able to massage our

huge set of traceroutes into the format described here.

2

allows us to quantify our uncertainty. We can
generate the most likely prediction by selecting
the peering pair with highest probability, given
the end-points.

After finding the most popular ISP pairs in a
set of traceroutes, we use this algorithm to infer
router policies:

1. Split the data into sets S and S ′.

2. With set S, build a model of the network
graph in the ISPs in question. Adjacent
steps in the traceroute indicate connected
machines. We average all RTTs for a given
linked machine pair, and label the link with
that value.

3. For each traceroute in set S ′, generate a set
of tuples that consist of:

• Number of border routers between the
source and the destination ISP. (Draw
this information from the graph con-
structed using set S.)

• The index for the border router actu-
ally chosen by the current traceroute.

• For each border router,

– Shortest-path RTT from source to
the relevant border router. Short-
est path is computed over the set
S graph.

– Shortest-path RTT from the rele-
vant border router to the destina-
tion. Shortest path is computed
similarly.

We then feed this tuple set to the learner, de-
scribed in the next section. The learner will com-
pute the probability of the source ISP choosing
each of the possible border routers in order to
get the packet to the destination ISP.

It may seem slightly odd to build an explicit
model of the ISP router graph topology before
using a more statistical technique with different
data. However, we think there is a good jus-
tification for this. This allows us to focus on

the special problem of modelling policies given
topological data, while avoiding using topolog-
ical data from the test sets. Since the learner
is not supposed to know the eventual peering
decision for a given route in the test set, it is
important that we do not peer behind the train-
ing set veil and also use it for topology. We do
not use the constructed graph as a mechanism
for observing router decisions or for gathering
statistics on peering decisions. It exists only as
a means for generating the fairly limited data for
the learning step.

Ideally, we would prefer to avoid construct-
ing the graph altogether by using geography in
place of latency. It is used to compute the set
of possible peering points, and to compute the
shortest-path RTT distance from the source to
those points. If we were given the set of possible
peering points, and if we had geographic data
about the source and peer points, then we could
drop the graph construction altogether. Indeed,
since data that we use for building this graph is
data that we cannot use for later learning, we
would like to build the topology with as little
data as possible. This is an issue we could ex-
plore more in future work.

Since not every possible source/destination
pair is reflected in the chosen set S, there will
be lots of sources or destinations that do not
appear in the generated graph. So, we do not
actually compute the shortest-path distance be-
tween the true source and destination. Instead,
we compute the distance between the ISP routers
that are immediately adjacent to those machines.
In practice, the resulting distance measures are
very similar, if not identical. Since even knowing
a single hop of the chosen route could be consid-
ered cheating, it would be even better to remove
this assumption using routing tables or subnet
guesses.

There are other pieces of information that
could be useful for the learner, such as geo-
graphic distances. However, we concentrate ex-
clusively on measured RTT values.

3

Some related problems we ignore for now in-
clude inferring the complete path from source to
destination, traversing multiple ISPs, and learn-
ing a collection of ISP routing policies at once.
The complete path problem in the two-ISP case
can be decomposed into predicting the proba-
bility of each peering point and then predicting
the probability of each internal ISP path. Learn-
ing internal ISP policies has already been done
with some effectiveness; there may be interest-
ing problems, but we do not focus on them here.
Traversing multiple ISPs is harder, since the poli-
cies of multiple ISPs may be relevant at once.

Learning a collection of two-ISP routing poli-
cies is also an interesting problem: since some
ISP policies are not wholly independent, knowl-
edge of a few ISP policies can make learning
additional ISP policies more effective. Some of
these relationships can probably be captured by
hierarchical Bayesian methods, which link a col-
lection of independent but related models via a
prior distribution over their parameters.

2.2 Learning Task Formulation

As stated above, we need to compute the prob-
ability of the source ISP choosing each of the
possible peering points to the destination ISP.
We formulate the probability for a router Ri as
follows:

Pr(Ri|src, dest) ∝ eλ1RTT (src,Ri)+λ2RTT (Ri ,dest)

We can turn this into a true probability by nor-
malizing over all the border routers for a given
router decision:

Pr(Ri|src, dest) = eλ1RTT (src,Ri)+λ2RTT (Ri,dest)
P

j e
λ1RTT (src,Rj)+λ2RTT (Rj,dest)

The router Ri with the highest probability is
the one predicted to be the source ISP’s chosen
peering point.

Except for the values λ1 and λ2, the
precomputed router connectivity graph gives
us all the information necessary to compute

Pr(Ri|src, dest). The learner’s main task is to
choose these λ values. We choose them such that
we maximize the probability of seeing the test
tuple data. In statistical literature this is called
maximum likelihood estimation.

We can also interpret these λ values as weights
that determine the relative cost to the routing
ISP of packet latency in the source ISP versus
packet latency in the destination ISP. We can
very naturally express the peering policies from
[3] in terms of these λ values.

• A random policy is followed when λ1 = λ2 =
0. No latency times are considered at all,
and all Ri are equal.

• A fully early-exit policy is followed when
λ1 ≤ 0;λ2 = 0. The packet latency in the
destination ISP is not considered at all when
the source ISP determines the peering point.

• A fully late-exit policy is followed when λ1 =
0;λ2 ≤ 0. The packet latency in the source
ISP is not considered at all when the source
ISP determines the peering point.

• An optimal policy is followed when λ1 =
λ2 = w;w ≥ 0. Latency in both ISPs is
considered with equal weight.

We want our learner to predict routing poli-
cies with greater accuracy than any of the above
“stereotypical” policies. Put another way, when
we use the λ values from our learner to evalu-
ate Pr(Ri|src, dest), the resulting probabilities
should be more accurate than when we use λ

values from random, early-exit, or the other enu-
merated policies. If our learner succeeds, then
we can say our system describes an ISP’s policies
with more precision than the standard methods
do.

But if the learner’s λ values cannot beat those
of the standard methods, then none of our goals
for a statistical approach can be fulfilled. We
will neither describe the system in greater de-
tail, and smaller amounts of traceroute data will
likely make performance even worse.

4

index Source ISP Destination ISP

1 francetelecom.net opentransit.net
2 alter.net level3.net
3 ebone.net sprintlink.net
4 above.net level3.net
5 att.net level3.net
6 gblx.net level3.net
7 qwest.net level3.net
8 bbnplanet.net level3.net
9 oceanic.net netenterprise.net
10 bbnplanet.net att.net
11 ebone.net level3.net

Table 1: Labels for each of the ISP pairs, referred
to by ID for most of the paper.

3 Experiments

We now present prediction results from a num-
ber of different methods for learning the λ val-
ues. We also compare them against the standard
policies listed above. Although finding the right
learner took some time, we were eventually able
to predict peering decisions with reasonably high
accuracy.

3.1 Methodology

We ran all experiments using data from the 10
most popular ISP pairs seen in our dataset. For
each of the pairs, we regenerate the graph used
for topology and distance.

We present both log-likelihood and accuracy
results for every experiment. Accuracy is just
a measure of how often the policy was able to
predict the router that the ISP actually chose.
It is expressed as percentage of the routing de-
cisions seen in the data. When the policy emits
router probabilities that result in a tie for the
most-likely, the prediction is scored with frac-
tional credit (depending on how many routers
were tied).

Log-likelihood is a measure of how likely the
dataset is, given the computed λ values. This

shows how well a policy predicts the probabilities
for all possible peering decisions, not just the
one actually chosen. The raw numbers do not
have an easily-understood intuition, but larger
numbers are better.

All λ values are learned using gradient-ascent,
to maximize the log-likelihood of the training
data. Since the log likelihood of our training
data is a convex function, there is a single, global
maximum. This guarantees that gradient ascent
will not get stuck in a local maximum, but will
converge to the optimal weights. We used the
implementation of Powell’s method from [1] to
perform the actual optimization.

All results are also compared against the
stereotypical policies enumerated in the previous
section.

Table 1 lists the ISP pairs we studied. Later
tables will refer to them only by ID.

Table 2 shows some basic statistics about the
data. Each ISP pair’s dataset had between
200 and 600 routes to process. We divide the
data into train and test sets using 10-way cross-
validation; that is, the available data was divided
into training and test sets 10 times, each time
with a different tenth of the dataset used for test-
ing. All results come from averaging modeled
probabilities over these 10 different train/test
sets.

Table 3 describes some of the ambiguity found
in the data. ISPs will sometimes make differ-
ent routing decisions even though all the RTT
distances are exactly the same. It’s not possi-
ble to say whether such conflicts mean that the
ISP is actually making different decisions based
on identical inputs, or whether the data we have
selected to learn from simply does not capture
every factor the ISP incorporates. From the
learner’s perspective, the ISP seems to be rout-
ing at least somewhat randomly. This random
behavior places a ceiling on how well any learner
can be expected to perform.

5

ISP Pair Total routes Unique RTT sets Unique routes

1 217 17 24
2 445 199 237
3 571 115 115
4 524 127 173
5 518 190 190
6 508 170 180
7 506 263 265
8 409 190 193
9 366 323 324
10 391 250 283

Table 2: Statistics about the processed dataset. Two traceroutes produce indistinguishable “RTT
sets” when they have identical source-to-peer and peer-to-destination RTT times. Two traceroutes
produce identical routes when they produce identical RTT sets and choose the same peer. There
are more unique routes than unique RTT sets, indicating that identical RTT values can result in
choosing different peers.

ISP Pair Ambiguous routes Max log-likelihood Max accuracy

1 76.49% -0.5238 65.43%
2 42.69% -0.5869 74.60%
3 0.00% 0.0000 100.00%
4 78.24% -1.4519 41.03%
5 0.00% 0.0000 100.00%
6 55.90% -0.1245 95.07%
7 22.33% -0.0197 99.60%
8 1.95% -0.0122 99.26%
9 0.81% -0.0052 99.72%
10 39.64% -0.2582 84.65%

Table 3: Ambiguity in the dataset means that routing decisions with identical RTT-distances
may be route differently. This ambiguity may reflect that even a complete RTT “fingerprint” is
not sufficient to characterize routing decisions. These conflicts place a theoretical ceiling on the
predictive power of any learner.

6

3.2 Basic Model

We first tried to learn λ values using the tracer-
oute data tuples described exactly as in Sec-
tion 2. Recall that each routing decision de-
scribed by a traceroute is presented as a set of
RTT pairs. There is an RTT pair for each of
the possible peering points between the source
and destination ISPs. Each peering point’s RTT
pair has the shortest-path RTT distance from
the source to the peering point, and the shortest-
path RTT distance from the peering point to the
destination.

Accuracy results for the basic model are pre-
sented in Table 4. Our learner predicts actual
ISP behavior better than the other policies in six
out of ten scenarios. It does especially poorly for
ISP pairs 4, 6, and 8.

Note that in the case of 4, at least, the dataset
ambiguity places an unusually restrictive ceiling
on our prediction accuracy.

Note that in Table 5, ISPs where the basic
model is the best predictor and still relatively
poor, the log-likelihood is relatively low. ISP 2
is the best example of this phenomenon.

3.3 Basic Model with Router Weights

Our performance with the basic model was some-
what mediocre, so we ran a short experiment.
We threw out the weighted pair of distances, and
tried a simple-minded predictor.

We formerly computed the probability of
choosing a peering point as a λ-weighted func-
tion of the RTT pairs. Instead, we tried to com-
pute that probability as the simple percentage of
the routes that go through a peering point of the
total number of routes (that are used for train-
ing). (This is known as the marginal probability
for the peering point.) So we now use:

Pr(Ri) =
training routes using Ri

training routes

Amazingly, this was a much better predictor
than our basic model above. For example, the

most accurate policy for ISP 6 was the random
policy (see Table 6), which scored 7.69%. The
marginal model obtains accuracy of 74.6% sim-
ply by predicting the most common peer. In the
log-likelihood results, this model wins over the
basic model or the best stereotypical model in 8
of 10 ISP pairs.

It was exciting to see a big jump in perfor-
mance, but cast our basic model in a terrible
light. We did better by ignoring source and des-
tination altogether. A very dumb strategy of
simply choosing the most popular peering point
could beat our learned weights.

3.4 Extended Model

It seemed obvious that we could try extending
our basic model with some of the per-peering
point information that the marginal approach
used. So we extended the basic model very sim-
ply. We add a new λ value for each peering point
being considered. We now use the formula:

Pr(Ri|src, dest) = e
λ1RTT (src,Ri)+λ2RTT (Ri,dest)+λRi

P

j e
λ1RTT (src,Rj)+λ2RTT (Rj ,dest)+λRj

We used to consider an ISP’s peering policy as
a simple pair of weights. We can still consider
that same pair as setting general policy, but now
there is also a special set of “modifying weights”,
to favor or disfavor certain routers outside of the
overall policy. This might better reflect the engi-
neered routes that we believe ISPs often create.

This change allowed for substantially better
performance, as can be seen in Table 6 and Ta-
ble 7. In fact, some of these results come fairly
close to the theoretical maximum performance
described in Table 3.

4 Conclusion

Learning peering policies is a difficult task over-
all. Peering policies can be very complex, or ar-
bitrary. There are many factors that go into a

7

ISP Pair basic model early late opt rand

1 40.09% 0.00% 40.09% 0.00% 8.33%
2 11.14% 9.04% 7.82% 10.94% 2.43%
3 96.49% 96.23% 48.24% 96.49% 50.00%
4 0.19% 0.49% 1.68% 1.62% 2.63%

5 99.71% 69.98% 60.23% 75.48% 33.33%
6 2.36% 0.00% 6.03% 0.00% 7.69%

7 43.37% 43.77% 27.3% 41.69% 16.66%
8 6.84% 10.75% 30.56% 4.27% 16.66%
9 57.37% 57.37% 54.37% 57.37% 20.00%
10 44.37% 21.86% 32.07% 3.32% 8.33%

Table 4: Accuracy results for the basic model. The best result for each ISP is in bold type.

ISP Pair basic model early late opt rand

1 -1.9712 -2.3128 -1.9719 -2.3614 -2.3756
2 -3.5757 -3.5774 -3.6282 -3.6118 -3.6319
3 -0.1324 -0.0857 -0.6812 -0.0833 -0.6812
4 -3.3818 -3.6344 -3.5694 -3.5694 -3.5694
5 -0.0051 -0.4082 -0.8817 -0.3204 -1.0778
6 -2.1889 -2.4474 -2.2076 -2.5154 -2.5154
7 -0.9368 -0.9362 -1.4393 -1.0863 -1.7570
8 -1.5280 -1.5341 -1.7490 -1.5349 -1.7490
9 -1.2699 -1.2723 -1.2885 -1.2687 -1.5666
10 -1.2344 -1.9229 -1.5084 -2.3799 -2.4229

Table 5: Log-likelihood results for the basic model. Larger numbers are better. The best result for
each ISP is in bold type.

ISP Pair extended model basic model marginal model best-stereotypical

1 40.09% 40.09% 39.62% 40.09%

2 33.48% 11.14% 15.27% 10.94%
3 100.00% 96.49% 99.64% 96.49%
4 37.52% 0.19% 11.82% 2.63%
5 100.00% 99.71% 60.03% 75.48%
6 90.15% 2.36% 74.60% 7.69%
7 96.83% 43.37% 53.55% 43.77%
8 92.66% 6.84% 56.23% 30.56%
9 72.67% 57.37% 57.37% 57.37%
10 46.29% 44.37% 49.10% 32.07%

Table 6: Accuracy results for the extended model. The best-stereotypical column lists the highest
accuracy of either early, late, opt, or rand from Table 4. The best result for each ISP is in bold

type.

8

ISP Pair extended basic marg non-marg

1 -1.1588 -1.9712 -1.2856 -1.9719
2 -1.6687 -3.5757 -2.4446 -3.5774
3 0.0000 -0.1324 -0.0209 -0.0833
4 -2.6094 -3.3818 -2.4541 -3.5694
5 0.0000 -0.0051 -0.7215 -0.3204
6 -0.4501 -2.1889 -1.0562 -2.2076
7 -0.1267 -0.9368 -1.0564 -0.9362
8 -0.3013 -1.5280 -1.1625 -1.5341
9 -0.9959 -1.2699 -1.2365 -1.2687
10 -1.1333 -1.2344 -1.0456 -1.5084

Table 7: Log-likelihood results for the extended model. The best-stereotypical column lists the
highest log-likelihood of either early, late, opt, or rand from Table 5. The best result for each ISP
is in bold type.

peering decision, including many that are un-
likely to be captured in any dataset gathered
through exclusively traceroute-based means.

However, our very simple weight-based model
is able to solve a large amount of the problem.
They capture most of the top-ten ISP relation-
ships more accurately than a number of stereo-
typical policy descriptions. This suggests a ma-
chine learning approach is worth also pursuing
when the dataset is more impoverished. While
standard techniques might be very brittle in the
face of small amounts of data, statistical ones
often are not.

We also learn that policies depend on much
more than RTTs: certain routers may be pre-
ferred or dispreferred independent of their re-
spective latencies. Although we knew some en-
gineered routes add substantial latency, we were
surprised by the extent to which this affected our
modelling accuracy and log likelihoods. We as-
sumed that network structure would account for
most of the learnable patterns.

After taking router preference into account,
our learned models bested every stereotypical
baseline, as well as the marginal model, except
for one ISP pair. For two of the datasets, we
predict the test set perfectly; for several others,
we come close to the theoretical upper bounds.

This suggests that weight-based approaches us-
ing RTT and router weights can effectively model
peering behavior in many cases. Simple analy-
sis of the model weights can also yield an under-
standing of the tradeoffs being made by the peer-
ing policy, the extent to which latency in source
and destination ISP are considered, as well as
which routers are preferred.

5 Future Work

Our top priority for future work is to employ a
relational learning technique. A relational tech-
nique would allow us to model the relationships
between all routers in the system, and infer rout-
ing policy both at the router level and the ISP
level.

While traditional machine learning operates
on a fixed set of features that define each in-
stance, relational methods use relations and first-
order logic. Consider the task of predicting
whether or not someone smokes. If people who
smoke tend to be friends with other people who
smoke, then one’s friends may be a good pre-
dictor of this value. In the traditional machine
learning approach, we could use the variables
NumberOfSmokingFriends, NumberOfNonSmok-
ingFriends, and Smokes. By applying an appro-

9

priate algorithm, we could learn how the number
of smoking and non-smoking friends affects the
probability of an individual smoking.

A similar mechanism would probably work
well with routing relationships. Each router’s
policies depends on global ISP policies, but also
on local connectivity, geography, and link con-
gestion. A different set of predicates is re-
quired, but the fundamental idea is the same.
Of the competing probabilistic relational models
in existence, we would recommend using Markov
Logic Networks (MLNs), due to their versatility
and scalability [2].

In addition, we would like to extend our learn-
ers with additional features. We could add infor-
mation about geographical distance, link band-
width, or even business details.

6 Acknowledgements

The authors would like to thank Pedro Domingos
and Ratul Mahajan for their advice and help.

References

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling,
and B.P. Flannery. Numerical Recipes in
C. Cambridge University Press, Cambridge,
UK, 1993.

[2] Matt Richardson and Pedro Domingos.
Markov logic networks: A unifying frame-
work for statistical relational learning. In
Proceedings of the ICML-2004 Workshop on
Statistical Relational Learning and its Con-
nections to Other Fields, pages 49–54. IMLS,
2004.

[3] Neil Spring, Ratul Mahajan, and Thomas
Anderson. Quantifying the causes of path
inflation. In ACM SIGCOMM, 2003.

[4] Neil Spring, Ratul Mahajan, David Wether-
all, and Thomas Anderson. Measuring
isp topologies with rocketfuel. IEEE/ACM

Transactions on Networking, 12(1):2–16,
2004.

10

