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ABSTRACT 
There are tradeoffs between cost and accuracy 
among the myriad of approaches to indoor 
localization. In this paper, we explore a number 
of approaches aimed at reducing overall cost of 
deployment and use in the form of equipment, 
infrastructure, effort, and algorithm tuning 
requirements. 
 
PROBLEM 
Indoor localization is the process of determining 
a mobile computer's location inside a building. 
We investigate the accuracy of various indoor 
localization schemes that use 802.11 (WiFi) 
access point (AP) broadcast beacons. These 
schemes differ from each other in numerous 
dimensions, such as software requirements, 
assumptions of the environment, and cost. In 
turn, these dimensions affect the feasibility and 
usefulness of the schemes. Designers of 
location-aware systems must choose a scheme 
that provides suitable localization for their 
location-aware applications while minimizing 
the resources necessary for it. Therefore, this 
paper will also discuss the significance of the 
dimensions and the impact of different choices 
in this design space. 
 
MOTIVATION 
There are many reasons why knowing the 
location of a device indoors could be useful. For 
instance, a system supporting location-aware 
reminders would allow a user to set reminders 
relevant to their location, such as "pick up your 
printouts" when near the printer closet [CB]. 
Another system that could leverage this 
positioning functionality is a location-aware 
buddy list, where users can choose to reveal 
their location to friends and associates. An 
obvious use would be to aid someone unfamiliar 
with the building layout in navigation. This is 
something that would be invaluable to the 
cognitively impaired, who often have trouble 

navigating indoors, even in buildings they 
frequent. Other applications that could utilize 
this knowledge might enhance the interactivity 
of a "smart" environment. 
 
Of course the use of 802.11 beacons is not the 
only way to locate a mobile computer. An 
alternate approach might be to use RFID readers 
placed near locations where localization is 
desired. The readers could detect the proximity 
of an RFID-tagged object and inform some 
system providing location information. 
However, this would have issues over privacy 
and instrumentation cost. 802.11 is an attractive 
option because all computation can take place 
locally on a client, so as long as a client chooses 
to remain silent, its location cannot be known by 
the infrastructure or any other clients. In 
addition, in many buildings 802.11 infrastructure 
already exists, while the technologies used by 
other schemes are less common. 
 
There are two major aspects of indoor 
localization with WiFi that are not found in 
outdoor WiFi localization. The first is the need 
for higher accuracy. The second is the added 
dimension of altitude (or logically, floor). 
 
While 30-75 meter accuracy can still be useful 
outdoors [OpKn], such accuracy would be 
nearly useless indoors as many buildings are not 
much larger. To achieve room-level accuracy, 
the localization scheme must have errors of only 
3-5 meters. Without room-level accuracy, indoor 
location-aware applications, such as those 
previously described, would be severely limited. 
One would not be able to place location-aware 
reminders to specific rooms. The location-aware 
buddy list would not be able to tell what room a 
person was in, which creates a problem with 
how it should represent a user's location in a 
terse, text format. If a navigation system cannot 
determine to a high degree of accuracy whether 



its user is at a room, it would place a burden for 
figuring that out on the user, which could pose 
to be too difficult for users who are cognitively 
impaired (who are also those who would benefit 
the most from such a system). So accuracy is 
critical for many location-aware application 
functions. 
 
Floors 
WiFi localization schemes for the outdoors do 
not concern themselves with determining 
altitude, because it is unlikely that two locations 
will be at the same two-dimensional coordinate 
but separated by different altitudes. However, 
the notion of a location containing the third 
dimension is natural to multi-story buildings. 
This added dimension poses a challenge to 
localization schemes because 802.11 signals 
may not change a great deal across a floor, but 
the penalty for estimating the wrong floor may 
be even worse than estimating the wrong room 
on the right floor. If a user must correct an error 
in a floor estimate, for instance to find someone 
she needs to talk to, she may need to visit 
several floors, which is significantly more time- 
and effort- consuming than checking the vicinity 
of an estimate on one floor. 
 
In fact, there are applications that could use a 
good floor estimate even when the 2-D estimate 
is imprecise. Location-aware computing 
researchers have noted that privacy is a major 
concern with applications that reveal users' 
locations. One approach that deals with this is to 
obscure the location by reducing its resolution 
[Gru]. A natural way to reduce the resolution of 
an indoor location is to simply drop 2-D 
coordinates and report only the floor. This could 
be used by an application such as the location-
aware buddy list, where a user may wish to 
restrict the resolution of her location to certain 
buddies while still providing a useful indicator 
of her whereabouts. 
 
RELATED WORK 
There has been quite a large body of previous 
work on a range of positioning systems, each 
which use its own localization method(s). 
 
GPS 
The most notable positioning system is the 
Global Positioning System (GPS). GPS enables 

users to determine their locations using a GPS 
receiver, without the need to subscribe to a 
service. This model, where the system merely 
broadcasts signals, is very similar to the way 
802.11 APs broadcast their identities, without 
the need for the user to initiate any 
communication channels. Privacy in this system 
is maintained because the user can prevent the 
infrastructure from tracking them, while still 
being able to determine their own location. 
 
Unfortunately, GPS requires clear line of sight 
to several satellites in the sky, which is 
something that does not work indoors without 
expensive GPS repeaters. 
 
A GPS receiver triangulates its distance to the 
GPS satellites using signal times of flight. High 
accuracy is maintained only if the receiver can 
synchronize its time with the GPS satellites. 
802.11 does not support this tight timing, so we 
cannot simply use GPS' localization scheme. 
 
Active Bat 
Active Bat makes use of ultrasound devices 
mounted on (or above) the ceiling in order to 
intercept the signals of an ultrasound emitting 
device carried by the user, or object, to be 
localized [Bat]. These ceiling mounted devices 
all connect to a centralized board which uses 
their readings to interpret the Bat’s position. As 
with other techniques, this localization requires 
substantial deployment, here in terms of 
ultrasound receiving devices and the calculation 
board. In addition, because the calculation takes 
place outside of the object being localized, there 
is no guarantee on privacy. However, the system 
provides a very high degree of accuracy and 
precision. 
 
SpotON 
SpotON provides excellent ad-hoc localization, 
but with the drawback that specific hardware is 
required [Spot]. In addition, these SpotON tags 
need to be placed everywhere that localization is 
to occur, and while the system is flexible in that 
these tags can be relocated to other areas, doing 
so would require significant effort on the part of 
the user. SpotON may be a good solution for 
many situations, but here we would like to 
develop a solution using existing wireless 
networks. 



 
WiFi 
The major approaches to WiFi localization have 
been triangulation [PL], modeling [Rad], and 
fingerprinting [Rad,LL,HEM]. Triangulation 
relies on the assumption that signals radiate 
spherically, so the actual location would be at 
the centroid of the APs heard. This assumption 
is fine for outdoors use simply because the 
typical range of most APs is less than 100m, 
thus upper bounding the error. Both modeling 
signal propagation and fingerprinting have 
achieved much better accuracy than 
triangulation, but they do so by using samples 
collected in the areas where localization is 
desired because signal propagation varies widely 
across different environments. Therefore their 
generality is questionable. 
 
Although existing WiFi localization schemes 
have achieved room-level (3-10m) accuracy, 
only Haeberlen et. al. have done so across 
multiple floors in a building [Rad,HEM]. None 
of the existing work treats floor determination as 
a more important dimension to localize than 2-D 
position, therefore there has not been any 
specific treatment of how well floors are 
localized. 
 
The best existing WiFi localization schemes 
have an average error of 3-10 meters [Rad, 
HEM]. Elnahrawy et. al. suggest that this is the 
physical limit to localization using signal 
strength, but also that simpler algorithms may be 
able to achieve similar accuracy and precision 
[Lim]. Despite this finding, the majority of 
schemes rely on sophisticated methods for 
matching newly observed signal strength 
signatures to a known set of signature-location 
pairs (fingerprinting). However, using 
fingerprints is not without downsides. 
Fingerprinting requires a large amount of up-
front data collection. In lieu of mainstream 
robotic mapping systems, human effort on the 
scale of one minute per square meter must be 
expended. Although this task can be parallelized 
to reduce the overall time necessary in collecting 
fingerprints, there is no reducing the total cost of 
effort. Not only is there an initial cost for setting 
up a fingerprinting system, but there is also the 
cost to periodically recalibrate and/or update 
fingerprints when something in the environment 
changes in a way that affects signal propagation. 

This can occur more often than desired simply 
because the 2.6GHz frequency band that 802.11 
uses is sensitive to many environmental factors. 
 
WALRUS 
WALRUS is the result of an undergraduate 
project for the UW course CSE 477 [WA]. 
WALRUS uses simultaneous ultra-sound and 
802.11 beacon broadcasting to determine the 
room. The idea behind WALRUS is to work 
around the fact that 802.11 signals can travel 
through walls, while ultra-sound is usually 
dampened by them and can therefore be a better 
indicator of proximity. Since light travels faster 
than sound, we use the 802.11 beacon not only 
to carry information about the room, but also as 
the "lightning" to the ultra-sound's "thunder." 
 
An environment running WALRUS can have a 
much higher level of confidence for room-level 
positioning, but requires that every room have 
an access point synchronized with an ultrasound 
broadcasting speaker. Thus the cost of 
instrumenting WALRUS in a building would be 
significantly higher than any of the previous 
methods, which rely only on existing WiFi 
infrastructure. An open question will be whether 
we can create a system that can use a partial 
WALRUS infrastructure, which can provide 
high confidence positioning in certain rooms, 
and fall back on one of the other methods of 
positioning when no ultrasound can be heard 
 
OUR USAGE OF PLACE LAB 
Place Lab is a collection of java classes for 
performing localization using such signals as 
WiFi and GPS, and is quite open and versatile, 
and is designed to be expanded. It provides 
much of the basic functionality needed to read 
WiFi and GPS signals, and also a number of 
classes useful in analyzing them; basic particle 
filters and centroid trackers are provided in the 
class hierarchy. Just as importantly, Place Lab 
provides a structure that lends itself to this sort 
of work, and can easily be extended to 
incorporate other techniques. A significant 
limitation of Place Lab, however, is that it is 
largely intended for outdoor use, and as such has 
somewhat limited use. This is why we use it as a 
foundation from which to build an effective 
indoor localization system. 
 



METHODOLOGY 
For purposes of training the bin-system, and in 
order to evaluate our methods, we collected 
large amounts of WiFi signal and position data. 
Because we collect these WiFi signals along 
with the true position at the time, we have 
ground truth; we know the exact locations of the 
wireless device when it received each set of 
signals. In order to test our localization methods 
we can read these signal logs as though they 
were live signals, feed them to our localization 
procedures, and compare their estimated 
positions with the known correct position, also 
stored in the log. The exact procedure will be 
described in more detail later. 
 
The Place Lab software provides functionality 
useful for gathering such data: a map of the area 
is displayed to the user as the WiFi card collects 
signals, and the user is able to click on this map 
in order to mark their location; the pixel 
coordinates of the map are translated to the 
latitude/longitude coordinate system used for 
localization. A change of floor is recorded by 
selecting the new floor via a drop-down menu. 
 
We collected data through this software by 
walking around each floor of the Allen Center, 
navigating various walkways, hallways, offices 
and conference rooms as we went. We also 
made sure to include numerous floor transitions 
in our data collection. Each stairwell and 
elevator was used at least once; most were used 
repeatedly. Overall we gathered over 10,000 
beacon readings over the course of 2 hours, 
including 14 floor transitions. We logged all 
detectable beacon signals, not just those 
originating from CSE APs. The localization 
schemes we employ use different subsets of the 
traces depending on the beacon metadata they 
use – if a scheme requires certain information 
that we do not have on a particular AP, it is not 
considered. 
 
In order to evaluate our techniques we, as 
mentioned earlier, treated this test data as though 
it was a set of live signals, ran it through the 
trackers to estimate our position, and finally 
compared the estimated positions with those 
recorded as ground truth in the logs. 
 
In order to more accurately evaluate our 
techniques, we randomly divided the log data 

into halves; one for training, and one for 
evaluation. Although this meant less data to train 
on, it does give us a more realistic evaluation of 
our methods. 
 
Training was required for several of our 
methods, specifically the floor histogram as well 
as both binning algorithms. The training half of 
the log data was used to prepare these methods 
offline; no online learning takes place in any of 
our techniques. 
 
LOCALIZATION SCHEMES 
Centroid 
The first localization scheme we applied was the 
centroid tracking method. This scheme uses 
triangulation, so it is simple algorithmically and 
cheap computationally. In addition, it does not 
require previous beacon readings, so the 
frequency at which it is run is unimportant. This 
may be advantageous for computationally-
limited clients who for reasons of spare cycles or 
power may not want location estimates often. 
 
Place Lab contains a centroid tracker that 
computes the centroid over all access points 
whose location is in its database. This works 
outdoors for the reason previously mentioned – 
the error is bounded by AP range so in most 
cases this scheme's accuracy is reasonable.  
 
However, there are some inherent shortcomings 
with using a centroid approach for indoor 
localization. 
 
1. Relatively weak signals from APs that are far 

away (on a building scale) from the client 
influence this scheme, so we must limit what 
beacons we calculate the centroid over if we 
wish to constrain error. 

2. The centroid works best when there is a large, 
evenly distributed set of known APs. The 
number of possible estimates that a centroid 
will compute is equal to the cardinality of the 
power set of known APs. For the scheme to 
produce more estimates requires more APs. 

3. It is impossible to produce a location estimate 
that is beyond the convex hull of the known 
AP locations set. APs must be placed such that 
they surround all desired locations. However, 
existing AP placement is done without this 
consideration. The Paul G. Allen Center is an 



example of such a topology. This is especially 
problematic as many offices are along the 
building perimeter and it is reasonable that a 
location-aware application would desire 
office-level accuracy. 

4. This problem also affects floor estimation. It 
becomes much less likely that the scheme 
produces estimates for the upper or lower 
floors of a building, because the distance 
between APs on the same floor is sometimes 
larger than the distance between APs on 
separate floors. This leads to cases where APs 
from nearby floors may be heard more often 
than APs on the same floor. Since there are no 
APs below the lowest floors or above the 
highest floors, when a client on such a floor 
hears even one beacon from the middle floors, 
its estimate will be affected. 

 
To address the first shortcoming, we compute 
the centroid over only the AP locations from the 
set of stronger beacon readings. It is currently 
set to take the strongest half of all the beacons 
heard. The advantage of this is that it is a very 
minor and simple change. 
 
Only purchasing more APs or moving existing 
ones can address the second shortcoming. How 
feasible either is depends on the cost to place a 
new AP or to move APs while also updating any 
associated network management policies, which 
may be the job of network staff and not 
application developers. 
 
We will investigate the third and fourth 
shortcomings in the next section. It turns out that 
the fourth approach is more tractable. We 
noticed that there is roughly the same number of 
APs in the same locations on every floor in the 
Allen Center. Intuitively, an AP on the same 
floor as a client should have a stronger beacon 
signal since it travels a shorter distance and will 
not be affected by floor attenuation. If we leave 
out weaker beacons from our calculation, a 
plurality of the beacons left should be on the 
same floor as the client. This leads to our floor 
mode estimation, which produces a floor 
estimate that is the mode over strong beacons. It 
relies on APs to be distributed in the same 
locations on every floor, which is close to the 
case in the Allen Center, but not necessarily true 
in other buildings. 
 

Our results for the centroid with floor mode 
estimation are shown in Figures 1 and 2. The 
results used a random sampling of half of our 
continuous trace. The scheme estimates the 
correct floor 65 percent of the time, and the 
majority of 2-D error is within 15 meters.  

Weighted Centroid 
We observed that the previous scheme often 
placed its estimates near the middle of the 
building. Although the estimates are not severely 
wrong, they are also not very useful because the 
center of the building on many floors is empty 
space. This is an artifact of the third shortcoming 
of the centroid tracker. We also noticed that 
certain APs are heard more often because they 
are centrally located and more often within 
client range, “pulling” estimates in toward the 
center. This suggests that a weighted centroid 
scheme where beacons that are less likely to be 
heard affect the estimate more heavily may 
alleviate some of the problems with the previous 
unweighted centroid scheme. 
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Figure 2. 2-D accuracy of Centroid tracker 

 
Figure 1. Floor estimate accuracy of centroid tracker 



 
We assigned both 2-D and floor weights to 
beacons based on their relative distance from the 
center of the building and limited line-of-sight. 
The intuition for this is that the line-of-sight of 
APs near the perimeter of the building is smaller 
and their beacons are heard less often. Hearing 
such an AP's beacon should indicate being 
closer to the AP than others. 
 
The results for floor accuracy are shown in 
Figures 3. Surprisingly, the weighted centroid 
scheme does no better than centroid for 2-D 
error. It also does slightly worse at getting the 
floor correct, although it does a better job of 
avoiding localizing to the atrium when the client 
is not actually there. Unfortunately, it localizes 
to the sixth floor too easily, suggesting that 
weighing is not a panacea for floor 
determination. 

 
 
Particle filters 
Another localization scheme is particle filter 
tracking. A particle filter is a probabilistic 
technique used successfully in localization in the 
face of sensor uncertainty [Rob,Inf,LL]. It 
consists of: 
 
1. A collection of particles, each representing 

one position estimate 
2. A sensor model that maps how likely an 

estimate is given sensor readings. 
3. A motion model that determines how particles 

move over time. 
 
At every sensor update, the filter averages over 
the particles to reach the most likely position. 
Between updates, it applies the motion model to 
simulate a client's movement. 

 
Letchner and Limketkai showed that a particle 
filter can achieve 3 to 10 meter accuracy for 
localizing in hallways of one floor of the Allen 
Center [LL]. We wanted to know how the 
particle filter would do across all accessible 
areas of the building because the particle filter 
already exists in Place Lab. To adapt the particle 
filter for such a purpose, we modified the Place 
Lab particle filter with simple parameters.  
 
We updated the sensor model to include a floor 
attenuation factor that accounts for the 
attenuation of beacon signals between access 
points on different floors. This is a simple way 
of dealing with the presence of floors. The floor 
attenuation factor penalizes estimates based on 
the signal strength of a beacon from an AP on a 
different floor from the current estimate. To put 
it another way, it tries to reduce the likelihood 
calculation to only 2-D, since Place Lab has an 
existing sensor model for likelihoods over 2-D 
distances. When the AP is on a different floor 
than the estimate, this likelihood is discounted 
by a multiplicative factor. In lieu of knowledge 
of how the floors in the Allen Center attenuate 
802.11 signals, we chose a multiplier of 0.8 for 
every additional floor. 
 
We modified the motion model so that all 
particles may either stay still or move at walking 
pace and can undergo a transition to a different 
floor with some probability. These values were 
not empirically derived but rather assumed. We 
wanted to see how well it would do without 
tuning, as tuning requires more work to set up 
and is inherently specific to the environmental 
characteristics of a particular building and the 
movement tendencies of particular clients. 
 
As seen in Figure 4 and 5, the resulting accuracy 
with these modifications is very poor. 
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Figure 3. Floor estimate accuracy of weighted 
centroid 



 

 
 
It is highly likely that our intuitive parameter 
values for the previous schemes were not good 
ones. Unfortunately, this means that training 
may be unavoidable, despite the higher effort 
required to collect and maintain training data. 
With this in mind, we explored several different 
methods for training. We avoid duplicating pre-
existing schemes such as RADAR and Letchner 
and Limketkai's localization. Rather, we focus 
on simpler and less computationally expensive 
schemes. We do so because their performance is 
less well understood, despite the possibility that 
they are “good enough” as Elnahrawy suggests 
[Lim]. If this were the case, then localization 
becomes feasible for mobile clients with thin 
computational powers, such as PDAs or even 
cell phones. This would broaden the platforms 
that location-aware applications could support. 
 
Histogram for floor determination 

We first modify the Place Lab sensor model to 
emphasize floor determination. The histogram 
approach bins the readings from our trace 
according to floor and the beacons heard while 
on that floor. The likelihood that a floor estimate 
is correct given that the client hears a certain 
beacon is simply the fraction of times the beacon 
was heard in the training set when on that floor. 
We omit binning based on signal strength ranges 
to reduce one dimension in the bin space. 
 
The advantage of this scheme is that beacon 
locations need not be known. The disadvantage 
is that the beacon database must increase in size, 
both in terms of number of beacons and also 
amount of metadata per beacon. If there are not 
too many buildings, this increase in beacon 
database size is negligible. However, if some 
unified database among all buildings exists, the 
size demands would be significant. 
 
Surprisingly again, the results are not very good. 
The scheme is only right 40% of the time and 
within 1 floor 82% of the time. Two weaknesses 
in our model could account for this poor 
performance. The first is that the particle filter 
still depends heavily on the motion model, 
which causes it to be prone to mislocalization 
[LL]. The filter should begin spreading out 
particles as they become less likely, but we did 
not observe this as we noticed the standard 
deviation across particles actually decreased 
some points when the floor error was high. This 
suggests that our histogram-based approach may 
have fundamental problems in determining 
floor. Ignoring 2-D position may have 
negatively affected the scheme. We next 
examine whether taking 2-D position into 
account also matters. 
 
Binning based on distance 
We explore binning based on 2-D distance from 
AP, ignoring floor difference. Unfortunately we 
can no longer use beacons from APs with 
unknown locations. We wish to see if the new 
requirement for AP locations is worth a benefit. 
First we try with a bin being 20 meters in size, 
and the results are in Figure 6 and 7. No 
surprise, the results show that binning without 
regards to floor does poorly with floor accuracy, 
getting the correct floor only 28% of the time. 
Also unsurprisingly, the average 2-D error is 
better than the histogram approach that ignored 
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Figure 4. Floor estimation accuracy of Particle 
Filter 
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Figure 5. Particle filter 2-D accuracy 



floors, at 13-16 meters. These are not 
competitive numbers against the centroid 
tracking methods, but they do not require any 
specific placement of APs to work. 
 
To investigate whether bin size matters, we then 
set the bin size to 10 meters. This gives more 
precise counts in each bin. However, the results 
actually showed no difference in 2-D error (see 
Figure 8). This might indicate that the particle 
filter is not sensitive to small changes in 
likelihoods, that a change from 20 to 10 meters 
might not significantly change signal strength, or 
that the motion model is dictating the location of 
the estimate more than such a change in the 
sensor model. 

 

 
 

 
Binning based on distance and floor 
difference 
Finally, we bin based on both 2-D distance from 
AP and floor. The results, shown in Figures 9, 
10, and Table 10, are promising, as binning on 
20 meters and per floor gives a much higher 
floor accuracy rate of 66%. Interestingly, 2-D 
error does not change much. 
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Figure 7. 2-D accuracy of binning with 20m 
sized bins 
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Figure 8. 2-D accuracy of binning with 10m 
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Figure 9. Floor estimation accuracy of floor 
and distance binning with 20m sized bins 
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Map based Particle Filter 
The map-based approach to localization is 
founded on the observation that we are not 
operating in an unknown environment; 
presumably the map of the area won’ t change 
much in terms of its structural layout, and so we 
can take this into account when estimating our 
location. Walls, for instance, tend to weaken 
signals that pass through them, and so if we are 
given a possible position, a beacon, and a WiFi 
signal from that beacon, we should be able to 
count the number of walls in-between the 
position and beacon on the map, and take that 
into account when we compute the likelihood of 
that position. We can also take into account 
other features of the area, specifically the 
location of wide-open spaces (such as the atrium 
in the Allen Center), and areas in which one can 
transition floors (stairways and elevators), and 
make use of them in the estimation process.  In 
addition, it should require only a small amount 

of effort to setup; only specially marked maps 
and some training data are needed. 
 
There are a few ways to store this kind of 
information, but perhaps the most straight-
forward, most accurate, and easiest to use is 
simply to take an existing map of the area and 
mark the walls, stairwells/elevators and atria in 
certain colors, and that is the approach we take 
in this project. We use blue to indicate a wall, 
green to indicate a stairwell or elevator (the two 
are not distinguished in this project), and red to 
indicate the atrium. All other pixels in the image 
are white, indicating that they are not a wall, 
stairwell or atrium pixel, and no pixels are 
considered to be wall/stair/atrium combinations. 
All excess markings (such as room numbers) 
were removed from these maps. To improve the 
estimates produced by the particle filter we 
colored the areas on the maps outside the 
buildings as walls, as our sensor model forbids 
particles from existing inside of walls, which is 
discussed below. This does explicitly restrict our 
localization to the building itself, but we believe 
this is a reasonable limitation given the intended 
application. One of the maps used is shown 
below in Figure 11. 

This map information is utilized in a particle 
filter to estimate our position; for this project we 
only apply the map information to a particle 
filter, although it could potentially be used in 
conjunction with other techniques instead. The 
particle filter seems to be the most intuitive 

2-D accuracy of floor and 
distance binning with 20m 

sized bins 
  
Mean 14.88514 
Median 15.26413 
Standard 
Deviation 7.948047 

Table 1. 2-D accuracy of binning 
on both floor and distance with 
20m sized bins 
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Figure 10. 2-D accuracy of binning on floor 
and distance with 20m-sized bins 

 

Figure 11. Map marked for map based particle 
filter 

 



choice, however, since we are given a particle, 
beacon and signal and asked how likely it is that 
this should occur; it is less clear how the map 
would be used if you didn’ t have a hypothetical 
position in mind to trace to from the beacon. The 
ways in which the map information is used in 
the particle filter’s sensor and motion models is 
described below. 
 
Map based sensor model 
The sensor model of the particle filter is 
responsible for taking a particle and a set of 
sensor readings and generating a likelihood 
based on these; it comes up with a value 
indicating our confidence in the particle’s 
position. The standard particle filter supplied by 
Place Lab is essentially a hand-made, and 
somewhat crude, decision tree which considers 
the distance covered and the signal strength, and 
produces a likelihood based on these. The map 
based approach we use takes into account wall, 
atrium and floor information, in addition to the 
distance and signal strength, and makes use of a 
more statistically sound method for determining 
the likelihood. 
 
Whenever a new set of WiFi readings comes in, 
each particle in the particle filter has its 
likelihood recalculated based on the new WiFi 
readings, and it is in this calculation of the 
likelihood that we make use of the wall and 
atrium information. To get this likelihood, which 
has a value from 0 to 1, we find the likelihood 
for each of the individual readings (our 
confidence that we would get this particular 
signal from this particular beacon when our 
particle is at this particular position) and 
multiple them together to get the final likelihood 
for the particle. 

∏=
i

ipp LL ,  

That is, the likelihood Lp of any particle p is the 
product of the likelihoods Lp,i of that particle 
with respect to each beacon i. Calculating these 
individual likelihoods Lp,i makes use of these 
signal characteristics by comparing them with 
the training data; this procedure is described 
below. 
 
When asked to calculate this likelihood Lp,i, we 
know the position of the particle, the position of 
the beacon and the signal strength, and wish to 

use these to characterize how likely it is that the 
reading could be heard with this strength at this 
position. From the particle’s position and the 
beacon’s position we can consult the map and 
see how many walls lie in-between, taking into 
account the different floor maps traversed in its 
path, and using similar methods we can see how 
many atrium pixels are encountered. We can 
also calculate the distance between the particle’s 
position and the beacon’s position, and the 
difference in floors between the particle and 
beacon. 
 
With these five pieces of information (signal 
strength, distance, # of wall pixels on the path, # 
of atrium pixels on the path, and the floor 
difference) we can calculate a likelihood by 
binning; that is, these five features represent a 
point in a 5 dimensional space, and if we 
discretize his space, the point will fall into a 
single 5-dimensional bin. During the training 
process, described below, we populated these 
bins with training data points, and the number of 
training data points in a bin indicates how likely 
those characteristics are to be seen together. For 
example, signal strength should decrease with 
distance, so the number of training data points in 
a high-signal/large-distance should be fairly 
small. The probability is then calculated as the 
number of training data points in the particle’s 
bin divided by the maximum number of points 
any bin has: 

max

,
, b

b
L ip

ip =  

where bp,i is the number of points in the bin of 
the particle in question, and bmax is the maximum 
number of particles contained in a single bin. 
Therefore, if we observe a common event, say a 
weak signal that comes from a significant 
distance and through several walls, it will 
correspond to a more populated bin, and 
therefore will result in a higher probability. 
 
Each of the 5 dimensions is discretized by 
putting the values into ranges; for instance, 
distances of 0-7 meters fall into the first range, 
8-14 fall into the second, 15-21 fall into the 
third, 22-28 fall into the fourth, 29-35 fall into 
the fifth, and anything higher than 35 falls into 
the sixth range. Each other dimension is likewise 
broken up into ranges (5 ranges for floor 
difference, 6 for the number of walls 



encountered, 2 for the number of atrium pixels 
encountered, and 9 for the signal strength 
ranges), and so the entire space becomes 
discrete. The actual selection of these ranges 
was done by hand, though one could imagine 
using more sophisticated techniques to optimize 
performance. 
 
To further optimize the process we had the 
likelihood set to 0 for any particle whose 
position was inside of a wall or the open area of 
the atrium (except on the 1st floor); estimates 
generated in these regions are bound to be 
incorrect, and so it seemed prudent to set them at 
a disadvantage. This did not quite work out as 
we had intended; this is discussed in more detail 
in the analysis section. 
 
The reasoning behind this method is that the 
training data should show us the statistical 
correlations between the number of walls 
encountered, amount of the atrium covered, 
floor difference, distance and signal strength. 
Rare combinations of these should have very 
few, if any, points in their corresponding bins, 
and thus generate low probabilities. The hope 
was that in addition to characterizing the signal’s 
obvious interactions with walls, distance and 
such, it would pick up on some of the more 
subtle statistical interactions, the kind of thing 
that wouldn’ t happen if the probability were just 
calculated as a weighted sum of these values. It 
is also a fairly universal technique, which could 
easily be used in other environments, and which 
could easily be modified to include additional 
dimensions of information, were the system 
expanded in the future. 
 
Map based motion model 
The motion model of the particle filter governs 
how the particles move over time, both in terms 
of 2d movement and in terms of floor 
transitions. Although initially we had several 
ideas for how to use the map here, such as to 
reduce the chance of a particle transitioning 
through a wall, the only one that is currently in 
use is checking for whether the particle is on or 
around a stairwell before changing floors. While 
the other possible modifications to the motion 
model could possibly have improved accuracy, 
there was also the possibility that they would 
hurt it; reducing the chance of a particle moving 
through walls would prevent good estimates 

from going astray, but they may also prevent bad 
estimates from getting better, and result in 
particles getting locked in rooms and other such 
areas. Ultimately, there wasn’ t enough time to 
try as many variations as we would have liked, 
and so we settled on the best sounding 
approaches. 
 
Results for the Map based particle filter 
approach 
This approach did not live up its our 
expectations, as the mean error on the 2d 
estimation hovered around 20 meters, with a 
maximum error of 43 meters, and with the floor 
being estimated correctly only 34.8% of the 
time. This is an improvement over the accuracy 
of Place Lab’s standard particle filter, whose 
error is around 30 meters, but it nonetheless falls 
short of our expectations. The results are shown 
below. 
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Figure 13. Floor estimation error for map 
based particle filter. 
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Figure 12. 2-D estimation error for map 
based particle filter. 



 
Sources of error with the Map based 
particle filter 
Taking advantage of the surrounding 
environment seemed to be a very promising 
idea, especially the ideas of taking into account 
the number of walls penetrated by the signal, 
and in which areas it is safe for a particle to 
transition. Yet the results were not as impressive 
as we had initially hoped, and so it becomes 
necessary to consider the limitations of the 
method, and assumptions of ours that were 
perhaps not justified. The first limitation that 
comes to mind is the limitation inherent in 
modeling radio waves, but this will be addressed 
later; to begin with we will consider some less 
obvious, but perhaps just as important, issues. 
 
One such problem is that of symmetry, which is 
quite abundant in the Allen Center. Consider the 
situation shown in the image shown below. 
Walls are shown in blue, the access point in teal, 
and the user to be localized in orange. Even if 
the WiFi signal could be modeled perfectly, 
there is no way of knowing whether the correct 
estimate is the actual location or a similar one 
further to the right in the image; the area is 
symmetric in that sense, and so the number of 
walls passed through and the distances involved 
will be the same. In reality there will be other 
access points around to shed some light on the 
situation, but given rather chaotic WiFi signals 
and large distances involved, it could still be 
difficult to interpret this information, even for a 
well modeled radio wave system. 

There are potential issues with the maps 
themselves; the maps we used were accurate in 
terms of the layout, but wall lines are not 
necessarily drawn with their correct relative 
thicknesses, and certainly don’ t take into 
account material composition. The assumption 
that all walls should be treated equally (because 
we can’ t differentiate the thicknesses and 
materials anyway) is no doubt a source of error, 
as radio wave propagation is certainly tied to the 
medium it passes through, not just in terms of 
weakened signals, but also in terms of 
reflections. The maps used also do not take into 
account other objects, such as furniture, 
computers and people, all of which will in 
reality impact the spread of the waves involved. 
And of course, the maps do not represent other 
factors that may affect the wave propagation, 
factors such as temperature and pressure no 
doubt contribute to the effect, perhaps in some 
small way, but perhaps in ways not so small. 
 
There is the question of whether WiFi signals 
themselves are predictable enough to use for 
localization. That is, even if our maps were 
updated to take into account all of the factors of 
the environment, ranging from wall composition 
to reflective properties, to objects and people in 
the way, could we then produce amazingly 
accurate estimates? Elnahrawy et al. argue that 
not only are all current approaches to the 
problem of using WiFi signals for localization 
limited in accuracy, but that using WiFi signals 
for localization is a fundamentally limited 
approach, and that much more sophisticated 
hardware, or modeling techniques, may be 
required to see any improvement beyond a 
certain point. 

 
Figure 14. Image illustrating potential 
symmetry problem for map based particle 
filter 

 

particle2dError 
Mean 19.77317 

Standard Error 0.139246 
Median 19.58416 

Standard Deviation 10.63567 
Table 2. 2-D estimation error of the map 
based particle filter 



 
Nonetheless, certain changes could no doubt be 
made to bring our results closer to the ground 
truth. Frequently, however, such changes may 
do more harm than good. In the sensor model for 
the map based particle filter tracker we set to 0 
the likelihood of any particle that is inside of a 
wall or in the atrium (except on the ground 
floor); these estimates are certainly incorrect, 
and so it makes sense to remove them. However, 
the results are actually worse when this change 
is in effect, which we found both surprising and 
disappointing. One explanation I can see for this 
is that it may prevent particles from moving as 
freely as they should: particles won’ t be entirely 
trapped by walls, but their propagation will be 
lessened. In addition, they will also be unable to 
cross the atrium. This makes sense in that a 
person wouldn’ t be able to, but the particles 
themselves are estimates that need a large degree 
of freedom in order to settle into the more likely 
areas, and restricting their movement in this way 
was apparently too restrictive. 
 
DISCUSSION AND CONCLUSION 
We have mixed feelings about our results. On 
the one hand, they can broadly be characterized 
as poor. However, in trying out different 
schemes we have been able to isolate important 
factors that may influence a designer's decision 
on what scheme to use. Our negative results also 
indicate opportunities for improvement. We feel 
that every scheme has its downsides and 
therefore the initial results from our alternative 
schemes should not discourage future work in 
finding low-cost and low-effort localization 
schemes. 
 
FUTURE WORK 
There are numerous modifications to the 
schemes that we could try. We did not 
investigate the effects of smoothing on The most 
promising would to be use additional sensors. 
These sensors have the potential to greatly 
impact the usefulness of a particle filter in 
combination with a map-based approach. 
Changes in pressure could indicate a change of 
floor while exact pressure could indicate exact 
floor. An accelerometer could indicate actual 
movement so that particles spread out only when 
the client is actually moving. Having a 
microphone capable of ultrasound detection 

could lead to highly precise room-level 
positioning so even if only some rooms are 
instrumented with ultrasound beacons, a scheme 
could overcome the accumulation of error. 
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