
CSE 561 - Lectures 6-7

Congestion Control

David Wetherall
djw@cs.washington.edu

djw // CSE/EE 461, Winter 2003

Deciding When to Retransmit

• How do you know when a packet has been lost?
– Ultimately sender uses timers to decide when to retransmit

• But how long should the timer be?
– Too long: inefficient (large delays, poor use of bandwidth)
– Too short: may retransmit unnecessarily (causing extra traffic)
– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)

djw // CSE/EE 461, Winter 2003

• Buffers at routers used to absorb bursts when input rate > output
• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

A Simple Network Model

Packets queued here

djw // CSE/EE 461, Winter 2003

Effects of Early Retransmissions

djw // CSE/EE 461, Winter 2003

Congestion Collapse

• In the limit, early retransmissions lead to congestion
collapse
– Sending more packets into the network when it is overloaded

exacerbates the problem of congestion
– Network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms, which form the basis of

congestion control in the Internet today
[See “Congestion Avoidance and Control”, SIGCOMM’88]

djw // CSE/EE 461, Winter 2003

Estimating RTTs

• Idea: Adapt based on recent past measurements

• Simple algorithm:
– For each packet, note time sent and time ack received
– Compute RTT samples and average recent samples for timeout

– EstimatedRTT = αααα x EstimatedRTT + (1 - αααα) x SampleRTT

– This is an exponentially-weighted moving average (low pass filter) that
smoothes the samples. Typically, αααα = 0.8 to 0.9.

– Set timeout to small multiple (2) of the estimate

djw // CSE/EE 461, Winter 2003

Estimated Retransmit Timer

djw // CSE/EE 461, Winter 2003

Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets and do not
relax backed of timeout until valid RTT measurements

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

djw // CSE/EE 461, Winter 2003

Jacobson/Karels Algorithm

• Problem:
– Variance in RTTs gets large as network gets loaded
– So an average RTT isn’t a good predictor when we need it most

• Solution: Track variance too.

– Difference = SampleRTT – EstimatedRTT
– EstimatedRTT = EstimatedRTT + (δδδδ x Difference)
– Deviation = Deviation + δδδδ(|Difference|- Deviation)

– Timeout = µµµµ x EstimatedRTT + φφφφ x Deviation
– In practice, δδδδ = 1/8, µµµµ = 1 and φφφφ = 4

djw // CSE/EE 461, Winter 2003

Estimate with Mean + Variance

djw // CSE/EE 461, Winter 2003

Key Concepts so Far

• A good retransmit timer is important for good
performance
– Too long leads to poor performance
– Too short leads to wasted bandwidth

• An estimated timeout must adapt to Internet queuing
– High variance at high load

djw // CSE/EE 461, Winter 2003

Bandwidth Allocation

• How fast should the Web server send packets?
• Two big issues to solve!

• Congestion
– sending too fast will cause packets to be lost in the network

• Fairness
– different users should get their fair share of the bandwidth

• Often treated together (e.g. TCP) but needn’t be

djw // CSE/EE 461, Winter 2003

• Buffer intended to absorb bursts when input rate > output
• But if sending rate is persistently > drain rate, queue builds
• Dropped packets represent wasted work; goodput < throughput

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion

Packets dropped here

djw // CSE/EE 461, Winter 2003

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

• Each flow from a source to a destination should get an equal share
of the bottleneck link … depends on paths and other traffic

djw // CSE/EE 461, Winter 2003

Bandwidth Allocation Approaches

• Open versus Closed loop
– Open: reserve allowed traffic with network; avoid congestion
– Closed: use network feedback to adjust sending rate

• Host-based versus Network support
– Who is responsible for adjusting/enforcing allocations?

• Window versus Rate based
– How is allocation expressed? Window and rate are related.

• Internet depends on TCP for bandwidth allocation
– TCP is a host-driven, window-based, closed loop mechanism

djw // CSE/EE 461, Winter 2003

Design Choices

• TCP/Internet provides “best-effort” service
– Implicit network feedback, host controls via window.
– No strong notions of fairness

• A network in which there are QOS (quality of service) guarantees
– Rate-based reservations natural choice for some apps
– But reservations are need a good characterization of traffic
– Network involvement typically needed to provide a guarantee

• Former tends to be simpler to build, latter offers greater service to
applications but is more complex.

djw // CSE/EE 461, Winter 2003

• Power = throughput / delay

• At low load, throughput goes
up and delay remains small

• At moderate load, delay is
increasing (queues) but
throughput doesn’t grow
much

• At high load, much loss and
delay increases greatly due to
retransmissions load

LoadOptimal

T
hr

ou
gh

pu
t/d

el
ay

Evaluating Congestion Control

djw // CSE/EE 461, Winter 2003

Evaluating Fairness

• First, need to define what is a fair allocation
– Consider n flows, each wants a fraction fi of the bandwidth

• Min-max fairness:
– First satisfy all flows evenly up to the lowest fi.. Repeat with the

remaining bandwidth.

• Also proportional fairness
– Depends on path length …

f1
f2

f3
f4

djw // CSE/EE 461, Winter 2003

Jain’s Fairness Index

• How do we compute the fairness of an allocation?
– If all flows have an equal share at a router it’s “fair”
– But how unfair are unequal allocations?

• Jain’s fairness index:
– For n flows each receiving a fraction fi of the bandwidth

– Fairness = (Σ fi)
2 / (n x Σ fi

2)
– Always between 0 and 1, 1 for equal allocations
– If only k out of n flows get bandwidth, drops to k/n

djw // CSE/EE 461, Winter 2003

More Key Concepts

• Network mechanisms for bandwidth allocation should
avoid congestion and provide fairness

• Congestion occurs when buffers inside the network fill
with excess traffic
– Queuing leads to increased latency and eventually to loss

• Fairness means that competing traffic flows gain a “fair
share” of the available bandwidth
– Min-max fairness is one definition of “fair share”

djw // CSE/EE 461, Winter 2003

TCP Before Congestion Control

• Just use a fixed size sliding window!
– Will under-utilize the network or cause unnecessary loss

• Congestion control dynamically varies the size of the
window to match sending and available bandwidth
– Sliding window uses minimum of cwnd, the congestion

window, and the advertised flow control window

• The big question: how do we decide what size the
window should be?

djw // CSE/EE 461, Winter 2003

TCP Probes the Network

• Each source independently probes the network to
determine how much bandwidth is available
– Changes over time, since everyone does this

• Assume that packet loss implies congestion
– Since errors are rare; also, requires no support from routers

Sink
45 Mbps T3 link

RouterSource
100 Mbps Ethernet

djw // CSE/EE 461, Winter 2003

TCP is “ Self-Clocking”

• Neat observation: acks pace transmissions at
approximately the botteneck rate

• So just be sending packets we can discern the “right”
sending rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet

djw // CSE/EE 461, Winter 2003

AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we
believe there is bandwidth
– Additive increase per RTT
– Cwnd += 1 packet / RTT

• Decrease quickly when
there is loss (went too far!)
– Multiplicative decrease
– Cwnd /= 2

Source Destination

…

djw // CSE/EE 461, Winter 2003

TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
(K

B
)

T ime (seconds)

70

30
40
50

10

10.0

djw // CSE/EE 461, Winter 2003

“ Slow Start”

• Q: What is the ideal value of
cwnd? How long will AIMD
take to get there?

• Use a different strategy to get
close to ideal value
– Double cwnd every RTT
– Cwnd *= 2 / RTT
– Cwnd +=1 / packet received

Source Destination

…
djw // CSE/EE 461, Winter 2003

Combining Slow Start and AIMD

• Slow start is used whenever the connection is not
running with packets: initially, and after timeouts

• But we don’t want to overshoot our ideal cwnd, so
remember the last cwnd that worked with no loss
– Ssthresh = cwnd after cwnd /= 2 on loss
– Switch to AIMD once cwnd passes ssthresh

ssthresh

djw // CSE/EE 461, Winter 2003

Example (Slow Start +AIMD)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

djw // CSE/EE 461, Winter 2003

Fast Retransmit

• TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.

• We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.

• 3 duplicate acks are used
in practice

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

djw // CSE/EE 461, Winter 2003

Example (with Fast Retransmit)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

Time (seconds)

70

30
40
50

10

djw // CSE/EE 461, Winter 2003

Fast Recovery

• After Fast Retransmit, use further duplicate acks to
grow cwnd and clock out new packets, since these acks
represent packets that have left the network.

• End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time.

djw // CSE/EE 461, Winter 2003

Example (with Fast Recovery)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
(K

B
)

T ime (seconds)

70

30
40
50

10

10.0

djw // CSE/EE 461, Winter 2003

More Key Concepts

• TCP probes the network for bandwidth, assuming that
loss signals congestion

• The congestion window is managed to be additive
increase / multiplicative decrease
– It took fast retransmit and fast recovery to get there

• Slow start is used to avoid lengthy initial delays
– Ramp up to near target rate and then switch to AIMD

djw // CSE/EE 461, Winter 2003

Why Congestion Avoidance?

• TCP causes congestion as it probes for the available
bandwidth and then recovers from it after the fact
– Leads to loss, delay and bandwidth fluctuations (Yuck!)
– We want congestion avoidance, not congestion control

• Congestion avoidance mechanisms
– Aim to detect incipient congestion, before loss. So monitor

queues to see that they absorb bursts, but not build steadily

djw // CSE/EE 461, Winter 2003

Arriving
packet

Next free
buffer

Free buffers Queued packets

Next to
transmit

Arriving
packet

Next to
transmit

Drop

FIFO with Tail Drop

djw // CSE/EE 461, Winter 2003

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

K
B

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300
100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

S
en

di
ng

 K
B

ps

1100

500
700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

ue
ue

 s
iz

e
in

 r
ou

te
r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

djw // CSE/EE 461, Winter 2003

• Sustained overload causes queue to build and overflow
Queue length

Instantaneous

Average

Time

Incipient Congestion at a Router

djw // CSE/EE 461, Winter 2003

MaxThreshold MinThreshold

AvgLen

Random Early Detection (RED)

• Common approach is to have routers monitor average
queue and send “early” signal to source when it builds
by probabilistically dropping a packet

• Paradox: early loss can improve performance!

djw // CSE/EE 461, Winter 2003

• Start dropping a fraction of the traffic as queue builds
– Expected drops proportional to bandwidth usage
– When queue is too high, revert to drop tail
– Nice theory, difficult to set parameters in practice

P(drop)

1.0

MaxP

MinThresh MaxThresh

Average Queue
Length

Red Drop Curve

djw // CSE/EE 461, Winter 2003

Explicit Congestion Notification (ECN)

• Why drop packets to signal congestion?
– Drops are a robust signal, but there are other means …
– We need to be careful though: no extra packets

• ECN signals congestion with a bit in the IP header
• Receiver returns indication to the sender, who slows

– Need to signal this reliably or we risk instability

• RED actually works by “marking” packets
– Mark can be a drop or ECN signal if hosts understand ECN
– Supports congestion avoidance without loss

djw // CSE/EE 461, Winter 2003

Aside: TCP Vegas (Peterson ’94)

• RED needs router upgrades but no host upgrades
• Instead, can we upgrade host but not router?

• TCP Vegas looks at the difference between cwnd (the
amount of outstanding data in the network) and that
acknowledged from the other side in the last interval
– Excess must be buffered in the network at router queues
– Vegas slows down when it believes there is a queue and

otherwise increases to use the available bandwidth

djw // CSE/EE 461, Winter 2003

More Key Concepts

• We want to avoid congestion rather than control it after it
has occurred
– Think of in terms of the queues at routers

• Random early packet drops, rather than tail drop, can
have unintuitive advantages
– Signal congestion early, before we’re forced to drop repeatedly

• ECN signals congestion using bit in the IP header
– No loss and no extra packets at overloaded times

