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Deciding When to Retransmit

• How do you know when a packet has been lost?
– Ultimately sender uses timers to decide when to retransmit

• But how long should the timer be?
– Too long: inefficient (large delays, poor use of bandwidth)
– Too short: may retransmit unnecessarily (causing extra traffic)
– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)
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• Buffers at routers used to absorb bursts when input rate > output
• Loss (drops) occur when sending rate is persistently > drain rate
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Effects of Early Retransmissions
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Congestion Collapse

• In the limit, early retransmissions lead to congestion 
collapse
– Sending more packets into the network when it is overloaded 

exacerbates the problem of congestion
– Network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms, which form the basis of 

congestion control in the Internet today
[See “Congestion Avoidance and Control”, SIGCOMM’88]
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Estimating RTTs

• Idea: Adapt based on recent past measurements

• Simple algorithm:
– For each packet, note time sent and time ack received
– Compute RTT samples and average recent samples for timeout

– EstimatedRTT = αααα x EstimatedRTT + (1 - αααα) x SampleRTT

– This is an exponentially-weighted moving average (low pass filter) that 
smoothes the samples. Typically, αααα = 0.8 to 0.9.

– Set timeout to small multiple (2) of the estimate
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Estimated Retransmit Timer
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Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets and do not
relax backed of timeout until valid RTT measurements
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Jacobson/Karels Algorithm

• Problem:
– Variance in RTTs gets large as network gets loaded
– So an average RTT isn’t a good predictor when we need it most

• Solution: Track variance too.

– Difference = SampleRTT – EstimatedRTT
– EstimatedRTT = EstimatedRTT + (δδδδ x Difference)
– Deviation = Deviation + δδδδ(|Difference|- Deviation)

– Timeout = µµµµ x EstimatedRTT + φφφφ x Deviation
– In practice, δδδδ = 1/8, µµµµ = 1 and φφφφ = 4
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Estimate with Mean + Variance
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Key Concepts so Far

• A good retransmit timer is important for good 
performance
– Too long leads to poor performance
– Too short leads to wasted  bandwidth

• An estimated timeout must adapt to Internet queuing
– High variance at high load
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Bandwidth Allocation 

• How fast should the Web server send packets?
• Two big issues to solve!

• Congestion
– sending too fast will cause packets to be lost in the network

• Fairness
– different users should get their fair share of the bandwidth

• Often treated together (e.g. TCP) but needn’t be
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• Buffer intended to absorb bursts when input rate > output
• But if sending rate is persistently > drain rate, queue builds
• Dropped packets represent wasted work; goodput < throughput
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• Each flow from a source to a destination should get an equal share 
of the bottleneck link … depends on paths and other traffic
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Bandwidth Allocation Approaches

• Open versus Closed loop
– Open: reserve allowed traffic with network; avoid congestion
– Closed: use network feedback to adjust sending rate

• Host-based versus Network support
– Who is responsible for adjusting/enforcing allocations?

• Window versus Rate based
– How is allocation expressed? Window and rate are related.

• Internet depends on TCP for bandwidth allocation
– TCP is a host-driven, window-based, closed loop mechanism
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Design Choices

• TCP/Internet provides “best-effort” service
– Implicit network feedback, host controls via window.
– No strong notions of fairness

• A network in which there are QOS (quality of service) guarantees
– Rate-based reservations natural choice for some apps
– But reservations are need a good characterization of traffic
– Network involvement typically needed to provide a guarantee

• Former tends to be simpler to build, latter offers greater service to 
applications but is more complex.
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• Power = throughput / delay

• At low load, throughput goes 
up and delay remains small

• At moderate load, delay is 
increasing (queues) but 
throughput doesn’t grow 
much

• At high load, much loss and 
delay increases greatly due to 
retransmissions load
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Evaluating Congestion Control
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Evaluating Fairness

• First, need to define what is a fair allocation
– Consider n flows, each wants a fraction fi of the bandwidth 

• Min-max fairness:
– First satisfy all flows evenly up to the lowest fi.. Repeat with the 

remaining bandwidth.

• Also proportional fairness
– Depends on path length … 
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Jain’s Fairness Index

• How do we compute the fairness of an allocation?
– If all flows have an equal share at a router it’s “fair”
– But how unfair are unequal allocations?

• Jain’s fairness index:
– For n flows each receiving a fraction fi of the bandwidth

– Fairness =  (Σ fi) 
2 / (n x Σ fi

2)
– Always between 0 and 1, 1 for equal allocations
– If only k out of n flows get bandwidth, drops to k/n
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More Key Concepts

• Network mechanisms for bandwidth allocation should 
avoid congestion and provide fairness

• Congestion occurs when buffers inside the network fill 
with excess traffic
– Queuing leads to increased latency and eventually to loss

• Fairness means that competing traffic flows gain a “fair 
share” of the available bandwidth
– Min-max fairness is one definition of “fair share”
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TCP Before Congestion Control

• Just use a fixed size sliding window!
– Will under-utilize the network or cause unnecessary loss

• Congestion control dynamically varies the size of the 
window to match sending and available bandwidth
– Sliding window uses minimum of cwnd, the congestion 

window, and the advertised flow control window

• The big question: how do we decide what size the 
window should be?
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TCP Probes the Network

• Each source independently probes the network to 
determine how much bandwidth is available
– Changes over time, since everyone does this

• Assume that packet loss implies congestion
– Since errors are rare; also, requires no support from routers
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TCP is “ Self-Clocking”

• Neat observation: acks pace transmissions at 
approximately the botteneck rate

• So just be sending packets we can discern the “right” 
sending rate (called the packet-pair technique)
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AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we 
believe there is bandwidth
– Additive increase per RTT
– Cwnd += 1 packet / RTT

• Decrease quickly when 
there is loss (went too far!)
– Multiplicative decrease
– Cwnd /= 2

Source Destination

…
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TCP Sawtooth Pattern
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“ Slow Start”

• Q: What is the ideal value of 
cwnd? How long will AIMD 
take to get there?

• Use a different strategy to get 
close to ideal value
– Double cwnd every RTT
– Cwnd *= 2 / RTT
– Cwnd +=1 / packet received

Source Destination

…
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Combining Slow Start and AIMD

• Slow start is used whenever the connection is not 
running with packets: initially, and after timeouts

• But we don’t want to overshoot our ideal cwnd, so 
remember the last cwnd that worked with no loss
– Ssthresh = cwnd after cwnd /= 2 on loss
– Switch to AIMD once cwnd passes ssthresh

ssthresh
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Example (Slow Start +AIMD)
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Fast Retransmit

• TCP uses cumulative 
acks, so duplicate acks
start arriving after a 
packet is lost.

• We can use this fact to 
infer which packet was 
lost, instead of waiting 
for a timeout.

• 3 duplicate acks are used 
in practice
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Example (with Fast Retransmit)
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Fast Recovery

• After Fast Retransmit, use further duplicate acks to 
grow cwnd and clock out new packets, since these acks
represent packets that have left the network.

• End result: Can achieve AIMD when there are single 
packet losses. Only slow start the first time.
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Example (with Fast Recovery)
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More Key Concepts

• TCP probes the network for bandwidth, assuming that 
loss signals congestion

• The congestion window is managed to be additive 
increase / multiplicative decrease
– It took fast retransmit and fast recovery to get there

• Slow start is used to avoid lengthy initial delays
– Ramp up to near target rate and then switch to AIMD

djw // CSE/EE 461, Winter 2003

Why Congestion Avoidance?

• TCP causes congestion as it probes for the available 
bandwidth and then recovers from it after the fact
– Leads to loss, delay and bandwidth fluctuations (Yuck!)
– We want congestion avoidance, not congestion control

• Congestion avoidance mechanisms
– Aim to detect incipient congestion, before loss. So monitor 

queues to see that they absorb bursts, but not build steadily
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• Sustained overload causes queue to build and overflow
Queue length

Instantaneous

Average

Time

Incipient Congestion at a Router
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MaxThreshold MinThreshold

AvgLen

Random Early Detection (RED)

• Common approach is to have routers monitor average 
queue and send “early” signal to source when it builds 
by probabilistically dropping a packet

• Paradox: early loss can improve performance!
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• Start dropping a fraction of the traffic as queue builds
– Expected drops proportional to bandwidth usage
– When queue is too high, revert to drop tail
– Nice theory, difficult to set parameters in practice
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Explicit Congestion Notification (ECN)

• Why drop packets to signal congestion?
– Drops are a robust signal, but there are other means …
– We need to be careful though: no extra packets

• ECN signals congestion with a bit in the IP header
• Receiver returns indication to the sender, who slows

– Need to signal this reliably or we risk instability

• RED actually works by “marking” packets
– Mark can be a drop or ECN signal if hosts understand ECN
– Supports congestion avoidance without loss

djw // CSE/EE 461, Winter 2003

Aside: TCP Vegas (Peterson ’94)

• RED needs router upgrades but no host upgrades
• Instead, can we upgrade host but not router?

• TCP Vegas looks at the difference between cwnd (the 
amount of outstanding data in the network) and that 
acknowledged from the other side in the last interval
– Excess must be buffered in the network at router queues
– Vegas slows down when it believes there is a queue and 

otherwise increases to use the available bandwidth
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More Key Concepts

• We want to avoid congestion rather than control it after it 
has occurred
– Think of in terms of the queues at routers

• Random early packet drops, rather than tail drop, can 
have unintuitive advantages
– Signal congestion early, before we’re forced to drop repeatedly

• ECN signals congestion using bit in the IP header
– No loss and no extra packets at overloaded times


