
1

CSE 561 – Lecture 4

Reliability

David Wetherall
djw@cs.washington.edu

djw // CSE/EE 461, Winter 2003 L13.2

Automatic Repeat Request (ARQ)

• Packets can be corrupted or lost. How do we add reliability?
• Acknowledgments (ACKs) and retransmissions after a timeout
• ARQ is generic name for protocols based on this strategy

Sender Receiver

Frame

ACKTi
m

eo
ut

T i
m

e

Sender Receiver

Frame

Ti
m

eo
ut

Frame

ACKTi
m

eo
ut

djw // CSE/EE 461, Winter 2003 L13.3

The Need for Sequence Numbers

• In the case of ACK loss (or poor choice of timeout) the
receiver can’t distinguish this message from the next
– Need to understand how many packets can be outstanding and

number the packets; here, a single bit will do

Sender Receiver

Frame

ACK

T i
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKT i
m

eo
ut

djw // CSE/EE 461, Winter 2003 L13.4

Stop-and-Wait

• Only one outstanding
packet at a time

• Also called alternating
bit protocol

0

1

0

1

Sender Receiver

0

1

1

0

djw // CSE/EE 461, Winter 2003 L13.5

Limitation of Stop-and-Wait

• Lousy performance if wire time << prop. delay
– How bad? You do the math

• Want to utilize all available bandwidth
– Need to keep more data “in flight”
– How much? Remember the bandwidth-delay product?

• Leads to Sliding Window Protocol

djw // CSE/EE 461, Winter 2003 L13.6

Sliding Window – Sender

• Window bounds outstanding data
– Implies need for buffering at sender

• “Last” ACK applies to in-order data
• Sender maintains timers too

– Go-Back-N: one timer, send all unacknowledged on timeout
– Selective Repeat: timer per packet, resend as needed

≤Window Size

“Last” ACK Last Sent

… …Sender:

2

djw // CSE/EE 461, Winter 2003 L13.7

Sliding Window – Timeline

Sender Receiver

T
im

e

…
…

djw // CSE/EE 461, Winter 2003 L13.8

Sliding Window – Receiver

• Receiver buffers too:
– data may arrive out-of-order
– or faster than can be consumed (flow control)

• Receiver ACK choices:
– Individual, Cumulative (TCP), Selective (newer TCP), Negative

≤Receive Window

“Last” Received Largest Accepted

… …Receiver:

djw // CSE/EE 461, Winter 2003 L13.9

Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

djw // CSE/EE 461, Winter 2003 L13.10

Three-Way Handshake

• Opens both directions for transfer

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

djw // CSE/EE 461, Winter 2003 L13.11

Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts
can communicate
– Weak form of authentication

djw // CSE/EE 461, Winter 2003 L13.12

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions

3

djw // CSE/EE 461, Winter 2003 L13.13

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

djw // CSE/EE 461, Winter 2003 L13.14

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

djw // CSE/EE 461, Winter 2003 L13.15

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSEDCLOSED

…

djw // CSE/EE 461, Winter 2003 L13.16

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

djw // CSE/EE 461, Winter 2003 L13.17

UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31

djw // CSE/EE 461, Winter 2003 L13.18

Errors and Redundancy

• Noise can flip some of the bits we receive
– We must be able to detect when this occurs!

• Basic approach: add redundant data
– Error detection codes allow errors to be recognized
– Error correction codes allow errors to be repaired too

4

djw // CSE/EE 461, Winter 2003 L13.19

Motivating Example

• A simple error detection scheme:
– Just send two copies. Differences imply errors.

• Question: Can we do any better?
– With less overhead
– Catch more kinds of errors

• Answer: Yes – stronger protection with fewer bits
– But we can’t catch all inadvertent errors, nor malicious ones

• We will look at basic block codes
– K bits in, N bits out is a (N,K) code
– Simple, memoryless mapping

djw // CSE/EE 461, Winter 2003 L13.20

Detection vs. Correction

• Two strategies to correct errors:
– Detect and retransmit, or Automatic Repeat reQuest. (ARQ)
– Error correcting codes, or Forward Error Correction (FEC)

• Satellites, real-time media tend to use error correction
• Retransmissions typically at higher levels (Network+)

• Question: Which should we choose?

djw // CSE/EE 461, Winter 2003 L13.21

Retransmissions vs. FEC

• The better option depends on the kind of errors and the
cost of recovery

• Example: Message with 1000 bits, Prob(bit error) 0.001
– Case 1: random errors
– Case 2: bursts of 1000 errors
– Case 3: real-time application (teleconference)

djw // CSE/EE 461, Winter 2003 L13.22

The Hamming Distance

• Errors must not turn one valid codeword into another
valid codeword, or we cannot detect/correct them.

• Hamming distance of a code is the smallest number of
bit differences that turn any one codeword into another
– e.g, code 000 for 0, 111 for 1, Hamming distance is 3

• For code with distance d+1:
– d errors can be detected, e.g, 001, 010, 110, 101, 011

• For code with distance 2d+1:
– d errors can be corrected, e.g., 001 à 000

djw // CSE/EE 461, Winter 2003 L13.23

Parity

• Start with n bits and add another so that the total
number of 1s is even (even parity)
– e.g. 0110010 à 01100101
– Easy to compute as XOR of all input bits

• Will detect an odd number of bit errors
– But not an even number

• Does not correct any errors

djw // CSE/EE 461, Winter 2003 L13.24

2D Parity

• Add parity row/column to array of
bits

• Detects all 1, 2, 3 bit errors, and
many errors with >3 bits.

• Corrects all 1 bit errors

0101001 1
1101001 0
1011110 1
0001110 1
0110100 1
1011111 0

1111011 0

5

djw // CSE/EE 461, Winter 2003 L13.25

Checksums

• Used in Internet protocols (IP, ICMP, TCP, UDP)
• Basic Idea: Add up the data and send it along with sum

• Algorithm:
– checksum is the 1s complement of the 1s complement sum of

the data interpreted 16 bits at a time (for 16-bit TCP/UDP
checksum)

• 1s complement: flip all bits to make number negative
– Consequence: adding requires carryout to be added back

djw // CSE/EE 461, Winter 2003 L13.26

CRCs (Cyclic Redundancy Check)

• Stronger protection than checksums
– Used widely in practice, e.g., Ethernet CRC-32
– Implemented in hardware (XORs and shifts)

• Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are
divisible by a chosen divisor C(x)

• Based on mathematics of finite fields
– “numbers” correspond to polynomials, use modulo arithmetic
– e.g, interpret 10011010 as x7 + x4 + x3 + x1

djw // CSE/EE 461, Winter 2003 L13.27

How is C(x) Chosen?

• Mathematical properties:
– All 1-bit errors if non-zero xk and x0 terms
– All 2-bit errors if C(x) has a factor with at least three terms
– Any odd number of errors if C(x) has (x + 1) as a factor
– Any burst error < k bits

• There are standardized polynomials of different degree
that are known to catch many errors
– Ethernet CRC-32: 100000100110000010001110110110111

djw // CSE/EE 461, Winter 2003 L13.28

Reed-Solomon / BCH Codes

• Developed to protect data on magnetic disks
• Used for CDs and cable modems too
• Property: 2t redundant bits can correct <= t errors
• Mathematics somewhat more involved …

