Fragmentation Considered Harmful

Christopher A. Kent
Jeffrey C. Mogul

Digital Equipment Corporation
Western Research Lab

(Originally published in Proc. SIGCOMM ‘87, vol. 17, No. 5, October 1987)

Abstract

Internetworks can be built from many different
kinds of networks, with varying limits on maximum
packet size. Throughput is usually maximized when
the largest possible packet is sent; unfortunately,
some routes can carry only very small packets. The
IP protocol allows a gateway to fragment a packet if
it istoo large to be transmitted. Fragmentation is at
best a necessary evil; it can lead to poor per-
formance or complete communication failure. There
are a variety of ways to reduce the likelihood of
fragmentation; some can be incorporated into exist-
ing IP implementations without changes in protocol
specifications. Others require new protocols, or
modificationsto existing protocols.

1. Introduction

Internetworks built of heterogeneous networks are
valuable because they insulate higher-level protocols
from changes in network technology, because they al-
low universal communication without the expense of
constructing a homogeneous universal infrastructure,
and because they alow the use of different network
technologies as appropriate to both local-area and long-
haul links. Most datagram networks set a maximum
limit on tile size of packets they carry, to simplify
packet buffering in the nodes and to limit how long one
packet can lie up the link. In a heterogeneous interned
such as the DARPA |P Internet, these packet-size limits,
known as MTUs (for maximum transmission unit) vary
widely from 254 bytes for Packet Radio networks to
2000 bytes for the Wideband Satellite Network [22];
since nobody knows exactly what is connected to the
Internet, the range in MTUs may be even broader.

In general, it is better to use a few large packets instead
of many small packets to carry a given amount of data,
because much of the cost of packetized communication

ACM SIGCOMM

is per-packet rather than per-byte. On a high-speed
LAN, throughput can increase almost linearly with
packet size over a wide range of sizes. Therefore, we
prefer to make our packets as large as possible.

This desire for large packets conflicts with the variation

in MTUs across an internet. We want to send large
packets but some network along the packets’ path may
not be able to carry them. One approach to this dilemma
is fragmentation when a node must transmit a packet
that is larger than the MTU of the network. it breaks the
packet into several smalléragments and sends them
instead. If the fragments are all sent along the same data
link and are immediately reassembled at the next node,
this is calledtransparent or intra-network fragmenta-
tion. If the fragments are allowed to follow independent
routes, and are reassembled only upon reaching their
ultimate destination this is calleihter-network frag-
mentation. A good discussion of both methods, in more
detail, may be found in Shoch [23].

In this paper, drawing on experience with a large
heterogeneous internetwork, we examine fragmentation
in the context of the IP protocol [18]. IP supports the
use of inter-network fragmentation. (Transparent
fragmentation may be also be used as long as it is
invisible to the IP layer.) Fragmentation appears at first
to be an elegant solution to the problem, but subtle
complications arise in real networks that can result in
poor performance or even total communication failure.

Experience with inter-network fragmentation in the IP
Internet has convinced us that it is something to avoid.
In section 2 we compare the advantages and dis-
advantages of fragmentation, in order to justify this
assertion. We then discuss, in section 3, a variety of
schemes for avoiding or recovering from fragmentation

2. What iswrong with fragmentation?

The arguments in favor of fragmentation are straight-
forward. Fragmentation allows higher level protocols to

Computer Communication Review

be unconcerned with the characteristics of the
transmission channel, and to send data in conveniently
sized pieces. Sending larger quantities of datain each IP
datagram minimizes the bookkeeping overhead asso-
ciated with managing the data. (See section 3.5 fowl
specific example.)

Fragmentation allows the source host to deal with routes
having different MTUs without having to know what

path packet are taking. The safest strategy is for the
source to send very small datagrams, at a great loss of
efficiency. Fragmentation allows the source to choose a

size that is “reasonable” and, when that size proves to
be too large, provides a mechanism that allows data to
continue to get through.

Finally, fragmentation allows protocols to optimize
performance for high bandwidth connections. Emerging
network technologies have larger and larger MTUs.
Most local networks have MTUs large enough to send
1024 bytes of user data plus associated overhead in a
single packet; new technologies will allow ten times
that. Fragmentation provides a mechanism for deciding
the actual packet size as late as possible. It especially
allows protocols to avoid choosing to send small
datagrams until absolutely necessary. Protocols can
choose large segment sizes to take advantage of the
large MTU in a local network, and rely on fragmenta-
tion at gateways to send the segments through networks
with small MTUs when needed. If datagrams must
traverse a route consisting of several high-MTU links
followed by a low-MTU link, by delaying the use of
small packets until the low-MTU link is reached,
fragmentation allows the use of large packets on the
initial high MTU links, and thus uses those links more
efficiently.

The arguments against fragmentation fall into three
categories

e Fragmentation causes inefficient use of
resources. Poor choice of fragment sizes can
greatly increase the cost of delivering a datagram.
Additional bandwidth is used for the additional
header information, intermediate gateways must
expend computational resources to make addi-
tional routing decisions, and the receiving host
must reassemble the fragments.

e Loss of fragments leads to degraded per-
formance: Reassembly of IP fragments is not
very robust. Loss of a single fragment requires
the higher level protocol to retransmit all of the
data in the original datagram, even if most of the
fragments were received correctly.

e Efficient reassembly is hard: Given the
likelihood of lost fragments and the information

ACM SIGCOMM

present in the IP header, there are many situations
in which the reassembly process, though straight-
forward, yields lower than desired performance.

2.1. An overview of fragmentation in |P

IP is a protocol providing unreliable delivery of
datagrams. IP datagrams are encapsulated in network-
specific packets. Gateways may fragment an incoming
packet if it will not fit in a single outgoing packet; in
this case, eacfragment is sent as a separate packet.
The [P header contains several fields that are used to
manage fragmentation [18]:

* ldentification: A 16-bit field assigned by the
sender to aid in assembling the fragments of a
datagram. The tuplésource, destination, proto-
col, identification) for a given datagram must be
uniqgue over all existing datagrams. When a
packet is fragmented, the value of the Identifica-
tion field of the original packet is copied into
each fragment.

e Timetolive (TTL): An 8-hit field that specifies
the maximum time, measured in seconds, that the
packet may remain in the Internet system. If TTL
contains the value zero, the packet must be
discarded. The TTL must be decreased by at least
one every time the packet passes through a
gateway, even if the time required to process the
packet is less than a second. Thus, the TTL field
is an upper bound on packet lifetime.

* Fragment offset: A 13-bit field that identifies the
fragment location, relative to the beginning of the
original, unfragmented datagram. Fragment off-
sets are in units of 8 bytes.

« More fragments. A [-bit field that indicates
whether or not this is the last fragment of the
datagram.

The reassembly process consists of matching the
protocol and identification fields of incoming fragments
with those of fragments already held, and coalescing the
data into complete datagrams. Fragments must be
discarded if their TTL expires while they are held for
reassembly. (For more details of the reassembly
algorithm, see [5].)

Higher level protocols such as TCP (Transmission
Control Protocol) [19] use IP as a basis to implement a
reliable connection between two client processes.
Portions of the data stream knownsagments are sent

in individual IP datagrams, along with control informa-
tion used by the cooperating TCP processes to ensure
reliable communication. In particular, TCP uses a
sequence number that covers individual bytes in the
data stream, and an acknowledgment mechanism that

Computer Communication Review

allows the receiving process to tell the sender “I have
correctly received all data up to and including sequence
numbem.”

2.2. Fragmentation causes inefficient resour ce usage

Consider the costs associated with sending a packet.
Each time it passes through a gateway, there is some
constant computational overhead to make routing
decisions, modify the packet header, compute the new
checksum, and move the packet between the appropriate
incoming and outgoing queues. In addition, a portion of
the available bandwidth on the incoming and outgoing
interfaces is consumed. In many cases, the constant
computational overhead dominates the cost. Input and
output may be overlapped using DMA devices; in a
typical uniprocessor gateway, there is no way to
parallelize the computational overhead.

Fragmenting at an IP gateway, rather than having the
host choose the appropriate segment size to avoid
fragmentation, may lead to suboptimal use of gateway
resources and network bandwidth. Consider a TCP
process that tries to send 1024 data bytes across a route
that includes the ARPAnet, which has an MTU of 1006
bytes. The IP and TCP headers are at least 40 bytes
long, leading to a total unfragmented IP datagram 1064
bytes in length. To cross the ARPAnet, this will be
broken into a 1006 byte fragment, followed by a 78 byte
fragment. These short fragments amortize the fixed
overhead per ARPAnet packet over very few bytes of
data, and the total packet count is much higher than
needed. If the sending TCP instead chooses segments
that fit in a 1006 byte ARPAnet packet, the total packet
count is minimized, and the total overhead is as low as
possible.

For example, consider sending 10 Kbytes of data.
Sending 1024-byte TCP segments generates 10 IP
datagrams, each 1064 bytes long. Each datagram is
fragmented into two ARPAnet packets, one 1006 bytes
long and the other 78 bytes, for a total of 20 packets. If
the originating TCP instead sends 966 byte segments
(the largest that will fit in a single ARPAnet packet),
only 11 packets are sent.

Another limit to utilizing available bandwidth lies in the
interaction of the TTL and Identification fields. Assume
that a reasonable initial value for the TTL field is 32
(the maximum hop count from edge to edge of the
DARPA Internet is currently estimated to be between
15 and 20). If we allow fragmentation, we must ensure
that all datagrams in flight have unique values for the
Identification field. Thus, the maximum datagram rate is
216/32, or 2048 datagrams per second. Current
gateways can forward nearly 1000 packets per second;
high performance workstations and interfaces can

ACM SIGCOMM

generate packets much more rapidly, and can probably
forward 4000 packets per second. We are certainly
within five years of having commonly available
processor and network technology that pushes against
the limit imposed by the 16-bit Identification field.

This limit implies that, to increase bandwidth in the
presence of fragmentation, hosts should send larger
datagrams, so as to carry more data per value of the
Identification field. This is a bad idea, because large
datagrams lead to more fragments, and we shall show
that this increases the likelihood of a severe decrease in
performance. If we simply avoid fragmented datagrams,
values of the ldentification field need not be unique,
and there is no bandwidth limit imposed by its size.

2.3. Poor performance when fragmentsare lost

When segments are sent that are large enough to require
fragmentation, the loss of any fragment requires the
entire segment to be retransmitted. This can lead to
poorer performance than would have been achieved by
originally sending segments that didn't require frag-
mentation.

Gateways in the Internet must drop packets when
congested. If the gateways are congested, dropping
fragments only makes the situation worse. Dropped

fragments mean increased retransmissions, which leads
to more fragments. As the loss rate goes up due to
heavy congestion, the total throughput drops

dramatically, since the loss of any one fragment means
that the resources expended in sending the other
fragments of that datagram are entirely wasted.

Even when congestion is not the problem, retransmis-
sion does not necessarily increase the likelihood that all
the fragments that make up the segment will arrive
unscathed. In particular, network idiosyncrasies may
conspire to cause the same fragment or fragments to be
lost on successive retransmission. We call theier-
ministic fragment loss.

An example of deterministic fragment loss occurs in the
4.2BSD Unix implementation of TCP when datagrams
pass between a local network (typically an Ethernet or a
Proteon ring, with MTUs of 1500 or 2046 bytes,
respectively) and the ARPAnet. The TCP prefers to
send 1024 byte data segments, which are transmitted in
1064 byte IP datagrams. As seen earlier, this results in
two fragments, 1006 and 78 bytes long.

The receiving gateway receives both fragments and
sends them out over the local Proteon ring. The Proteon
ring interface does not have sufficient buffering to

receive back-to-back packets, so it consistently drops
the second fragment. The sending TCP times out, and
retransmits the 1024 byte segment, which will again be

Computer Communication Review

fragmented. The second fragment is again lost, the
segment times out, and eventually the connection is
broken.

In addition, many of the gateways in the Internet today
are derived from 4.2BSD Unix. This implementation of
IP does not properly fragment a previously fragmented
packet, preventing some fragments from ever reaching
their destination, which might better be called guar-
anteed fragment loss.

2.4. Efficient reassembly is difficult

Reassembling fragments into datagrams at the IP layer
is considerably less robust than constructing a reliable
stream at the TCP layer. The window mechanism in
TCP alows the reassembly process to accurately gauge
how much buffer space to allocate for the current
stream of unacknowledged data bytes. Also, because in
TCP the data stream is covered by a sequence number
for each data byte, once a contiguous sequence of bytes
at the beginning of the outstanding data stream has been
reassembled, it can be acknowledged and handed up to
the next layer. Thus, progress can aways be made, even
if in small amounts.

At the IP layer, there is no indication in the header of a
fragmented packet of how many other fragments follow,
or of the length of the entire datagram. The More
Fragments bit tells only if this the last fragment of the
datagram, and the Fragment Offset field tells only the
position of this fragment in the complete datagram. If
the total size of the incoming datagram is too large to fit
available buffer space, no progress can be made. The IP
specification requires hosts to be able to reassemble
datagrams at least 576 bytes in length; larger segment
sizes must be explicitly negotiated by higher level
protocols.

Even if there is sufficient buffer space to reassemble a
very large datagram, conflicts can occur. In the Internet,
it is possible for fragments of the same datagram to take
different routes to their ultimate destination. Depending
on queue management strategies at gateways along the
way, a fragment of a small datagram may arrive
intermixed with the fragments of a large datagram.
More concretely, assume two datagrams, L (large) and
S (small), are fragmented as L;L,LsL4lslgl-Lg and
S;S,. If there are only eight buffers available, and the
reception order is L Lol 3l sLsLel7S;LsS,, reassembly of
L cannot succeed, despite adequate buffer space. Upon
reception of S, the reassembly process could discard L,
through L, which would leave six free buffers and
alow S to be reassembled when S, arrives. Or, it could
discard Lg (and subsequently S,), blocking reassembly
of both L and S; the buffers would be kept full until the
fragments expire. In either case, the work done to

ACM SIGCOMM

transport all the fragments of L is entirely wasted. It is
not possible to coalesce a complete initial string of
fragments and partially acknowledge receipt of the
datagram in order to free some of the buffer space.
(Dave Millsfirst pointed out this behavior in [13].)

It is difficult to decide how long to hold on to received
fragments. The only firm limit is the TTL field; the
reassembly process must discard fragments as their
TTLs expire. Since each gateway decrements the TTL
field, it must be set high enough to traverse the longest
possible route, and thus may still be quite high when the
packet arrives at its destination. Naive use of the
received TTL as a reassembly timeout will cause some
fragments to occupy buffer space for a much longer
time than necessary. Use of too short a reassembly
timeout will cause fragments to be dropped too quickly,
leading to unnecessary retransmissions.

Because IP is a datagram protocol, there is no guarantee
that a given fragment will ever arrive. A higher level
protocol may retransmit a lost |P datagram. If a retrans-
mitted datagram does not have the same value for the IP
Identification field, its data will not be recognized as
being the same as that in previously received fragments.
The old fragments will occupy buffer space until timed
out or forced out by incoming packets, and cannot fill
holes left by fragments dropped from the second data-
gram. This suggests that higher level protocols should
attempt to use the same value for the IP Identification
on both the original and retransmitted data. (This idea
was proposed by John Shriver [24].)

3. Avoiding fragmentation

We believe that, in most circumstances, the potential
disadvantages of fragmentation far outweigh the
expected advantages. Thus, hosts should avoid sending
datagrams that are so large that they will be fragmented.
The length limit can be determined by a variety of
general approaches:

* Always send small datagrams: There is some
datagram size that is small enough to fit without
fragmentation on any network; we could smply
send no datagrams larger than this limit.

e Guess minimum MTU of path: Use a heuristic
to guess the minimum MTU aong the path the
datagram will follow.

» Discover actual minimum MTU of path: Use a
protocol to determine the actual minimum MTU
along the path the datagram will follow.

* Guess or discover MTU and backtrack if
wrong: Since an estimate might be wrong, and a
discovered MTU may change if a route changes,
sometimes we may have to adjust the length limit.

Computer Communication Review

This requires both a mechanism for detecting
errors, and a mechanism for correcting them.

Later in this section we will discuss more specific
fragmentation avoidance schemes.

All these strategies assume that the route the datagrams
will follow is independently determined. If multiple
routes are available between source and destination, one
might instead try to avoid fragmentation by using
source-routing to avoid data links with small MTUs.
Suitable aternate routes seldom exist, however, and
even when they do we see no efficient way for an IP
host to obtain enough information to choose a good
source-route.

IP is alayered protocol architecture, and fragmentation
avoidance must be done at the right layer. It makes little
sense to build redundant mechanisms into several layers
if it is possible to do it once. This implies that the right
place for fragmentation avoidance is the layer common
to al IP communication, the IP datagram layer itself
(and its partner, the ICMP protocol). It would be a poor
idea to put the entire fragmentation avoidance
mechanism in, say, the TCP layer, because both the
mechanism and any additional protocol would have to
be duplicated in parallel layers, such as UDP[17],
NETBLT[6], and VMTP[3], and because it would be
awkward for a TCP-based mechanism to share
knowledge with other layers and across connections.

This is not to say that layers above IP should be
uninvolved in fragmentation avoidance. Architectural
layering does not mean that higher layers must be kept
ignorant of fragmentation issues. Optimal performance
depends upon cooperation between layers for example,
the TCP layer should not send huge segments if the IP
layer knows that they will be fragmented.

Most of the fragmentation-avoidance schemes we will
propose depend on keeping some knowledge about the
minimum MTU (MINMTU) on the path a datagram will
follow. A MINMTU value could be associated with a
specific destination network, a specific destination host,
a specific route (there may be several routes to one
destination, with differing MINMTUS), or a specific
connection (since for different applications, we may
want to choose between optimizing for maximum
bandwidth versus minimum delay, and thus might want
to accept different risks of fragmentation for different
connections to the same host). The MINMTU values
could be kept in the IP routing database, or in a separate
database, especialy if per-connection MINMTUs are
wanted. To support per-connection MINMTUS s, the IP
layer must obtain a connection identifier from
connection-oriented higher layers.

ACM SIGCOMM

It is our belief that a per-connection scheme
(degenerating to a per-route-to-specific-host scheme for
connectionless protocols) is the most flexible one.
While it is true that by keeping per-destination-network
information one might be able to pool information
about several hosts, thisis not necessarily safe. Because
many networks are subnetted [15], because MTUs may
vary among the subnets of a given network, and because
one cannot tell whether a remote network is subnetted
or not, it is not true that knowing the MINMTU for one
host reliably gives you the MINMTU for all other hosts
on the same network.

Routes in a datagram network are not necessarily
symmetric; the route a packet takes may not be the
reverse of the route taken by a packet traveling in the
opposite direction. Because of this, it is not safe for a
host to assume that it can send a datagram as large as
the one it has received from its peer. An independent
MINMTU determination must be made for each
direction, athough the peer hosts may assist each other
in doing so.

When the IP layer has determined the MINMTU for a
connection or destination, it can make this information
available to higher layers, such as TCP, that are
generating segments to be sent as IP datagrams
Segment-generating layers should ask the IP layer for a
MINMTU before sending a segment; connection-based
layers should either check periodically that the
MINMTU has not changed, or should be able to handle
asynchronous notification of a change.

3.1. Fragmentation avoidance without protocol
changes

In this section we describe several fragmentation
avoidance schemes that can be implemented without
changing existing protocol specifications or creating
new protocols. There are obvious advantages to such
approaches, since they can be taken immediately by
individual sites or vendors; further, we have sufficient
experience with one of them to believe that it works
fairly well. On the other hand, none of these schemes
can make use of exact knowledge of MINMTUSs, and so
may not provide optimal performance.

3.1.1. Always send tiny datagrams

If a host always sent datagrams no larger than the
minimum MTU over the entire internet, these datagrams
would never be fragmented. In the IP Internet the limit
is no higher than 254 bytes, and might be lower. Since
amost all of the Internet supports larger MTUs, and
since performance depends so strongly on packet size,
this approach can't provide reasonable performance. It
is worth invoking only as a temporary diagnostic
measure if performance actually increases when the

Computer Communication Review

datagram size is decreased, thisis a clear indication that
inappropriate fragmentation is taking place for larger
datagrams.

Alternatively, one might assume that using a 576-byte
limit is small enough to avoid fragmentation in virtually
all cases (we hope that in the future, all new LP network
links would be capable of handling packets of this size).
576 bytes is set forth in the 1P specification [18] as the
maximum size a host can send without explicit
permission from the receiving host, so it is reasonable
as an arbitrary value.

3.1.2. Send 576-byte datagrams if the route goes via
a gateway

The IP layer can determine if the route for a connection
or destination goes via a gateway. If it does, then the
size limit is set to 576 (our favorite arbitrary value);
otherwise, any size up to the MTU of the data-link layer
may be used.

This approach provides maximum performance for
local connections, and reasonable assurance that on
most non-local connections, datagrams will not be
fragmented. It is not perfect, since

1. It does not avoid fragmentation on every path

2. It may unnecessarily limit packet size, especially
on subnetted collections of high-speed LANS that
all support large packets.

3. If proxy ARP is used [14] then the IP layer may
be fooled into believing that a non-local path is
local, and thus use large datagrams when they are
not necessarily safe.

However, it is quite easy to implement and in general
provides good performance. A variant of this scheme,
implemented in the TCP layer, has been used for
several years at many sites and is now incorporated in
4.3BSD Unix [12]. This is the method we recommend
in the absence of protocol changes.

3.13. Send 576-byte datagrams if the route goes off-
net

Instead of checking whether a destination is behind a
gateway, the IP layer can examine the destination’s
network number to decideiif it islocal or non-local. In a
subnetted environment, this trades a higher risk of
guessing too high a MINMTU for higher performance
within the local collection of subnets.

3.2. Fragmentation avoidance with protocol changes

In this section we describe several fragmentation
avoidance schemes that require changes to existing
protocol specifications or the creation of new protocols.
Mostly, these involve changes to gateways and some

ACM SIGCOMM

minor changes to |P-layer software; al are designed so
as to coexist with unmodified gateways and hosts.

3.2.1. Probe mechanisms

Ideally, for ahost to be able to send the largest possible
datagrams that will not be fragmented, it must have
perfect information as to the MINMTU along the path
the datagrams will follow. Since most IP hosts do not
even know what that route is, much less what the MTUs
are aong the route, we need a mechanism for
discovering MINMTU.

The most straightforward kind of mechanism is to send
a packet along the route, collecting MTU information as
it goes; we cal these probe mechanisms. Probe
mechanisms require support from gateways each gate-
way along the route must update the probe according to
the MTU of the hop it is about to take. Probe mechan-
isms also require support from peer hosts, since paths
are asymmetric, once a probe reaches the end of its
route, the information it has collected must be returned
to the source host.

A probe may either gather a list of all the MTUs along

the path (somewhat analogous to the IP “Record Route”
option), with which the host can determine the
MINMTU, or the probe may simply carry only the
lowest MTU value seen along the route. The former
method provides a little more information; the latter
method is easier to implement and results in shorter
packets.

A probe may be made only once, at the beginning of a
connection or the use of a route, or it may be made
periodically. Periodic probes are preferable if the
MINMTU is kept per-destination or per-connection,
since the route may change. If MINMTU information is
kept per-route, then it will not change and consequently
probes need not be repeated.

Probe mechanisms are useful for discovering other path
characteristics besides MINMTU. As long as one is
processing a probe, it makes sense to collect a variety of
information, since it comes at little additional cost. This
information could include:

Minimum bandwidth
Useful for determining appropriate transmission
rates; if a host knows that a 9600-baud link is part
of the path, it should behave differently than if the
path is entirely via 100 Mbit fiber networks.

M aximum delay
Useful for determining realistic round-trip times;
if a satellite channel is in use, with a delay of
several hundred milliseconds, a host should not
retransmit as quickly as if the end-to-end delay
were several milliseconds.

Computer Communication Review

M aximum queue length
A high value implies congestion; if measured
using the “fair-queueing” algorithm [16] it
indicates to a host whether it is sending too much.
Alternatively, a “congestion-encountered” flag
could be set if any gateway along the path is
experiencing congestion.

Maximum error rate
When a link along the path is experiencing a high
error rate, a host might choose to send shorter
packets (so as to reduce the likelihood that an
entire datagram is dropped because of a single
error) or use error-correcting codes.

Hop Count
The total number of links traversed along the
route may be of interest, for example, in choosing
a value for the “Time To Live” field. (Collection
of hop counts was proposed by Mike Karels [10].)

It is not necessary for every gateway along the path to
support probing, providing they all forward the probe.
Gaps in the probe information are not fatal; at worst,
host behavior is the same as if no probing is done. A
gateway that does support probing can cover up for an
occasional uncooperative gateway by looking at the
incoming link as well as the outgoing link when
determining the MINMTU.

Since route choices may depend on the IP “Type of
Service” and perhaps the IP “Security” option, probes
should carry the same Type of Service and Security as
the data packets will [4]; gateways should observe Type
of Service and Security when updating values in probes.

3.2.2. Probing with | CM P messages

A probe can be done using a separate packet; in the IP
architecture, we would do this using a new ICMP

“Probe Path” message. This is described in detail in
appendix .

Briefly, a host wishing to probe a path sets initial values
for the fields of the Probe Path message, then sends it to
the destination host. Each gateway along the route
updates various fields of the message. When the
destination host receives the message, it copies the
recorded information into a different area of the
message, reinitializes the recording fields, and returns
the message to the original host. If the second host
requests, the message may make one more trip, after
which both hosts will have the path information,
including MINMTU.

3.23. Probes piggybacked on I P headers

It is not necessary to send a separate packet to probe the
path. Instead, the probe information can be piggybacked

ACM SIGCOMM

on the actual data packets, as part of the IP header. In
appendix Il we describe new IP header options for
recording and returning MINMTU information.
(Additional options could be defined for recording other
path characteristics.)

In this case, a host wishing to probe a path sets initial
values for the “Probe MTU” option in the IP header of
a datagram it is sending. Each gateway along the route
may update the value carried in this option. When the
destination host receives the datagram, it copies the
recorded information into a “MTU Reply” option and
attaches it to the next datagram going back to the source
host. When this reply is received, the first host knows
the MINMTU; the second host may pass its own Probe
MTU option along with the MTU Reply, so after one
more datagram both hosts can know the MINMTU.

Because the piggyback method does not involve
additional packets, it may be cheaper than the ICMP
method; it should be cheap enough that one can send it
frequently, to react to changes in the route. The
drawback is that it adds overhead to the processing of
data packets, and may be harder to implement, since
when a host wants to return a MINMTU value it must
find an outgoing datagram to which it can attach the
MTU Reply option.

3.3. Recovery from fragmentation

Instead of avoiding fragmentation by trying to predict
when it will occur, a host could instead detect when it
occurs and recover by shrinking the datagram size.
Detection can be accomplished with or without the use
of new protocols.

All methods start by assuming a large datagram size,
and adjusting the datagram size based on indications of
fragmentation. After a few iterations of this process
using a binary search on the datagram size, and after
receiving acknowledgments from the remote host to
verify that the datagrams are actually arriving, the
source host can have arbitrarily precise knowledge of
the MINMTU for the path.

Detection methods have the advantage that they cause
no additional overhead unless fragmentation occurs.
They have the disadvantage that they can create lots of
useless traffic if not carefully implemented.

3.3.1. Use of “Don't Fragment” flag

One such approach is to set the “Don't Fragment” flag
on every datagram, and use the MTU of the first hop as
the initial datagram size. If a datagram reaches a
gateway that would have to fragment it, the gateway
(obeying the “Don't Fragment” flag) must drop the

datagram and return an ICMP “Destination

Unreachable/Fragmentation Needed and DF Set’

Computer Communication Review

message [20]. The source host, upon receiving this
ICMP, should try a smaller datagram size and
retransmit any unacknowledged data. (A variant of this
scheme was first proposed by Geof Cooper [7].)

This method requires no protocol changes, but the
drawback is that until the proper MINMTU is
discovered, many datagrams will be dropped, and thus
it may take a long time to set up a connection. Since
many connections transfer only a few data packets
(mail, for example), this is a significant overhead; it
would only be useful for long connections.

3.3.2. Passive detection of fragmentation

A complementary approach is to allow fragmentation of
any datagram, but to detect when this happens and
adjust the datagram size accordingly. While this might
take longer to arrive at the proper MINMTU, it does not
force gateways to drop any datagrams in the meantime;
thus it improves performance on long connections
without harming brief ones. One way to do this without
changing protocolsis to observe the retransmission rate;
from a high retransmission rate one might deduce that
deterministic fragment loss is occurring. The datagram
size can be lowered until the retransmission rate drops
noticeably.

The problem is that a high retransmission rate may also
be caused by other problems, especially congestion.
Cutting the datagram size is exactly the wrong approach
when fragmentation is not occurring and the path is
congested, since it increases the number of packets
required to send the same data and thus increases the
congestion. This approach should therefore be used
only when an independent mechanism is used to detect
or suppress congestion, such as the use of ICMP source
guenches, Nagle's fair-queueing algorithm [16], or
statistical properties of the round-trip delays[9].

3.3.3. Proper use of
messages

“Time Exceeded” ICMP

The receiving host can tell if it is losing fragments
because partial datagrams waiting on its reassembly
gqueue will time out. The ICMP protocol currently
includes a “Time Exceeded” message, including a code
that can be set to indicate “fragment reassembly time
exceeded.” While this message does not convey
complete information on the MINMTU of the path, it is

a clear indication that the source host has guessed too
high and should reduce the size of the datagrams it is
sending. Apparently, many IP implementations do not
end this message, nor do many know what to do with it.

3.3.4. “Fragmentation Warning” ICMP messages

In this scheme, when a gateway fragments a datagram, it
forwards the fragments as usua but aso sends a

ACM SIGCOMM

message back to the source host. This “Fragmentation
Warning” ICMP message would carry the maximum
allowable datagram size, so that the source host could
reduce the datagram size to fit through the link in
guestion. The process may have to be repeated if a
subsequent link has a slightly smaller MTU. (A variant
of this scheme was first proposed by Art Berggreen

[1].)

This scheme has a serious danger if the source host does
not receive or act upon the warning message, not only
will fragmentation continue to occur, but a lot of useless
traffic will be created by subsequent warning messages.
A gateway could avoid sending multiple warnings to the
same host, at the cost of maintaining a cache of recently
warned host addresses. Alternatively, we could intro-
duce a new “Warn if Fragmented” flag in the IP header,
analogous to the “Don't Fragment” flag. Only if this flag

is set would a warning be issued, and a source host
setting this flag should take care to heed warnings.

3.3.5. “Fragments Received” ICMP messages

A similar approach generates warnings at the destina

tion, rather than the gateways. If a host receives a
fragmented datagram, it can send a “Fragments
Received” ICMP message back to the source host. This
warning would carry the size of the largest fragment of
the datagram; this is a lower bound on MINMTU,
although it is possible that larger datagrams could be
sent without fragmentation. Again, some mechanism is
needed to limit unheeded warnings, so as to prevent
congestion. (A variant of this scheme was first proposed
by Charles Lynn [11].)

3.4. Use of Transparent Fragmentation

The need for inter-network fragmentation, and

consequently its dangers, can be reduced or eliminated
by the use of transparent fragmentation (sometimes
called intra-network fragmentation). If all the fragments

of a datagram are sent to a unique next-hop gateway for
reassembly, and if the fragmenting and reassembling
gateways use a low-level protocol that increases the
chances of complete delivery, two benefits are obtained:

1. Deterministic fragment loss is unlikely, if the
protocol between the two gateways supports
acknowledgments of individual fragments. It need
not be completely reliable, since the end hosts are
wiling to accept occasional lost or mis-
sequenced datagrams.

2. If the (reassembled) datagram subsequently
traverses a network with a larger MTU, it makes
more efficient use of that network than a
collection of smaller fragments.

Computer Communication Review

On the other hand, transparent fragmentation has many
drawbacks: (1) a datagram may be repeatedly reassem-
bled and refragmented; (2) gateway implementations
become more complex and require much more buffer
memory; (3) the performance gains are limited because
a datagram cannot be larger than the MTU of the first-
hop network and because a maximum size must be
enforced to provide a limit on gateway reassembly
buffer space. Most important in the IP world a
destination host may still have to perform reassembly,
since the MTU of the last hop link may be smaller than
the datagram size; this means that most of the problems
associated with internetwork fragmentation would still
be present, athough to a lesser degree. (Transparent
fragmentation was successful in the Pup architecture
because almost all non-gateway Pup hosts were attached
to networks with MTUs larger than the maximum
allowed Pup datagram size[2].)

Since transparent fragmentation is invisible except to
the gateways involved, it can be used in an IP internet
wherever the benefits outweigh the drawbacks; this is
specifically alowed by the IP specification [18]. We
encourage designers of gateways and networks to
consider the use of transparent fragmentation, especially
if the natural MTU of the network is unusually small.
For example, the actual IMP-to-IMP messages on the
ARPAnet are only 1008 bits long; the 1007-byte MTU
of the ARPAnet is an illusion created by transparent
fragmentation and reassembly within the IMPs [8].

3.5. Careful use of intentional fragmentation

In certain restricted cases, and with alittle luck, one can
obtain significant performance improvements by
sending such large datagrams that they must be
fragmented immediately by the source host, before
being transmitted on their first hop. Thisis donein Sun
Microsystems’ implementation of their NFS protocol
[21]. Throughput is improved because fewer datagrams
are handled in the layers above IP, and because end-to-
end acknowledgements are done only in the RPC layer,
rather than in the transport layer as well. This
performance improvement is extremely unstable;
because it is vulnerable to deterministic fragment loss,
performance may drop radically if gateways or
interfaces with insufficient buffering are in use. In some
cases, the protocol fails entirely.

We do not believe that intentional fragmentation is a

good idea, since careful protocol design and imple-
mentation should be able to provide similar peak

performance without anywhere near the risk. It is

especially irresponsible to use over an internet prone to
congestion, since congestion may cause deterministic
fragment loss and the resulting retransmission of long
packet trains can only worsen the congestion.

ACM SIGCOMM

Intentional fragmentation, in spite of its risk, is
appealing because as long as it works it requires no
implementation modifications beyond some parameter
tuning. If it is used, we think the risk can be reduced by
approaches analogous to those we have suggested for
determining MINMTU.

For example, intentional fragmentation could be

restricted to those destinations that are on the local
network, or those without an intervening gateway.

Alternatively, the source host could observe the

retransmission rate and cease intentional fragmentation
if the rate is high; since intentional fragmentation is

worse for congestion than the use of undersized
datagrams, this is a good idea even when one cannot
distinguish retransmissions caused by congestion from
those caused by deterministic fragment loss.

If accurate information, say from a probe mechanism,
shows that somewhere along the path the fragments will
be re-fragmented, one would clearly not want to use
intentional fragmentation. Aside from the problem that
many existing gateways derived from 4.2BSD code
cannot properly fragment a fragment, this results in a
great expansion in the total number of fragments and
consequently the risks of congestion and deterministic
fragment loss.

4. Summary and Recommendations

We believe that future heterogeneous internetworks will
include networks with a wide range of bandwidths,
because economics force long-haul networks to have
lower bandwidths than local-area networks. The MTU
that maximizes performance varies with bandwidth on
low-bandwidth links, a small MTU is used to limit the
time the link can be occupied by one packet; on high-
bandwidth links, a large MTU allows per-packet over-
heads to be amortized over many bytes. Therefore, link-
level MTUs will always vary within heterogeneous
internetworks.

In this paper, we have explored the use of internetwork
fragmentation as a solution to the problem of differing
MTUs. Fragmentation frees higher level protocols from
having to alter their behavior based on the route over
which packets flow. To the designers of IP, internet-
work fragmentation appeared to be the right choice.
Unfortunately, as we have shown, blind reliance on
fragmentation in IP can be costly in both performance
and reliability.

4.1. Recommendations

In section 3 we described a broad variety of schemes for
avoiding or ameliorating fragmentation. Not all of these
schemes are worthwhile, and not all of the good ones

Computer Communication Review

should be adopted together. Here we suggest what we
believe are the most appropriate steps to take.

We are proposing engineering modifications to a large,
heterogeneous internetwork where there is a tremendous
delay in disseminating change to all sites; some sites
may never catch up. Stability is important; this means
that whenever possible, a change should not disrupt
those hosts that are not yet updated.

Since a robust host implementation should simply
ignore packets and options that it does not understand,
one might think it safe to make changes that involve
sending additional packets on the off chance that the
receiver knows what to do with them. In the larger
context of an internetwork prone to congestion,
however, we should worry about injecting useless
packets. We thus favor approaches that do not
repeatedly send packets that might be ignored.

4.1.1. Recommendations not
changes

involving protocol

Some solutions can be implemented immediately,
without changes to protocol specifications. Most
effective is the one described in section 3.1.2, limiting
the datagram size to 576 bytes whenever the packet is
routed via a gateway. This should be implemented in
the IP layer, rather than in the TCP layer asin 4.3BSD.

Somewhat more difficult, but still possible without
protocol changes at the IP layer or above, is the use of
transparent fragmentation (that is, immediate
reassembly) over networks with smal MTUs.
Effectively, this means increasing the MTU of such
networks as viewed by hosts on other networks.

Finaly, we strongly encourage implementors who use
intentional fragmentation to do so only when packets
are sent directly, with no gateway along the route. Also,
intentional fragmentation should cease when the
retransmission rate increases beyond a certain level.

We do not recommend the use of the ICMP “fragment
reassembly time exceeded” message since it appears
that most hosts simply ignore it; this is a shame but it
may be too late to correct.

4.1.2. Recommendationsfor protocol changes

If protocol changes were to be considered, we would
recommend the adoption of both the ICMP “Probe
Path” message described in appendix I, and the IP
“Probe MTU” option described in appendix Il. Both of
these changes require support from gateways and from
host IP layers, but they can be incrementally adopted
without confusing existing implementations. On the
other hand, the ICMP “Probe Path” message can still
cause the “useless packets” problem.

ACM SIGCOMM -10-

We suggest implementing both probe mechanisms
because the cost of doing so is not much higher than
that of implementing one, and we cannot predict which
is more effective. Each may be optimal for certain

applications.

4.1.3. Recommendations for new ar chitectures

The IP Internet was intended as an experiment, and
from this experiment we can extract some lessons to use
in designing new architectures. Any large hetero-
geneous datagram internetwork is likely to require
fragmentation at times; careful design can make
fragmentation normally unnecessary, and can avert its
most serious drawbacks. We do not believe that frag-
mentation should be completely hidden from hosts; to
do so would be to fall into the trap of providing reliable
stream protocols at too low a level. Rather, fragmenta-
tion should simply be as robust as possible, so that it
does not lead to performance disasters.

We urge consideration of transparent fragmentation
whenever possible. There is little value in the ability to
send fragments of one datagram along different routes,
and reassembly by gateways should not be prohibitively
expensive. Main memory sizes and costs are improving
so rapidly that buffer space should no longer be
considered the limiting resource; reassembly might
actually improve the switching rates of gateways by
reducing the number of individually switched frag-
ments. We suggest that a source host be able to turn off
transparent fragmentation by setting a flag in the
datagram header, analogous to the IP “Don't Fragment”
flag.

We also believe that the ability to record path
information — not only about MTU but also about
congestion, bandwidth, etc. — is so valuable that it
should be done on every packet. The header overhead
could be reduced by encoding the numerical informa-
tion, either by reducing resolution or by using a
logarithmic scale. By doing recording in standard rather
than optional header fields, its cost could be made
negligible.

Finally, since transparent fragmentation cannot entirely
obviate the use of inter-network fragmentation, there
must be a way to recover from inappropriate

fragmentation. The receiving host can detect the
problem, through repeated reassembly timeouts, and
should notify the sending host via something akin to the
ICMP “fragmentation reassembly time exceeded”

message. If support for this message had been
mandatory in IP, it would have eliminated the problem

of complete communication failure due to deterministic

fragment loss.

Computer Communication Review

Acknowledgements

This paper was inspired by a flurry of messages on the
TCP-IP €electronic mailing list, which provoked us to
write down some thoughts we had been harboring for
severa years. Many of the ideas in this paper come
from TCP-IP participants; we have tried to cite specific
references. Other participants whose important contri-
butions are not otherwise cited include Bob Braden,
Hans-Wemer Braun, Vint Cerf, Doug Kingston, John
Wobus, and Lixia Zhang. We would also like to thank
Dave Boggs for continually reminding us that Pup got it
right.

Appendix I. ICMP “Probe Path” message

The format of the proposed ICMP “Probe Path”
message is shown in figure 1-1.

Byte
0 1 2 3

Type ‘ Code Checksum

Identifier Sequence Number

Minimum MTU encountered

Minimum Bandwidth encountered

Maximum Delay encountered

Maximum Queue Length encountered

Maximum Error Rate encountered

Hop Count

Returned Identifier Returned Sequence
Number

Returned Minimum MTU encountered

Returned Minimum Bandwidth encountered

Returned Maximum Delay encountered

Returned Maximum Queue Length encountered

Returned Maximum Error Rate encountered

Returned Hop Count

Figure I-1 Format of ICMP “Probe Path” message
The fields of a Probe Path message are:

Type
To be assigned.

Code
Indicates how far through a “three-way” handshake
this message is:

1 = Initial message don't believe “Returned” values;

please reply.
2 = Second message believe “Returned” values;
please reply.
ACM SIGCOMM -11-

3 = Third message believe “Returned” values; no
reply expected.

For codes | and 2, gateways must update values in other
fields as specified. For code 3, gateways need not
update values in other fields.

Checksum
The usual ICMP checksum. It must be updated when
a gateway modifies any of the other fields.

I dentifier
An identifier to aid in matching probes with replies,
may be zero.

Sequence Number
A sequence number to aid in matching probes with
replies, may be zero.

If the Code is 1 or 2, the following six fields are
updated by gateways as the message follows its route;
they are all 32-bit two's complement (signed) integers.
Their initial values are set by the source host, as
indicated. Gateways should observe the Type of Service
field and Security option in the IP header of the Probe
Path message when updating these fields.

Minimum M TU encounter ed
Initially set to the MTU of the first hop data link, or
to MAXINT (2°-l). Each gateway compares this
value to the MTU of the incoming and outgoing links
for the message, and reduces the recorded value, if
necessary. MTU is measured in octets.

M inimum Bandwidth encountered
Initially set to the bandwidth of the first hop data link,
or to MAXINT. Each gateway compares this value to
the bandwidth of the incoming and outgoing links for
the message, and reduces the recorded value, if
necessary. Bandwidth is measured in bits per second.

M aximum Delay encountered

Initially set to the delay of the first hop data link, or
to zero. Each gateway compares this value to the time
it will take the packet to traverse the incoming and
outgoing links, and increases the recorded value, if
necessary. Delay is measured in microseconds. For
networks, such as CSMA/CD, where the delay is not
a simple function of the packet length, use the
expected value of the delay for an average packet.

M aximum Queue L ength encountered
Initially set to the length of the output queue of the
source host when the packet is placed on that queue,
or to zero. Each gateway compares this value to the
length of the queue in which the packet is placed, and
increases the recorded value, if necessary.

Maximum Error Rate encountered
Initially set to the error rate of the first hop data link,

Computer Communication Review

or to zero. Each gateway compares this value to the
error rate of the incoming and outgoing links, and
increases the recorded value, if necessary. Error rate
is measured as the reciprocal of the bit-error rate; i.e.,
it is the expected value of the number of bits between
errors.

Hop Count
Initially set to 1. Each gateway increments this value
by one.

If the Code of an incoming message is 1 or 2, the
following eight (“returned”) fields are used to return the
previous eight (“incoming”) fields to the probing host:

Returned I dentifier

Returned Sequence Number

Returned Minimum M TU encountered
Returned Minimum Bandwidth encountered
Returned M aximum Delay encountered
Returned M aximum Queue Length encountered
Returned Maximum Error Rate encounter ed
Returned Hop Count

The destination host copies the appropriate fields (e.g.,
“Minimum MTU encountered” is copied to “Returned
Minimum MTU encountered”), reinitializes the
incoming fields, sets the code field to 2 or 3 depending
on whether it needs path information, recomputes the
checksum, reverses the source and destination

addresses, and returns the message. When a host

receives a Code 2 or Code 3 message, it can use the
values in the returned fields to update its path
information database. The 32-bit wide fields are
interpreted as two's complement integers; a negative
value means that the field value is not valid.

Appendix II. IP “Probe MTU” options

The format of the proposed IP “Probe MTU” option is
shown in figure II-1. The option type code to be
assigned; it is not copied on fragmentation, it is of
option class 2 (debugging and measurement). This
option is always 8 octets long.

010xxxx0 Minimum MTU

encountered

Length Identifier

Type=yyy Length=8

Figure 1l-1 Format of IP “Probe MTU” option

The value of the Probe MTU option is the minimum
MTU encountered along the route followed by the
packet, measured in octets. It isinitialized by the source
host to the MTU of the first hop data-link, or it may be
initialized to 2*'-1. Each gateway compares this value to
the MTU of the incoming and outgoing links for the
packet, and reduces the recorded value, if necessary.
Gateways should observe the Type of Service field and

ACM SIGCOMM -12-

Security option in the IP header when updating this
value. The source host should set the Identifier field to
alow it to match the reply to this option with the
appropriate connection or route.

When a destination host receives a packet with the
Probe MTU option, it creates an “MTU Reply” option,
whose format is shown in figure II-2. The option type
code is to be assigned; it is not copied on
fragmentation, it is of option class 2 (debugging and
measurement). This option is always 8 octets long. The
“Returned Minimum MTU” and “ldentifier” fields are
copies of the corresponding fields in the received Probe
MTU option.

010xxxx1 Returned Identifier

Minimum MTU

Length

Type=zzz Length=8

Figure 11-2 Format of IP “MTU Reply” option

The destination host returns this option attached to the
next packet sent to the originating host. Because several
Probe MTU options may arrive before one is sent, the
MTU Reply option may appear more than once in a
packet. A packet carrying an MTU Reply option may
also carry a Probe MTU option.

When a host receives an MTU Reply option, it uses the
Identifier field to associate the Minimum MTU value
with a particular connection or destination.

References

1. Art Berggreen. IP Datagram Sizes. Electronic
distribution of the TCP-IP Discussion Group, no

Messagel D.

2. David R. Boggs, John F. Shoch, Edward A. Taft, and
Robert M. Metcalfe. "Pup An intemetwork
architecture." 1EEE Transactions on Communications
COM-28, 4 (April 1980), 612-624.

3. David R. Cheriton. VMTP: A transport protocol for
next generation communication systems. SIGCOMM
'86, ACM SIGCOMM, August, 1986.

4. J. Noel Chiappa. IP Datagram Sizes. Electronic dis-
tribution of the TCP-IP Discussion Group, Messagel D
<12304502322.33.JNC@XX.LCS.MIT.EDU>.

5. David D. Clak. IP Datagram Reassembly
Algorithms. RFC 815, Network Information Center,
SRI International, July, 1982.

6. David D. Clark, Mark L. Lambert, and Lixia Zhang.
NETBLT A Bulk Data Transfer Protocol. RFC 998,
Network Information Center, SRI International, March,
1987.

Computer Communication Review

7. Geof Cooper. |P Datagram Sizes. Electronic dis-
tribution of the TCP-IP Discussion Group, MessagelD
<8705230517.AA01407 @apolling.imagen.uucp>.

8. F. E. Heart, R. E. Kahn. S. M. Ornstein, W. R.
Crowther, and D. C. Walden. The interface message
processor for the ARPA computer network Proc. AFIPS
Spring Joint Computer Conference, May, 1970, pp.
551-567.

9. Van Jacobson. Retransmit Timers Theory and
Practice. In preparation.

10. Mike Karels. IP Datagram Sizes. Electronic dis-
tribution of the TCP-IP Discussion Group, MessagelD
<8705262316.AA08021@okeefe.Berkeley. EDU>.

11. Charles Lynn. IP Datagram Sizes. Electronic dis-
tribution of the TCP-IP Discussion Group, MessagelD
<[G.BBN.COM]22-May-87 20:11:55.CLY NN>.

12. M. Kirk McKusick, Mike Karels, and Sam Leffler.
Performance Improvements and Functional Enhance-
ments in 4.3BSD. Proc. Summer USENIX Conference,
June, 1985, pp. 519-531.

13. Dave Mills. IP Datagram Sizes. Electronic dis-
tribution of the TCP-IP Discussion Group, MessagelD
<8705261315.a029301@Huey.UDEL .EDU>.

14. Jeffrey Mogul. Internet Subnets. RFC 917, Network
Information Center, SRI International, October, 1984.

15. Jeffrey Mogul and Jon Postel. Internet Standard
Subnetting Procedure. RFC 950, Network Information
Center, SRI International, August, 1985.

16. John B. Nagle. "On Packet Switches with Infinite
Storage.” |[EEE Transactions on Communications
COM-35, 4 (April 1987), 435-438.

17. Jon Postel. User Datagram Protocol. RFC 768,
Network Information Center, SRI International, August,

1980.

18. Jon Postel. Internet Protocol. RFC 791, Network
Information Center, SRI International, September,

1981.

19. Jon Postel. Transmission Control Protocol. RFC
793, Network Information Center, SRI International,

September, 1981.

20. Jon Postel. Internet Control Message Protocol. RFC
792, Network Information Center, SRI International,

September, 1981.

21. Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and Implementation
of the Sun Network Filesystem. Proc. Summer USENIX

Conference, June, 1985, pp. 119-130.

ACM SIGCOMM

22. Alan Sheltzer, Robert Hinden, and Mike Brescia.
“Connecting different types of networks with gate-
ways.” Data Communications (Augus?82), 119126.

23. John Shoch. “Packet Fragmentation in Inter-network
Protocols.” Computer Networks 3, 1 (February 1979),
3-8.

24. John A. Shriver. IP Datagram Sizes. Electronic dis-
tribution of the TCP-IP Discussion Group, MessagelD
< 8705261623.AA12946 @monk.proteon.com>.

Computer Communication Review

