Multicast Routing

CSE 561 Lecture 13, Spring 2002.
David Wetherall

Overview

• Multicast goals and service model

• Multicast Routing
 – Dense: Distance Vector / Link State
 – Sparse: Shared tree

• Limiters (compare to end-system multicast)
 – Scalability
 – Deployment issues
 – Operational/Economic issues
 – Applications?
Motivation

- Efficient delivery to multiple destinations (e.g. video broadcast)

- Service discovery; communication with a layer of indirection
 - Publish/subscribe communications model
 - Don’t need to know destinations

Multicast on shared LAN

- Efficient multicast is straightforward
 - the medium is broadcast

- How do we add a layer of indirection?
 - Define new multicast addresses to represent groups
 - Let hosts join/leave receiver groups as they please by filtering incoming packets according to local group membership
 - Allow anyone to send to a multicast address

- Much of Internet multicast can be viewed as trying to replicate this success in the wide area … it gets hard!
IP Multicast service model

- Communications based on groups
 - Special IP addresses (class D) for “multicast groups”
 - Anyone can join/leave group anytime
 - Anyone can send to group anytime (even non-members)

- Unreliable datagram service
 - Extension to unicast IP
 - Group membership not visible to hosts

- Scoping to limit spread of packets
 - In the wide-area, can set TTL low to reach “nearby” members

Internet Group Management Protocol (IGMP)

- By internet convention, hosts don’t participate in routing
 - IGMP used to communicate group membership between hosts and routers

- Soft-state protocol
 - Hosts explicitly inform their router about membership
 - Must periodically refresh membership report
 - Routers implicitly timeout groups that aren’t refreshed
 - Why isn’t explicit “leave group” message sufficient?

- Implemented in most of today’s routers and switches
How IGMP works (roughly)

- Router broadcasts *membership query* to 224.0.01 (all-systems group) with ttl=1
- Hosts start random timer (0-10 sec) or each group they have joined
- When a host’s timer expires for group G, send *membership report* to group G, with ttl=1
- When a member of G hears a report, they reset their timer for G
- Router times out groups that are not "refreshed" by some host’s report

Multicast routing

- **Goal**: build distribution tree for multicast packets
 - Efficient tree (ideally, shortest path)
 - Low join/leave latency
- Several approaches
 - Distance Vector/Link State
 - Leverage existing unicast routing protocols
 - Shared tree
 - Unicast/multicast hybrids
Multicast routing taxonomy

• **Source-based tree (Dense mode)**
 - *Separate shortest path tree for each source*
 - **Flood and prune** (DVMRP, PIM-DM)
 - Send multicast traffic everywhere
 - Prune edges that are not actively subscribed to group
 - **Link-state** (MOSPF)
 - Routers flood groups they would like to receive
 - Compute shortest-path trees on demand

• **Shared tree** (CBT, PIM-SM) *(Sparse Mode)*
 - *Single distributed tree shared among all sources*
 - Specify rendezvous point (RP) for group
 - Senders send packets to RP, receivers join at RP
 - RP multicasts to receivers; Fix-up tree for optimization

Source-based vs Shared

Source-based tree

- Efficient trees; low delay, even load
- Per-source state in routers (S,G)
- Good for dense-area multicast

Shared-tree

- Higher delay, skewed load, SPOF
- Per-group state only (G)
- Efficient for sparse-area multicast
Flood and Prune (DV)

- Extensions to unicast distance vector algorithm
- Goal
 - Multicast packets delivered along shortest-path tree from sender to members of the multicast group
 - Likely have different tree for different senders
- Distance Vector Multicast Routing (DVMRP)
 developed as a progression of algorithms
 - Reverse Path Flooding (RPF)
 - Reverse Path Broadcast (RPB)
 - Truncated Reverse Path Broadcasting (TRPB)
 - Reverse Path Multicast (RPM)

Reverse Path Flooding (RPF)

- Observation: Shortest-path multicast tree is subtree of shortest-path broadcast tree
- Approach: Use shortest-path broadcast tree
- Use reverse path to determine shortest path
 - Router forwards a packet from S if received from the shortest-path link to S
 - Exactly what is in entry in forwarding table
 - To reach S along shortest path, use link L
 - If received packet from S on L, it came along shortest path
- How are packets forwarded?
 - Flooding – forward packets to multicast address out to all links except incoming link (hence reverse path flooding)
Example: Reverse Path Forwarding

Forward packets on shortest path from X to S

Problem: Flooding causes duplicate packets to be sent on LANs

Solution: Reverse Path Broadcast (RPB)

- Flooding vs. broadcast
 - With flooding, a single packet can be sent along an individual link multiple times
 - Each router attached to link can potentially forward same packet
 - RPB sends a packet along a link at most once
- Approach: Define parent and child routers for each link
 - Relative to each link and each source S
 - Router is a parent for link if it has minimum path to S
 - All other routers on the link are children
 - Only forward on child links for S
- How to decide parent and children routers for link?
 - In routing updates; router determines if is parent
Example:
Reverse Path Broadcasting

<table>
<thead>
<tr>
<th>Child link of A for S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>B not parent for S</td>
</tr>
<tr>
<td>Don't forward</td>
</tr>
</tbody>
</table>

Truncated RPB (TRPB)

- Problem: Broadcast is not multicast
 - Broadcast only good for small internetworks, infrequent sends

- Approach: don’t forward packets to networks that aren’t group members
 - Identify leaves
 - Child links not used by any other routers to reach S
 - Send periodic updates about next-hops to S
 - Detect group membership
 - Multicast group membership locally (i.e. IGMP)
 - Only add links to leaves that are group members
Reverse Path Multicast (RPM)

- Problem: Still broadcasting up to leaf networks
- Idea: Instead of actively building tree, use reports to actively prune tree

- Start with a full broadcast tree to all links (RPB),
- Prune (S,G) at leaf if it has no members
 - Send Non-Membership Report (NMR) to prev-hop for S
- If all children of router R prune (S,G)
 - Send NMR for (S,G) to parent of R
- Soft-state management (must refresh NMR or rejoin)
- New group member sends graft (anti-prune) message

Link State

- Use existing link-state routing algorithm (e.g. OSPF)
- Idea: include active groups in LSPs
 - Each router can compute shortest path tree from source to all destinations for any group
 - Trigger new flood on group membership change

- Performance issues
 - Expensive to precompute all (S,G) trees
 - Keep cache of trees and compute new trees on demand when new (S,G) packet arrives
 - Workload/topology dependant

- Best known example: MOSPF
Shared tree approaches

- Unicast packets to Rendezvous Point (RP), which multicasts packet on shared tree
- Tree construction
 - Receivers send join messages to RP
 - Intermediate routers install state to create per-group tree
 - Key advantage is routers only store $O(G)$ state
 - Potential optimizations: reroute to source-specific trees for local group members or high data-rate sources
 - Example: CBT, PIM-SM
- Issues
 - Delay, fault tolerance, RP selection

IP Multicast today

- IP Multicast has generated 1000s of papers, but has not been widely deployed in the Internet...
- Why?
 - Scalability
 - General deployment difficulties (Mbone)
 - Inter-domain multicast complexity
 - Economics of multi-source multicast
 - Applications?
Scalability

• How much state does a router need for multicast?
 – Dense mode $O(\text{senders} \times \text{groups})$
 – Sparse mode $O(\text{groups})$
 – Compare to $O(\#\text{networks})$ for unicast …

• Problem: can’t aggregate multicast addresses in the same way as unicast addresses – no hierarchy

• Also address allocation: which address to use for a new group?
 – No standard but must be globally unique
 – Global random selection
 – Per-domain addressing (MASC, GLOP)

Multicast evolution

• How to deploy a new network-layer service?
 – Difficult to change router software
 – Difficult to change all routers

• Mbone (tunneling)
 – Special multicast routers (built from PCs/Workstations)
 – Construct virtual topology between them (overlay)
 – Run routing protocol over virtual topology
 – Virtual point-to-point links called tunnels
 • Multicast traffic encapsulated in IP datagrams
 • Multicast routers forward over tunnels according to computed virtual next-hop
Tunneling

IP Header
dst=224.x.x.x
Data

Encapsulation

132.239.4.6

De-encapsulation

IP Header
dst=224.x.x.x
Data

IP Header
dst=128.2.1.2

128.2.1.2

Virtual overlay network

Real topology with tunnels

Virtual overlay topology
Mbone Pro/Con

- Success story
 - Multicast video to 20 sites in 1992
 - Easy to deploy, no explicit router support
 - Ran DVMRP and had 100s of routers

- Drawbacks
 - Manual tunnel creation/maintenance
 - Inefficient
 - No routing policy (single tree)
 - Why would an ISP deploy a new mbone node?

Operational / Economic issues

- Billing model
 - Inconsistent with input-rate-based billing
 - No group management (how big is group?)

- ISP router migration cycle
 - Can’t afford new routers on edge

- Group management
 - Who is in the group? Who can send? Security

- Domain independence
 - Do I want my customers MC controlled by an RP in a competitors domain?
 - Why run an RP for which I have no senders or receivers?

- Complexity, e.g., multicast address allocation
Proposal: Single source multicast

- Reduce complexity and match ISP economic needs by limiting group to single source

- Example: EXPRESS [Holbrook and Cheriton99]
 - Root of tree at source, all receives use RPM to join at source
 - Use src and dst addresses to define group (src, channel)
 - Recursive CountQuery message to count group members
 - Closed groups (authentication to subscribe)

- Also Simple Multicast (Perlman etc.)
- And even more extreme is End-System multicast 😊