Multicast Routing

CSE 561 Lecture 13, Spring 2002. David Wetherall

Overview

- Multicast goals and service model
- Multicast Routing
 - Dense: Distance Vector / Link State
 - Sparse: Shared tree
- Limiters (compare to end-system multicast)
 - Scalability
 - Deployment issues
 - Operational/Economic issues
 - Applications?

djw // CSE 561, Spring 2002, with credit to savage

Flood and Prune (DV)

- Extensions to unicast distance vector algorithm
- Goal
 - Multicast packets delivered along shortest-path tree from sender to members of the multicast group

L13.11

- Likely have different tree for different senders
- Distance Vector Multicast Routing (DVMRP) developed as a progression of algorithms
 - Reverse Path Flooding (RPF)
 - Reverse Path Broadcast (RPB)
 - Truncated Reverse Path Broadcasting (TRPB)
 - Reverse Path Multicast (RPM)

djw // CSE 561, Spring 2002, with credit to savage

Solution: Reverse Path Broadcast (RPB)

- Flooding vs. broadcast
 - With flooding, a single packet can be sent along an individual link multiple times
 - Each router attached to link can potentially forward same packet
 - RPB sends a packet along a link at most once
- Approach: Define parent and child routers for each link
 - Relative to each link and each source S
 - Router is a parent for link if it has minimum path to S
 - All other routers on the link are children
 - Only forward on child links for S
- How to decide parent and children routers for link?
 - In routing updates; router determines if is parent

djw // CSE 561, Spring 2002, with credit to savage

- How much state does a router need for multicast?
 - Dense mode O(senders * groups)
 - Sparse mode O(groups)
 - Compare to O(#networks) for unicast ...
- Problem: can't aggregate multicast addresses in the same way as unicast addresses no hierarchy
- Also address allocation: which address to use for a new group?
 - No standard but must be globally unique
 - Global random selection
 - Per-domain addressing (MASC, GLOP)

djw // CSE 561, Spring 2002, with credit to savage

L13.21

Mbone Pro/Con

• Success story

- Multicast video to 20 sites in 1992
- Easy to deploy, no explicit router support
- Ran DVMRP and had 100s of routers
- Drawbacks
 - Manual tunnel creation/maintenance
 - Inefficient
 - No routing policy (single tree)
 - Why would an ISP deploy a new mbone node?

djw // CSE 561, Spring 2002, with credit to savage

L13.25

