Network Measurement

CSE 561 Lecture 10, Spring 2002.
David Wetherall

Overview

• Motivation – why measure?
• What would we like to measure?
• Measurement approaches/methodologies
• Challenges

• Bolot93 – Delay and Loss
• Leland93 – Self-Similar Traffic
Motivation

• Operational needs
 – Is something broken? What is it?
 – Do I need more/better X? When will I need it?

• Research needs
 – How is the Internet really configured?
 – How well does it do X?
 – How do people use it?
 – What is the trend for X?
 – How do these answers impact application/protocol design?

• Underlying assumption
 – We don’t really understand how networks work/are used
 – If we did, then we could use simulation or analytic means

What to measure?

• Channel properties
 – Corruption, sequencing, duplication
 – Latency, loss, jitter, bandwidth

• Topological properties
 – Network connectivity (physical, L2, L3, AS-level)
 – Routing protocol dynamics

• Application properties
 – Traffic composition
 – Request distributions, actor locations
Methodologies

- **Active vs Passive**
 - Active: send a probe into the network and see what happens
 - E.g., ping, traceroute to measure paths
 - Passive: observe existing traffic to determine result
 - E.g., Web traces to measure caching behavior
 - E.g., TCP traces to measure bandwidth etc.
 - E.g., RouteViews peers with routers to observe BGP routes

- **Observation vs inference**
 - Few things can be observed; statistical inference is key
 - E.g. ping: round-trip time is observed, packet loss in inferred

Challenges – The Experiment

- **You can’t measure what you want where you want!**
 - No centralized points of control/administration
 - No/little cooperation from intermediate systems
 - Little/no cooperation from end systems: one or two armed?

- **Result is a need/emphasis on creative inference**
 - Interior properties based on E2E observations
 - E2E properties using “stealth”end-system support
 - E.g., Sting hides via TCP, King via DNS
Challenges – Getting Good Data

• Representative data
 – Internet is huge and heterogeneous
 – Good trace data is hard to come by/protected

• Technical difficulties
 – High speed passive measurement is hard
 – Active probes treated differently from normal data (ping)
 – Privacy concerns; encryption obscures structure
 – Asymmetry; may only be able to monitor one direction
 – Repeatability

Challenges – Using the Data

• Good metrics & statistics
 – What to measure
 • Flow vs bytes vs packets
 – How to summarize sample data?
 • Mean, median, standard assumptions, heavy-tails, etc…
 – Validation
 • How do you know you didn’t make a mistake?

• Uncertain predictive power
 – Adaptive on short-time scales; changing on longer ones
 – How valuable is yesterday’s measurement?
Bolot93 – E2E Delay and Loss

- Characterizes E2E packet delay and loss
 - Active E2E observations only, no network access
- Infers properties of the path from measurements
 - By relating properties of measurements to analyses

- Bottleneck bandwidth falls out
 - Probe/ACK compression seen too
- Dependent/grouped losses fall out
 - On top of random background losses

Other Inference Techniques

- Bottleneck bandwidth (pchar, bprobe, nettimer, clink)
- Available bandwidth (treno, ?)
- Path loss, reordering in both directions (sting)
- Loss before or after bottleneck (paxson)
- Queuing delays (Vegas?)
- Location of congestion (Andy?)
- Topology (traceroute, ally, Neil, 561?)
- Link weights (Ratul)
- Routing policy (Gao, 561?)
- Latency between arbitrary points (king)

- Where will we be in a few years?
Leland93 – Self Similar Traffic

- Meticulous analysis of traffic timings
 - Shows traffic is self-similar (bursty across a wide range of timescales)
 - Burstiness (Hurst parameter) gets worse with load!

- What does this mean?
 - Aggregated traffic does not get smooth; departure from telco design

- Intuitive construction
 - Combine ON/OFF sources with heavy-tailed periods
 - Result is self-similar traffic

In a similar vein ...

- File/flow sizes are heavy-tailed
- Document popularity is Zipf
- Web transfer times, rates are heavy-tailed

- These have implications for system design
 - Average doesn’t characterize much
 - A small number of flows carry most of the bytes!
 - Exploit for load-sensitive routing, penalty boxes, ...
 - (Cooperative) caching is of limited benefit
Summary

- Network measurement is easy to do … but hard to do right!
- Need to be creative about collecting data and inferring quantities
- Need to be careful about collection and analysis methodology
- Need to consider the underlying causes

- Two kinds of results
 - Lots of raw results: “Good data outlives bad theory”
 - A few important conclusions: “Web page popularity is heavy tailed, so the benefit of caching is limited”