Collision and Contact Basics

Constraints

We want rigid bodies to behave as solid objects, and not interpenetrate. By applying constraint forces between contacting bodies, we prevent interpenetration from occurring. We need to:

- a) Detect interpenetration
- b) Determine contact points
- c) Compute constraint forces

Computing j

Computing j

$$\hat{n} \cdot \dot{p}_a^+ = -\varepsilon (\hat{n} \cdot \dot{p}_a^-) \longrightarrow cj + b = d$$

22

Computing j

$$\hat{n} \bullet (\dot{p}_a^+ - \dot{p}_b^+) = -\varepsilon \left(\hat{n} \bullet (\dot{p}_a^- - \dot{p}_b^-) \right)$$

Computing j

$$\hat{n} \bullet (\dot{p}_a^+ - \dot{p}_b^+) = -\varepsilon \Big(\hat{n} \bullet (\dot{p}_a^- - \dot{p}_b^-) \Big) \longrightarrow cj + b = d$$

Conditions on the Constraint Force

To avoid inter-penetration, the force strength f must prevent the vertex p_a from accelerating downwards. If B is fixed, this is written as

$$\hat{n} \cdot \ddot{p}_a \ge 0$$

26

Conditions on the Constraint Force

To prevent the constraint force from holding bodies together, the force must be repulsive:

$$f \ge 0$$

Does the above, along with

$$\hat{n} \cdot \ddot{p}_a \ge 0 \longrightarrow af + b \ge 0$$

sufficiently constrain f?

Conditions on the Constraint Force

To make f be workless, we use the condition

$$f \cdot (af + b) = 0$$

The full set of conditions is

$$af + b \ge 0$$
$$f \ge 0$$
$$f \cdot (af + b) = 0$$

Quadratic Program for f_1 and f_2

Non-penetration:

$$a_{11}f_1 + a_{12}f_2 + b_1 \ge 0$$
$$a_{21}f_1 + a_{22}f_2 + b_2 \ge 0$$

Repulsive:

$$f_1 \ge 0$$

$$f_2 \ge 0$$

Workless:

$$f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$$

 $f_2 \cdot (a_{21}f_1 + a_{22}f_2 + b_2) = 0$

33

In the Notes – Constraint Forces

Derivations of the non-penetration constraints for contacting polyhedra.

Derivations and code for computing the a_{ij} and b_i coefficients.

Code for computing and applying the constraint forces $f_i \hat{n}_i$.

34

Quadratic Programs with Equality Constraints

Non-penetration:

$$a_{11}f_1 + a_{12}f_2 + b_1 = 0$$

$$a_{21}f_1 + a_{22}f_2 + b_2 \ge 0$$

Repulsive:

Workless:

$$f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$$
 (free)
 $f_2 \cdot (a_{21}f_1 + a_{22}f_2 + b_2) = 0$

Collision Detection

- O(n²) nature of the problem
- A number of ways to avoid quadratic performance:
 - Improve the constant by using bounding boxes
 - Use temporal coherence

Bounding Box

- Axis aligned so intersection test is fast
- But still doing O(n²) work

37

Sort and sweep algorithm With coherence O(n+c) $\begin{vmatrix} l_6 & & l_5 & & & \\ & & & l_4 & & \\ & & & & l_2 & & \\ & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & & & & & & l_4 & \\ & l_4 & \\$

Collision Detection of convex polyhedra

- Compute the separating plane
- Use coherence to avoid recomputing the separating plane
- If no separating exists polyhedra are intersecting

