Interactive Control of Rigid Body Motion

Motion Keyframi

Keyframing

Interpolates motion from "key" positions

Simulation

Solves equations to compute motion

Rigid Body Motion

Interactive Control

- Extended rigid body dynamics
- Differential control

Main Challenges

The function is nonlinear

Motion is a solution to nonlinear DEs

Main Challenges

The function is nonlinear

Motion is a solution to nonlinear DEs

The function domain is high dimensional

• For a *single* rigid body $u \in \mathbb{R}^3 \times SO(3) \times \mathbb{R}^3 \times \mathbb{R}^3$

Main Challenges

The function is nonlinear

Motion is a solution to nonlinear DEs

The function domain is high dimensional

• For a *single* rigid body $u \in \mathbb{R}^3 \times SO(3) \times \mathbb{R}^3 \times \mathbb{R}^3$

The function is discontinuous

Main Challenges

The function is nonlinear

Motion is a solution to nonlinear DEs

The function domain is high dimensional

• For a *single* rigid body $u \in \mathbb{R}^3 \times SO(3) \times \mathbb{R}^3 \times \mathbb{R}^3$

The function is discontinuous

Artist must control the behavior

Interactive Control

- 1) Evaluate δc_i for current parameters u
- 2) Compute δu such that $\delta c_i = \frac{\partial S(t_i, u)}{\partial u} \delta u$
- 3) Update parameters $u' = u + \varepsilon \delta u$
- 4) Repeat with u = u'

Important Details

- Evaluate δc_i for current parameters u

Simulation must be fast

Polygonal bodies

Important Details

- Compute δu such that $\delta c_i = \frac{\partial S(t_i, u)}{\partial u} \delta u$

Derivative evaluation

- Finite differences are slow and inaccurate
- Specialized automatic differentiation technique

Important Details

- Compute δu such that $\delta c_i = \frac{\partial S(t_i, u)}{\partial u} \delta u$ Update parameters $u' = u + \varepsilon \delta u$

Convergence

- Interaction
- Local sampling

Summary Interactive Control Continuous optimization Differential Control Discrete optimization Sampling Randomized Path Planning