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Differential Constraints

Beyond Points and Springs
• You can make just about anything out of point 

masses and springs, in principle

• In practice, you can make anything you want 
as long as it’s jello

• Constraints will buy us:
– Rigid links instead of goopy springs
– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:
– The bead can slide freely 

along the circle

– It can never come off, 
however hard we pull

• Question:
– How does the bead move 

under applied forces?

Penalty Constraints

• Why not use a spring to hold the 
bead on the wire?

• Problem:
– Weak springs ⇒ goopy 

constraints

– Strong springs ⇒ neptune
express!

• A classic stiff system
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The basic trick (f = mv version)
• 1st order world.

• Legal velocity: tangent to 
circle (N·v = 0)

• Project applied force f onto 
tangent: f’ = f + fc

• Added normal-direction 
force fc: constraint force

• No tug-of-war, no stiffness

N f

fc

f’

f c =  - f ⋅N
N⋅N

N f ′ =  f + f c

f = ma • Same idea, but…

• Curvature (κ) has to match.

• κ depends on both a and v: 
– the faster you’re going, the 

faster you have to turn

• Calculate fc to yield a legal 
combination of a and v

• Not as simple! 

f

v

κ
fcf’

N

Now for the Algebra …

• Fortunately,  there’s a general recipe for 
calculating the constraint force

• First, a single constrained particle

• Then, generalize to constrained particle 
systems

Representing Constraints

x = r cos θ,sin θ

I. Implicit:

II. Parametric:

C(x) = x  - r = 0

Point-on-circle
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Maintaining Constraints Differentially

• Start with legal position 
and velocity.

• Use constraint forces to 
ensure legal curvature.

0   legal position

0   legal velocity

0   legal curvature
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Constraint Gradient

Implicit:

C(x) = x  - r = 0

Differentiating C gives 
a normal vector.

This is the direction 
our constraint force 
will point in.

Point-on-circle

C
N

x

∂=
∂

C(x) = x  - r = 0

Constraint Forces

Constraint force: gradient 
vector times a scalar λ
Just one unknown to solve 
for

Assumption:  constraint is 
passive—no energy gain or 
loss  Point-on-circle

cf Nλ=

Constraint Force Derivation

Set C = 0,  solve for λ:¨

Constraint force is λN.2

Notation: ,
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x x t

∂ ∂= =
∂ ∂ ∂

&

( )

C N x

C N x
t

N x N x

= ⋅
∂= ⋅
∂

= ⋅ + ⋅

& &

&&

& & &&

cf f
x

m

+=&&

cf Nλ=( )( )C x t

N x N f
m

N N N N
λ ⋅ ⋅= − −

⋅ ⋅

& &



SG4

Example: Point-on-circle
Write down the constraint 
equation.

Take the derivatives.

Substitute into generic 
template, simplify.

C = x - r

N = 
∂C
∂x

 = x
x

N = 
∂2C
∂x∂t

 = 1
x

 x - 
x⋅x
x⋅xx

λ = -m
N⋅x
N⋅N - 

N⋅f
N⋅N = m

( )x⋅x 2

x⋅x  - m( )x⋅x   - x⋅f   1
x

  

Drift and Feedback

• In principle, clamping     at zero is enough

• Two problems: 

– Constraints might not be met initially

– Numerical errors can accumulate
• A feedback term handles both problems:

C = - αC - βC,  instead of
C = 0

C

α and β are magic constants.

Tinkertoys

• Now we know how to simulate a bead on a wire.

• Next: a constrained particle system.
– E.g. constrain particle/particle distance to make 

rigid links.

• Same idea, but…

Constrained particle systems

• Particle system: a point in state space.

• Multiple constraints:

– each is a function Ci(x1,x2,…)

– Legal state: Ci= 0, ∀ i.
– Simultaneous projection.

– Constraint force:  linear combination of 
constraint gradients.

• Matrix equation.
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Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass 
matrix.

W: M-inverse (element- wise 
reciprocal)

q  = x1,x2, ,xn

Q  = f1,f2, ,fn

M = 

m1

m1

m1

mn

mn

mn

 

 W  = M-1

 

 q = WQ 

Particle System Constraint Equations

 
 C = C1,C2, ,Cm  

λ = λ1,λ2, ,λm

J = ∂C
∂q

J = 
∂2C
∂q∂t

 q = W Q + JTλ  

Matrix equation for λ

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT λ = -Jq - JW Q 

How do you implement all this?

• We  have a global matrix equation.

• We want to build models on the fly, just like 
masses and springs.

• Approach:

– Each constraint adds its own piece to 
the equation.

Matrix Block 
Structure

C

x i

x j

J

• Each constraint 
contributes one or more 
blocks to the matrix.

• Sparsity: many empty 
blocks.

• Modularity:  let each 
constraint compute its 
own blocks.

• Constraint and particle 
indices determine block 
locations.

∂C
∂x i

∂C
∂x j
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Global and Local

C 

 λ  fc 
x
v
f
m

x
v
f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x
v
f
m

x
v
f
m

p2

p1

C = x1 - x2  - r

 
∂C
∂x1

, 
∂C
∂x2

  
∂2C

∂x1∂t
, 

∂2C
∂x2∂t

 
 C  C 

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x
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…
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m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces
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Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step
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Constraint Force Eval
• After computing ordinary forces:

– Loop over constraints, assemble 
global matrices and vectors.

– Call matrix solver to get λ, multiply 
by     to get constraint force.

– Add constraint force to particle 
force accumulators.

JT

Impress your Friends

• The requirement that constraints not add or 
remove energy is called the Principle of 
Virtual Work.

• The λ’s are called Lagrange Multipliers.

• The derivative matrix, J, is called the
Jacobian Matrix.    

A whole other way to do it.

x = r cos θ,sin θ

I. Implicit:

II. Parametric:

C(x) = x  - r = 0

Point-on-circle

θ

x

Parametric Constraints

x = r cos θ,sin θ

Point-on-circle

θ

x

• Constraint is always 
met exactly.

• One DOF: θ.
• Solve for   .θ

Parametric:
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Parametric bead-on-wire (f = mv)

T = 
∂x
∂θ

T

N f

fc

f = mv (constrained)

chain rule

combine

x is not an independent 
variable.

First step—get rid of it:

c

c

f f
x

m

x T

f f
T

m

θ

θ

+=

=
+=

&

&&

&

For our
next trick…

T = 
∂x
∂θ

T

N f

fc

T⋅fc = 0

As before, assume fc points in 
the normal direction, so

We can nuke fc by dotting T 
into both sides:

from last slide

blam!

rearrange.1

c

c

f f
T

m
T f T f

T T
m

T f

m T T
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General case

0

where

+ − =

∂=
∂

T T TJ MJ J MJu Ju Q

q
J

u

& &&& [ ]
where

T  = − − 

∂=
∂

JWJ Jq JW Q

J
q
C

& &

Not to be confused with:Lagrange dynamics:

Parametric Constraints: Summary
• Generalizations:  f = ma, particle systems

– Like implicit case (see notes.)

• Big advantages: 
– Fewer DOF’s.

– Constraints are always met.

• Big disadvantages:
– Hard to formulate constraints.
– No easy way to combine constraints.

• Offical name: Lagrangian dynamics.
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Hybrid systems

[ ]

1

1

where

( ( ))

T

T
i i i

i

m
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−
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C q
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Project 1:

• A bead on a wire (implicit)

• A double pendulum

• A triple pendulum

• Simple interactive tinkertoys


