
SG1

Differential Constraints

Beyond Points and Springs
• You can make just about anything out of point

masses and springs, in principle

• In practice, you can make anything you want
as long as it’s jello

• Constraints will buy us:
– Rigid links instead of goopy springs
– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:
– The bead can slide freely

along the circle

– It can never come off,
however hard we pull

• Question:
– How does the bead move

under applied forces?

Penalty Constraints

• Why not use a spring to hold the
bead on the wire?

• Problem:
– Weak springs ⇒ goopy

constraints

– Strong springs ⇒ neptune
express!

• A classic stiff system

SG2

The basic trick (f = mv version)
• 1st order world.

• Legal velocity: tangent to
circle (N·v = 0)

• Project applied force f onto
tangent: f’ = f + fc

• Added normal-direction
force fc: constraint force

• No tug-of-war, no stiffness

N f

fc

f’

f c = - f ⋅N
N⋅N

N f ′ = f + f c

f = ma • Same idea, but…

• Curvature (κ) has to match.

• κ depends on both a and v:
– the faster you’re going, the

faster you have to turn

• Calculate fc to yield a legal
combination of a and v

• Not as simple!

f

v

κ
fcf’

N

Now for the Algebra …

• Fortunately, there’s a general recipe for
calculating the constraint force

• First, a single constrained particle

• Then, generalize to constrained particle
systems

Representing Constraints

x = r cos θ,sin θ

I. Implicit:

II. Parametric:

C(x) = x - r = 0

Point-on-circle

SG3

Maintaining Constraints Differentially

• Start with legal position
and velocity.

• Use constraint forces to
ensure legal curvature.

0 legal position

0 legal velocity

0 legal curvature

C

C

C

=

=

=

&

&&

0C =

0C =&&

0C =&

Constraint Gradient

Implicit:

C(x) = x - r = 0

Differentiating C gives
a normal vector.

This is the direction
our constraint force
will point in.

Point-on-circle

C
N

x

∂=
∂

C(x) = x - r = 0

Constraint Forces

Constraint force: gradient
vector times a scalar λ
Just one unknown to solve
for

Assumption: constraint is
passive—no energy gain or
loss Point-on-circle

cf Nλ=

Constraint Force Derivation

Set C = 0, solve for λ:¨

Constraint force is λN.2

Notation: ,
C C

N N
x x t

∂ ∂= =
∂ ∂ ∂

&

()

C N x

C N x
t

N x N x

= ⋅
∂= ⋅
∂

= ⋅ + ⋅

& &

&&

& & &&

cf f
x

m

+=&&

cf Nλ=()()C x t

N x N f
m

N N N N
λ ⋅ ⋅= − −

⋅ ⋅

& &

SG4

Example: Point-on-circle
Write down the constraint
equation.

Take the derivatives.

Substitute into generic
template, simplify.

C = x - r

N =
∂C
∂x

 = x
x

N =
∂2C
∂x∂t

 = 1
x

 x -
x⋅x
x⋅xx

λ = -m
N⋅x
N⋅N -

N⋅f
N⋅N = m

()x⋅x 2

x⋅x - m()x⋅x - x⋅f 1
x

Drift and Feedback

• In principle, clamping at zero is enough

• Two problems:

– Constraints might not be met initially

– Numerical errors can accumulate
• A feedback term handles both problems:

C = - αC - βC, instead of
C = 0

C

α and β are magic constants.

Tinkertoys

• Now we know how to simulate a bead on a wire.

• Next: a constrained particle system.
– E.g. constrain particle/particle distance to make

rigid links.

• Same idea, but…

Constrained particle systems

• Particle system: a point in state space.

• Multiple constraints:

– each is a function Ci(x1,x2,…)

– Legal state: Ci= 0, ∀ i.
– Simultaneous projection.

– Constraint force: linear combination of
constraint gradients.

• Matrix equation.

SG5

Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass
matrix.

W: M-inverse (element- wise
reciprocal)

q = x1,x2, ,xn

Q = f1,f2, ,fn

M =

m1

m1

m1

mn

mn

mn

 W = M-1

 q = WQ

Particle System Constraint Equations

 C = C1,C2, ,Cm

λ = λ1,λ2, ,λm

J = ∂C
∂q

J =
∂2C
∂q∂t

 q = W Q + JTλ

Matrix equation for λ

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT λ = -Jq - JW Q

How do you implement all this?

• We have a global matrix equation.

• We want to build models on the fly, just like
masses and springs.

• Approach:

– Each constraint adds its own piece to
the equation.

Matrix Block
Structure

C

x i

x j

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

• Constraint and particle
indices determine block
locations.

∂C
∂x i

∂C
∂x j

SG6

Global and Local

C

 λ fc
x
v
f
m

x
v
f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x
v
f
m

x
v
f
m

p2

p1

C = x1 - x2 - r

∂C
∂x1

,
∂C
∂x2

∂2C

∂x1∂t
,

∂2C
∂x2∂t

 C C

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x
v
f
m

x
v
f
m

…
x
v
f
m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces

x
v
f
m

x
v
f
m

…
x
v
f
m

x
v
f
m

x
v
f
m

…
x
v
f
m

Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step

SG7

Constraint Force Eval
• After computing ordinary forces:

– Loop over constraints, assemble
global matrices and vectors.

– Call matrix solver to get λ, multiply
by to get constraint force.

– Add constraint force to particle
force accumulators.

JT

Impress your Friends

• The requirement that constraints not add or
remove energy is called the Principle of
Virtual Work.

• The λ’s are called Lagrange Multipliers.

• The derivative matrix, J, is called the
Jacobian Matrix.

A whole other way to do it.

x = r cos θ,sin θ

I. Implicit:

II. Parametric:

C(x) = x - r = 0

Point-on-circle

θ

x

Parametric Constraints

x = r cos θ,sin θ

Point-on-circle

θ

x

• Constraint is always
met exactly.

• One DOF: θ.
• Solve for .θ

Parametric:

SG8

Parametric bead-on-wire (f = mv)

T =
∂x
∂θ

T

N f

fc

f = mv (constrained)

chain rule

combine

x is not an independent
variable.

First step—get rid of it:

c

c

f f
x

m

x T

f f
T

m

θ

θ

+=

=
+=

&

&&

&

For our
next trick…

T =
∂x
∂θ

T

N f

fc

T⋅fc = 0

As before, assume fc points in
the normal direction, so

We can nuke fc by dotting T
into both sides:

from last slide

blam!

rearrange.1

c

c

f f
T

m
T f T f

T T
m

T f

m T T

θ

θ

θ

+=

⋅ + ⋅⋅ =

⋅=
⋅

&

&

&

General case

0

where

+ − =

∂=
∂

T T TJ MJ J MJu Ju Q

q
J

u

& &&& []
where

T  = − − 

∂=
∂

JWJ Jq JW Q

J
q
C

& &

Not to be confused with:Lagrange dynamics:

Parametric Constraints: Summary
• Generalizations: f = ma, particle systems

– Like implicit case (see notes.)

• Big advantages:
– Fewer DOF’s.

– Constraints are always met.

• Big disadvantages:
– Hard to formulate constraints.
– No easy way to combine constraints.

• Offical name: Lagrangian dynamics.

SG9

Hybrid systems

[]

1

1

where

(())

T

T
i i i

i

m

−

−

  = − − 

 
= =  

 

∂ ∂=
∂ ∂

∫∫∫

JWJ Ju JW Q

W M q q

C q u

C q
J

q u

& &

Project 1:

• A bead on a wire (implicit)

• A double pendulum

• A triple pendulum

• Simple interactive tinkertoys

