Differential Constraints

A bead on awire

* Desired Behavior:

—The bead can slide freely
along thecircle

—It can never come off,
however hard we pull

* Question:

—How doesthe bead move
under applied forces?

Beyond Points and Springs
* You can make just about anything out of point
masses and springs, in principle
» In practice, you can make anything you want
as long as it’s jello
» Constraintswill buy us:
— Rigid links instead of goopy springs
— Waysto make interesting contraptions

Penalty Constraints

* Why not usea springto hold the
bead on thewire?

* Problem:
% f — Woeak springs J goopy

constraints

— Strong springs O neptune
express!

* A classic stiff system




Thebasictrick (f = mv version) f =ma Same idea, but

N J'; * iSt (;:de: w.?rllc:. y Curvature (k) hasto match.
G egal veoaty: tangent to * K dependson both aand v:

circle (N-v =0) ot o
. . —the faster you're going, the
* Project applied forcef onto faster youyhave t% tur%

tangent: =1 +f, Calculatef, toyield a legal
. °c - Calculatef, toyield aleg
Added normal-direction combination of a and v

forcef.: constraint force _
* Not assimple!

f

* No tug-of-war, no stiffness

f N ,
fe=-qm™  f="f+fc
Now for the Algebra ... Representing Constraints

* Fortunately, there’s a general recipe for
calculating the constraint force

 First, asingle constrained particle

* Then, generalize to constrained particle
systems

[. Implicit:

Cx)=x|-r=0




Maintaining Constraints Differentially

» Start with legal position
and velocity.

* Useconstraint forcesto
ensurelegal curvature.

C =0 legd position
¢ =0 lega velocity

&=o0 legal curvature

Constraint Gradient

Implicit:

Cx)=Ix|-r=0

Differentiating C gives
a normal vector.

Thisisthedirection
our constraint force

Constraint Forces

Constraint force: gradient
vector times a scalar A

Just one unknown to solve
for

Assumption: constraint is
passive—no energy gain or
loss

will point in.

Constraint Force Derivation

C(X(t)) f.=AN
¢ =N o 1
@=2(N [X) m
ot
= N Ok+ N Set C =0, solve foh:
. NX NI
A=—-mM—— -
NN NIN
Notation: N =9C 1g = 9°C Constraint forceisAN.
0x X0t
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Example: Point-on-circle

Drift and Feedback

* Inprinciple, clamping C at zerois enough
* Two problems:
— Constraints might not be met initially
— Numerical errorscan accumulate
» A feedback term handles both problems:

C=- aC- BC, instead of
C=0

] o and 3 are magic congtants.

C=|x-r Write down the constraint
uation.
N :a£: X = . .
ox |x| _| Takethederivatives.
N = °C _ 1 “ x&x' Substitute into generic
Toxat  x]|T x| / template, simplify.
_ NR NE _[_(xR)? 1
A= MO NS —;m <5 -m(xRX) - x X
Tinkertoys

* Now we know how to simulate a bead on a wire.
* Next: a constrained particle system.

—E.g. constrain particle/particle distance to make
rigid links.

* Same idea, but...

Constrained particle systems

» Particlesystem: a point in state space.
* Multiple constraints:

— each isafunction C;(X;,Xy,...)

— Legal state: C;=0, [J 1.

— Simultaneous projection.

— Constraint force: linear combination of
constraint gradients.

* Matrix equation.




Compact Particle System Notation

q=WQ

3n-long state vector.
3n-long force vector.

z0=

matrix.

W: M-inverse (element- wis
reciprocal)

How do you implement all this?

* We havea global matrix equation.

 Wewant to build models on thefly, just like
masses and springs.

* Approach:

— Each constraint addsits own pieceto
the equation.

Particle System Constraint Equations

Matrix equation for A

[AWJITh =-3q-[J

More Notation
WIiQ '

Constrained Acceleration
q=WQ +J\

’ Derivation: just like bead-on-wire. ‘

M atrix Block
Structure
C

= _
| ax; Xi
o —1
sl ' j
J |

* Each constraint

contributes one or more
blocksto the matrix.

e Sparsity: many empty

blocks.

e Modularity: let each

constraint computeits
own blocks.

» Constraint and particle

indices deter mine block
locations.




Constraint Structure

Each constraint 2C 3C
must know how
to compute these g E a><1 0X2 0X10t" X0t

il
Global and L ocal - s Distance Constraint

p2  C=Xy-Xxg-r

Constrained Particle Systems H Modified Deriv Eval L oop
£ |1 KRR f
GEE -G

Clear Force Apply forces
Accumulators

Added Step
X
\ /.. X X
f \Y} \V}
o i | - @
m m
Compute and apply
Added Stuff Return to solver Constraint Forces
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Constraint Force Eval
» After computing ordinary forces:

— Loop over constraints, assemble
global matrices and vectors.

— Call matrix solver to get A, multiply
by J' to get constraint force.

— Add constraint forceto particle
force accumulators.

A whole other way to doit.

Il. Parametric;
X =r[cos 8,sn 0]

Impressyour Friends

» Therequirement that constraints not add or
remove energy is called the Principle of
Virtual Work.

» TheMN'sarecalled Lagrange Multipliers.

* Thederivativematrix, J, iscalled the
Jacobian Matrix.

Parametric Constraints

Parametric:
X =r[cos6,sin 6]

/ » Constraint isalways

met exactly.
» One DOF: 0.
« Solvefor 6.




Parametric bead-on-wire (f = mv)

x is not an independent

variable.
First step—qget rid of it:
k= f+1f f = mv (constrained)
m
k=T8& chainrule
Té= F+ 1| combine
m

L agrange dynamics:

General case
Not to be confused with:

For our
next trick...

Asbefore, assumef, pointsin
the normal direction, so

TH.=0

We can nukef, by dotting T
into both sides:

f+f
Té= < from last slide
m
TD’&_TD‘ *TEE | plam!
m
_1T0 rearrange.
mT O

JTMJE+I"™MIu-3"Q =0

where

J:a_q
ou

BWJ"B. =-3¢-[Iw]Q
where
J :a_C
aq
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Parametric Constraints: Summary

Generalizations: f =ma, particle systems
—Likeimplicit case (see notes.)
Big advantages:
—Fewer DOF's.
—Constraints are always met.
Big disadvantages:
—Hard to formulate constraints.
—No easy way to combine constraints.
Offical name: Lagrangian dynamics.




Hybrid systems Project 1:

AWJ" B =-8u-[IW]Q

where

A bead on a wire (implicit)

A double pendulum

W=M‘1=§T mqiTqE1 A triple pendulum
| 0

C(a(u)
_0Caq
==

Simpleinteractivetinkertoys
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