Surfaces of Revolution

Brian Curless
 CSE 557

Fall 2015

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis.
What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve $C(v)$ in the $x y$-plane:

$$
C(v)=\left[\begin{array}{c}
C_{x}(v) \\
C_{y}(v) \\
0 \\
1
\end{array}\right]
$$

Let $R_{y}(\theta)$ be a rotation about the y-axis
Find: A surface $S(u, v)$ which is $C(v)$ rotated
about the y-axis, where $u, v \in[0,1]$.
Solution: $\quad S(u, v)=R_{y}(2 \pi u) C(v)$

Constructing surfaces of revolution

We can sample in u and v to get a grid of points over the surface.

Suppose we sample:

- in v, to give $C[j]$ where $j \in[0 . . M-1]$
in u, to give rotation angle $\theta[i]=2 \pi i / N$ where $i \in[0 . . N]$

We can now write the surface as:

$$
S[i, j]=R_{y}\left(\frac{2 \pi i}{N}\right) C[j]
$$

How would we turn this into a mesh of triangles?

Tangent vectors, tangent planes, and normals

Normals on a surface of revolution

We can compute tangents in the $x-y$ plane:

$$
\begin{aligned}
& \mathbf{T}_{1}[0, j] \approx C[j+1]-C[j] \\
& \mathbf{T}_{2}[0, j]=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{\top}
\end{aligned}
$$

to get the normal in that plane:

$$
\begin{aligned}
& \text { the normal in that plane: } \\
& \mathbf{N}[0, j]=T_{1}[0, j] \times T_{2}[0, j] \text {.... then noranlize }
\end{aligned}
$$

and then rotate it around:

$$
N[i, j]=R_{y}\left(\frac{2 \pi i}{N}\right) \mathbb{N}[0, j]
$$

Texture coordinates on a surface of revolution

The simplest assignment of texture coordinates would be:

$$
V=\frac{\dot{V}}{n-1} \quad u=\frac{i}{N}
$$

We can do better for v to reduce distortion. Define:

$$
d[j]=\left\{\begin{array}{cc}
\|C[j]-C[j-1]\|, & \text { if } j \neq 0 \\
0, & \text { if } j=0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { and set } v \text { to fractional distance along the curve: } \\
& \qquad V[j]=\sum_{k=0}^{1} d[K] \sum_{K=0}^{M-1} d[K] \text { "arc length paraneterization" }
\end{aligned}
$$

