Parametric surfaces

Brian Curless

CSE 557
Fall 2015

Reading

Required:

- Shirley, 2.5

Optional

- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations

- Explicit $z=f(x, y)$ (a.k.a., a"height field")
- what if the curve isn't a function, like a sphere?

- Implicit $g(x, y, z)=0$
$f(x, y, z)=x^{2}+y^{2}+z^{2}$
$g(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}$

Isocontour from "marching squares"

Isocontour from "marching cubes"
$(u, v), z(u, v))$

- For the sphere:

$$
\begin{aligned}
& x(u, v)=r \cos 2 \pi v \sin \pi u \\
& y(u, v)=r \sin 2 \pi v \sin \pi u \\
& z(u, v)=r \cos \pi u
\end{aligned}
$$

As with curves, we'll focus on parametric surfaces.

Constructing surfaces of revolution

Given: A curve $C(v)$ in the $x y$-plane:

$$
C(v)=\left[\begin{array}{c}
C_{x}(v) \\
C_{y}(v) \\
0 \\
1
\end{array}\right]
$$

Let $R_{y}(\theta)$ be a rotation about the y-axis.
Find: A surface $S(u, v)$ which is $C(v)$ rotated about the y-axis, where $u, v \in[0,1]$.

Solution: $\quad S(u, v)=R_{y}(2 \pi u) C(v)$

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an $\left(x_{c}, y_{d}\right)$ coordinate system with origin O_{c}.
- For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.

Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.

2. Moving. Use the Frenet frame of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

```
Tangent: \(\mathbf{t}(v)=\) normalize \(\left[T^{\prime}(v)\right]\)
Binormal: \(\mathbf{b}(v)=\) normalize \(\left[T^{\prime}(v) \times T^{\prime \prime}(v)\right]\)
Normal: \(\quad \mathbf{n}(v)=\mathbf{b}(v) \times \mathbf{t}(v)\)
```

As we move along $T(v)$, the Frenet frame ($\mathbf{t}, \mathbf{b}, \mathbf{n}$) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the normal plane.
- Place O_{c} on $T(v)$.
- Align x_{c} for $C(u)$ with \mathbf{b}.
- Align y_{c} for $C(u)$ with -n.

If $T(v)$ is a circle, you get a surface of revolution exactly!

Degenerate frames

Let's look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(v)$.
- ...

Tensor product Bézier surfaces

Given a grid of control points $V_{i j}$, forming a control net, construct a surface $S(u, v)$ by:

- treating rows of V (the matrix consisting of the $V_{i j}$) as control points for curves $V_{o}(u), \ldots, V_{n}(u)$.
- treating $V_{0}(u), \ldots, V_{n}(u)$ as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let's walk through the steps:

Control net

Control polygon at $u=1 / 2$

Control curves in u

Curve at $S(1 / 2, v)$

Which control points are interpolated by the surface?

$$
4 \text { Corners }
$$

Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

$$
Q(u)=\sum_{i=0}^{n} V_{i} b_{i}(u)
$$

A tensor product Bézier surface can be written as:

$$
S(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{n} v_{i j} b_{i}(u) b_{j}(v)
$$

In the previous slide, we constructed curves along u, and then along v. This corresponds to re-grouping the terms like so:

$$
S(u, v)=\sum_{j=0}^{n}\left(\sum_{i=0}^{n} V_{i j} b_{i}(u)\right) b_{j}(v)
$$

But, we could have constructed them along v, then u :

$$
S(u, v)=\sum_{i=0}^{n}\left(\sum_{j=0}^{n} v_{i j} b_{j}(v)\right) b_{i}(u)
$$

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^{2} continuity and local control, we get B spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-spline surfaces, cont.

Which B-spline control points are interpolated by the surface?
None.

Tensor product B-splines, cont.

Another example:

NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the $u-v$ domain.

- Define a closed curve in the u - v domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.

