
1

Hierarchical Modeling

Brian Curless
CSE 557

Fall 2015

2

Reading

Required:

 Angel, sections 8.1 – 8.6, 8.8 (online handout)

Optional:

 OpenGL Programming Guide, chapter 3

3

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two
cuboids, with the following 3 degrees of freedom:

 Base rotates about its vertical axis by
 Upper arm rotates in its xy -plane by
 Lower arm rotates in its xy -plane by

(Note that the angles are set to zero in the figure; i.e.,
the parts are shown in their “default” positions.)

Q: What matrix do we use to transform the base?

Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

[Angel, 2011]

h1

h2 h3
Base

Upper arm

Lower arm

4

An alternative interpretation is that we are taking the
original coordinate frames…

…and translating and rotating them into place:

3D Example: A robot arm

yUA
xLAyLA

zLA

xUA

zUA

xB

yB

zB

h1

h2 h3
Base

Upper arm

Lower arm

5

From parts to model to viewer

6

Robot arm implementation
The robot arm can be displayed by keeping a global
matrix and computing it at each step:
Matrix M, M_model, M_view;

main()

{

. . .

M_view = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

M = M_view*M_model;

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

M = M_view*M_model;

upper_arm();

M_model = R_y(theta)*T(0,h1,0)

*R_z(phi)*T(0,h2,0)*R_z(psi);

M = M_view*M_model;

lower_arm();

}

Do the matrix computations seem wasteful?

7

Instead of recalculating the global matrix each time,
we can just update it in place by concatenating
matrices on the right:

Matrix M_modelview;

main()

{

. . .

M_modelview = compute_view_transform();

robot_arm();

. . .

}

robot_arm()

{

M_modelview *= R_y(theta);

base();

M_modelview *= T(0,h1,0)*R_z(phi);

upper_arm();

M_modelview *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation, better

8

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main()
{

. . .
glMatrixMode(GL_MODELVIEW);
Matrix M = compute_view_xform();
glLoadMatrixf(M);
robot_arm();
. . .

}

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

Robot arm implementation, OpenGL

9

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

 edges contain geometric transformations
 nodes contain geometry (and possibly drawing

attributes)

How might we
draw the tree for
the robot arm?

10

A complex example: human figure

Q: What’s the most sensible way to traverse this tree?

11

Human figure implementation, OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_arm();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

12

Animation

The above examples are called articulated models:

 rigid parts
 connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation in
production is key-frame animation.

 Each joint specified at various key frames (not
necessarily the same as other joints)

 System does interpolation or in-betweening

Doing this well requires:

 A way of smoothly interpolating key frames:
splines

 A good interactive system
 A lot of skill on the part of the animator

