
1

Hardware Rendering

Brian Curless
CSE 557

Fall 2015

2

Reading

Required:

 Shirley, Ch. 7, Sec. 8.2, Ch. 18

Further reading:

 Foley, et al, Chapter 5.6 and Chapter 6
 David F. Rogers and J. Alan Adams,

Mathematical Elements for Computer Graphics,
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

 I. E. Sutherland, R. F. Sproull, and R. A.
Schumacker, A characterization of ten hidden
surface algorithms, ACM Computing Surveys
6(1): 1-55, March 1974.

3

Going back to the pinhole camera…

For each pixel center Pij

 Send ray from eye point (COP), C, through Pij into
scene.

 Intersect ray with each object.
 Select nearest intersection.

Recall that the Trace project uses, by default, the
pinhole camera model.

If we just consider finding out which surface point is
visible at each image pixel, then we are ray casting.

4

Warping space
A very different approach is to take this imaging setup:

then warp all of space so that all the rays are parallel:

and then just drop the z-coordinate and draw:

In practice, we keep track of the z-coordinate during
drawing to determine visibility.

5

3D Geometry Pipeline

Graphics hardware follows the “warping space”
approach.

Before being turned into pixels, a piece of geometry
goes through a number of transformations...

6

Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974]
can be used to determine which surface point is visible
at each pixel.

Here is pseudocode for the Z-buffer hidden surface
algorithm, for a viewer looking down the z axis (bigger
– i.e., more positive – z ’s are closer):

Q: What should FAR be set to?

for each pixel (i, j) do
Z-buffer [i, j]  FAR
Framebuffer [i, j]  <background color>

end for
for each triangle A do

for each pixel (i, j) in A do
Compute depth z of A at (i, j)
color  shader(A, i, j)
if z < Z-buffer [i, j] then

Z-buffer [i, j]  z
Framebuffer [i, j]  color

end if
end for

end for

7

Rasterization

The process of filling in the pixels inside of a polygon is
called rasterization.

During rasterization, the z value can be computed
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space
algorithm” by [SSS]

 Mentioned only in Appendix B of [SSS] as a
point of comparison for huge memories, but
written off as totally impractical.

Today, Z-buffers are commonly implemented in
hardware.

8

Rasterization with color

During rasterization, colors can be smeared across a
triangle as well:

9

Gouraud interpolation

Recall from the shading lecture, rendering with per
triangle normals leads to faceted appearance. An
improvement is to compute per-vertex normals and
use graphics hardware to do Gouraud interpolation:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.

10

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we
can miss specular highlights.

2. We will encounter Mach banding (derivative
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…

11

Phong interpolation

To get an even smoother result with fewer artifacts,
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

12

Old pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cblinn-phong to vertex as “varying”
vi ← project v to image

blinn-phong shade with , , , , ,s sdc L V N k k n

determine lighting directionL
determine viewing directionV 

normalize()eN n

Default vertex processing:

 blinn-phongcolor pc

13

Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline:
Phong-interpolated normals!

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,s sdL V N k k n
 normalize()p

eN n

 determine lighting direction (using)p
eL v

  normalize p
eV v

14

Texture mapping and the z-buffer

Texture-mapping can also be handled in z-buffer
algorithms.

Method:

 Scan conversion is done in screen space, as usual
 Each pixel is colored according to the texture
 Texture coordinates are found by Gouraud-style

interpolation

Note: Mapping is more complicated to handle
perspective correctly!

15

Shading in OpenGL

The OpenGL lighting model allows you to associate
different lighting colors according to material
properties they will influence.

Thus, our original shading equation (for a point
light):

becomes:

where you can have a global ambient light with
intensity ILa in addition to having an ambient light
intensity ILa,j associated with each individual light,
as well as separate diffuse and specular intensities,
ILd,j and ILs,j, repectively.

     1
B

r r
s

e a La

n
a La, j j d Ld, j j s Ls, j j +2

j j j j j j

I = k + k I +

k I + k I + k I
a + b + c

() ()N L N H

     
  1

B
r r

N H s

e a La

n
L, j j d j s j2 +

j j j j j j

I = k + k I +

I k + k
a + b + c

N L

16

Materials in OpenGL

The OpenGL code to specify the surface shading
properties is fairly straightforward. For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes:

 The GL_FRONT parameter tells OpenGL that we
are specifiying the materials for the front of the
surface.

 Only the alpha value of the diffuse color is used
for blending. It’s usually set to 1.

17

Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 };

GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 };
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat a0[] = { 1.0 };
GLfloat b0[] = { 0.5 };
GLfloat c0[] = { 0.25 };
GLfloat S0[] = { -1.0, -1.0, 0.0 };
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
glLightfv(GL_LIGHT0, GL_AMBIENT, La0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0);
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);

18

Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a
scene. This number is system-dependent.

For directional lights, you specify a light direction, not
position, and the attenuation and spotlight terms are
ignored.

The directions of directional lights and spotlights are
specified in the coordinate systems of the lights, not
the surface points as we’ve been doing in lecture.

