
1

Hardware Rendering

Brian Curless
CSE 557

Fall 2015



2

Reading

Required:

 Shirley, Ch. 7, Sec. 8.2, Ch. 18

Further reading:

 Foley, et al, Chapter 5.6 and Chapter 6
 David F. Rogers and J. Alan Adams, 

Mathematical Elements for Computer Graphics, 
2nd Ed., McGraw-Hill, New York, 1990, Chapter 2. 

 I. E. Sutherland, R. F. Sproull, and R. A. 
Schumacker, A characterization of ten hidden 
surface algorithms, ACM Computing Surveys
6(1): 1-55, March 1974.
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Going back to the pinhole camera…

For each pixel center Pij

 Send ray from eye point (COP), C, through Pij into 
scene.

 Intersect ray with each object.
 Select nearest intersection.

Recall that the Trace project uses, by default, the 
pinhole camera model.  

If we just consider finding out which surface point is 
visible at each image pixel, then we are ray casting.
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Warping space
A very different approach is to take this imaging setup:

then warp all of space so that all the rays are parallel:

and then just drop the z-coordinate and draw:

In practice, we keep track of the z-coordinate during 
drawing to determine visibility.
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3D Geometry Pipeline

Graphics hardware follows the “warping space” 
approach.

Before being turned into pixels, a piece of geometry 
goes through a number of transformations...
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Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974] 
can be used to determine which surface point is visible 
at each pixel. 

Here is pseudocode for the Z-buffer hidden surface 
algorithm, for a viewer looking down the z axis (bigger 
– i.e., more positive – z ’s are closer):

Q: What should FAR  be set to?

for each pixel (i, j ) do
Z-buffer [i, j ]   FAR
Framebuffer [i, j ]  <background color>

end for
for each triangle A do

for each pixel (i, j ) in A do
Compute depth z of A at (i, j )
color  shader(A, i, j )
if z < Z-buffer [i, j ] then

Z-buffer [i, j ]  z
Framebuffer [i, j ]  color

end if
end for

end for
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Rasterization

The process of filling in the pixels inside of a polygon is 
called rasterization.

During rasterization, the z value can be computed 
incrementally (fast!).

Curious fact:

 Described as the “brute-force image space 
algorithm” by [SSS]

 Mentioned only in Appendix B of [SSS] as a 
point of comparison for  huge memories, but 
written off as totally impractical.

Today, Z-buffers are commonly implemented in 
hardware.
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Rasterization with color

During rasterization, colors can be smeared across a 
triangle as well:
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Gouraud interpolation

Recall from the shading lecture, rendering with per 
triangle normals leads to faceted appearance.  An 
improvement is to compute per-vertex normals and 
use graphics hardware to do Gouraud interpolation:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.
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Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we 
can miss specular highlights.

2. We will encounter Mach banding (derivative 
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…
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Phong interpolation

To get an even smoother result with fewer artifacts, 
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.
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Old pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cblinn-phong to vertex as “varying”
vi ← project v to image

blinn-phong shade with , , , , ,s sdc L V N k k n

determine lighting directionL
determine viewing directionV 

normalize( )eN n

Default vertex processing:

 blinn-phongcolor pc
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Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline: 
Phong-interpolated normals!

Vertex 
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,s sdL V N k k n
 normalize( )p

eN n

 determine lighting direction (using )p
eL v

  normalize p
eV v
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Texture mapping and the z-buffer

Texture-mapping can also be handled in z-buffer 
algorithms.

Method:

 Scan conversion is done in screen space, as usual
 Each pixel is colored according to the texture
 Texture coordinates are found by Gouraud-style 

interpolation

Note:  Mapping is more complicated to handle 
perspective correctly!
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Shading in OpenGL

The OpenGL lighting model allows you to associate 
different lighting colors according to material 
properties they  will influence.  

Thus, our original shading equation (for a point 
light):

becomes:

where you can have a global ambient light with 
intensity ILa in addition to having an ambient light 
intensity ILa,j associated with each individual light, 
as well as separate diffuse and specular intensities, 
ILd,j and ILs,j, repectively.
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Materials in OpenGL

The OpenGL code to specify the surface shading 
properties is fairly straightforward.  For example:

GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);  
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);  
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);  
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);  
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

Notes: 

 The GL_FRONT parameter tells OpenGL that we 
are specifiying the materials for the front of the 
surface.  

 Only the alpha value of the diffuse color is used 
for blending.  It’s usually set to 1.
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Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is 
specified something like:

GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 }; 

GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 }; 
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 }; 
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 }; 
GLfloat a0[] = { 1.0 }; 
GLfloat b0[] = { 0.5 }; 
GLfloat c0[] = { 0.25 };
GLfloat S0[] = { -1.0, -1.0, 0.0 }; 
GLfloat beta0[] = { 45 };
GLfloat e0[] = { 2 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
glLightfv(GL_LIGHT0, GL_AMBIENT, La0); 
glLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Ls0); 
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);
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Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a 
scene.  This number is system-dependent. 

For directional lights, you specify a light direction, not 
position, and the attenuation and spotlight terms are 
ignored.

The directions of directional lights and spotlights are 
specified in the coordinate systems of the lights, not 
the surface points as we’ve been doing in lecture.


