
1

Distribution Ray Tracing

Brian Curless
CSE 557

Fall 2015

2

Reading

Required:

 Shirley, 13.11, 14.1-14.3

Further reading:

 A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

 Robert L. Cook, Thomas Porter, Loren
Carpenter.
“Distributed Ray Tracing.” Computer Graphics
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-
145. 1984.

 James T. Kajiya. “The Rendering Equation.”
Computer Graphics (Proceedings of SIGGRAPH
86). 20 (4). pp. 143-150. 1986.

3

Simulating gloss and translucency

The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are under-sampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

4

Distributing rays over light source area gives:

Soft shadows

5

The pinhole camera

The first camera - “camera obscura” - known to
Aristotle.

In 3D, we can visualize the blur induced by the pinhole
(a.k.a., aperture):

Q: How would we reduce blur?

6

Shrinking the pinhole

Q: What happens as we continue to shrink the
aperture?

7

Shrinking the pinhole, cont’d

8

The pinhole camera, revisited

We can think in terms of light heading toward the
image plane:

We can equivalently turn this around by following rays
from the viewer:

9

The pinhole camera, revisited

Given this flipped version:

how can we simulate a pinhole camera more
accurately?

10

Pinhole cameras in the real world require small
apertures to keep the image in focus.

Lenses focus a bundle of rays to one point => can
have larger aperture.

For a “thin” lens, we can approximately calculate where
an object point will be in focus using the the Gaussian
lens formula:

where f is the focal length of the lens.

Lenses

1 1 1
 

i od d f

11

Depth of field

Lenses do have some limitations. The most
noticeable is the fact that points that are not in the
object plane will appear out of focus.

The depth of field is a measure of how far from the
object plane points can be before appearing “too
blurry.”

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm 12

Depth of field (cont’d)

To simulate depth of field, we can model the refraction of
light through a lens. Objects close to the in-focus plane
are sharp, and the rest is blurry.

13

Depth of field (cont’d)

This is really similar to the pinhole camera model, but now:

 Put the image plane at the depth you want to be in focus.
 Treat the aperture as multiple COPs (samples across the

aperture).
 For each pixel, trace multiple viewing/primary rays for

each COP and average the results.

14

Speeding it up, revisited

Sampling over all these effects makes ray tracing even slower!

Now consider rendering a single image with:

 m x m pixels
 k x k supersampling
 a x a sampling of camera aperture
 n primitives
 area light sources
 s x s sampling of each area light source
 r x r rays cast recursively per intersection

(gloss/translucency)
 d is average ray path length

Without any acceleration we’d get:

Asymptotic # of intersection tests =

We’ve looked at reducing the cost of d (early ray termination),
n (acceleration data structure), and k (adaptive super-sampling).

Now we look at reducing the effect of the a, s, and r terms.

But first…



15

Pixel anti-aliasing

No anti-aliasing

Pixel anti-aliasing

All of this assumes that inter-reflection behaves in a
mirror-like fashion…

16

Reflection anti-aliasing

Reflection anti-aliasing

17

Pixel and reflection anti-aliasing

Pixel and reflection anti-aliasing

18

Full anti-aliasing of reflections

Full anti-aliasing over pixel and reflections

EEEK!!

19

Penumbra revisited

Let’s revisit the area light source…

We can trace a ray from the viewer through a pixel,
but now when we hit a surface, we cast rays to
samples on the area light source.

20

Penumbra: full antialaising

We should anti-alias to get best looking results.

Whoa, this is a lot of rays…just for one pixel!!

21

Penumbra: fewer rays

We can get a similar result with much less computation:
 Break up the light source into points with ID’s.
 Similarly, give an ID to each sub-pixel ray.
 Only send shadow ray to point with same ID.

22

Penumbra: random sampling

Regular sampling of pixels and lights can introduce
bias into the result.

An unbiased approach would be to choose subpixel
locations and area light samples randomly.

23

Penumbra: jittered (stratified) sampling

A hybrid approach, which gives a better distribution of
samples while being unbiased, is to “jitter” (stratify) the rays:

 Break pixel and light source into regions.
 Choose random locations within each region.
 Trace rays through/to those jittered locations.

24

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing [Cook84]:

 uses non-uniform (jittered) samples.
 replaces aliasing artifacts with noise.
 provides additional effects by distributing rays to

sample:
• Reflections and refractions
• Light source area
• Camera lens area

[This approach was originally called “distributed ray
tracing,” but we will call it distribution ray tracing (as
in probability distributions) so as not to confuse it with
a parallel computing approach.]

25

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a
2D pixel (here 16 rays/pixel):

The stratified pattern on the right is also sometimes
called a jittered sampling pattern.

One interesting side effect of these stochastic
sampling patterns is that they actually injects noise
into the solution (slightly grainier images). This noise
tends to be less objectionable than aliasing artifacts.

Random Stratified

26

For illustration (and “ok” simulation), we can
approximate specular reflection as:

For distribution ray tracing, we break the reflection
directions into bins with IDs and distribute rays
accordingly:

Glossy reflection, revisited

27

DRT pseudocode

Now consider traceRay (), modified to handle opaque
glossy surfaces:

function traceRay(scene, P, d, ID):

(t, N, mtrl)  intersect (scene, P, d)

Q ray (P, d) evaluated at t

I = shade (scene, mtrl, Q, N, -d, ID)

R  jitteredReflectDirection (N, -d, mtrl, ID)

I  I + material.kr  traceRay (scene, Q, R, ID)

return I

end function

28

Depth of field revisited

We can also perform distribution ray tracing across a camera
aperture:

29

In general, you can trace rays through a scene and keep
track of their id’s to handle all of these effects:

Q: Do you end up tracing any more rays than you would
with a standard, anti-aliased Whitted ray tracer?

Chaining the ray ID’s

